

Cerebellar control of visually-guided eye movements by the bilateral mass of activity in the caudal fastigial nuclei

Laurent Goffart, Clara Bourrelly, Julie Quinet

▶ To cite this version:

Laurent Goffart, Clara Bourrelly, Julie Quinet. Cerebellar control of visually-guided eye movements by the bilateral mass of activity in the caudal fastigial nuclei. Meeting of the GDR Neural Net, Dec 2019, Bordeaux, France. hal-03652206

HAL Id: hal-03652206

https://hal.science/hal-03652206

Submitted on 27 Apr 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Laurent Goffart, Clara Bourrelly and Julie Quinet

Institut de Neurosciences de la Timone, CNRS – Aix-Marseille Université, Marseille, France

The caudal part of both fastigial nuclei (cFN) plays a crucial role in the ability to foveate a static or moving visual target. In the monkey, an unilateral inactivation of cFN by local injection of muscimol impairs the horizontal component of saccadic eye movements. An ipsilesional gaze offset is also observed while a target is being fixated or pursued. In the head-unrestrained monkey (and cat), the head exhibits an ipsilesional deviation relative to the trunk (cervical dystonia).

ELEMENTS FOR A CONTROVERSY

In a computational study, Eggert, Robinson & Straube (2016) reported more variability in saccade endpoints after cFN inactivation than before., and interpreted this effect as altered putative "noises" in brain activity: planning noise and/or signal dependent motor noise. Unfortunately, they did not consider the fact that after cFN inactivation, the monkeys have difficulties to foveate a visual target. The variability in saccade endpoints can indeed result from the fact that saccades did not start from the same starting positions (Table 1 and Fig. 1). Moreover, when we look at the literature, we do not find any particular increase in the variability of amplitudes. However, we find differences between experiments: the amount of dysmetria varies between the experiments (Fig. 2).

Table 1

from Goffart, Chen & Sparks Journal of Neurophysiology (2004)

saccade (either hypometric or hypermetric) brings the eyes to the ipsilesional side. A contralesional saccade is prompted for improving target foveation, but its amplitude is smaller than required to accurately place the target image on the same region of the fovea as before the injection. Ipsilesional saccades can also be observed even before gaze reaches the target. Consequently, gaze dwells longer in the ipsilesional side. from Guerrasio, Quinet, Büttner & Goffart J Neurophysiol (2010)

N.S.: no statistically significant difference; *P < 0.05 (Mann Whitney U test).

from Goffart, Chen & Sparks J Neurophysiol (2004)

NEURONAL RECRUITMENT HYPOTHESIS

From the demonstration that larger current enhances the size velocity of saccades evoked by electrical cFN microstimulation (Fig. 3), we propose that the variability of saccade endpoints reflects the variable size of the active population of cFN neurons contributing to the movement generation.

Indeed, if during the pharmacological experiments, the perturbation is not exactly centered in cFN, the number of inactivated neurons should increase as the muscimol diffuses, resulting in a dysmetria that increases with time.

CONCLUSION

There is no need to appeal to various kinds of noise in the brain to explain the variability of saccades after cFN inactivation. The number of active neurons contributes to the dynamics of saccades

The different evolutions of ipsilesional and contralesional dysmetria suggest that these two deficits are unrelated

CURRENT FRAMEWORK

Between the topographical and temporal "codes", instead of appealing to a negative feedback loop that reduces a mismatch between internal signals encoding kinematic parameters (desired versus current displacement as estimated from the integration of velocity commandes), we propose that a saccade is the outcome of a process that restores symmetry of activities between commands exerting opposite movement tendencies. The orienting movement is saccadic for no teleological purpose; it is saccadic merely because the flow of activity from the retinal to the motor neurons involves neurons whose pattern of firing is bursting and also because

ALTERNATIVE FRAMEWORK

