
HAL Id: hal-03652183
https://hal.science/hal-03652183v2

Submitted on 26 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Loss mechanisms in TiN high impedance
superconducting microwave circuits

Kazi Rafsanjani Amin, Carine Ladner, Guillaume Jourdan, Sébastien Hentz,
Nicolas Roch, Julien Renard

To cite this version:
Kazi Rafsanjani Amin, Carine Ladner, Guillaume Jourdan, Sébastien Hentz, Nicolas Roch, et al.. Loss
mechanisms in TiN high impedance superconducting microwave circuits. Applied Physics Letters,
2022, 120 (16), pp.164001. �10.1063/5.0086019�. �hal-03652183v2�

https://hal.science/hal-03652183v2
https://hal.archives-ouvertes.fr


Loss mechanisms in TiN high impedance superconducting microwave circuits

Kazi Rafsanjani Amin,1, 2 Carine Ladner,2 Guillaume Jourdan,2 Sebastien Hentz,2 Nicolas Roch,1 and Julien Renard1

1Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Neél, 38000 Grenoble, France
2Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France

Aluminium based platforms have allowed to reach major milestones for superconducting quan-
tum circuits. For the next generation of devices, materials that are able to maintain low microwave
losses while providing new functionalities, such as large kinetic inductance or compatibility with
CMOS platform are sought for. Here we report on a combined direct current (DC) and microwave
investigation of titanium nitride �lms of di�erent thicknesses grown using CMOS compatible meth-
ods. For microwave resonators made of 3 nm thick TiN, we measured large kinetic inductance
LK ∼ 240 pH/sq, high mode impedance of ∼ 4.2 kΩ while maintaining microwave quality factor
∼ 105 in the single photon limit. We present an in-depth study of the microwave loss mechanisms
in these devices that indicates the importance of quasiparticles and provide insights for further
improvement.

After several decades of intense research, major de-
velopments happened in quantum technologies. Su-
perconducting circuits, developped primarily using alu-
minium based technology, are one of the leading plat-
forms for quantum computing to date, with the ma-
jor milestone of computational advantage being reported
recently[1, 2]. Beyond quantum computing, supercon-
ducting microwave devices comprising qubits and mi-
crowave resonators are also used to study a wide vari-
ety of fundamental problems such as ultra-strong light-
matter coupling [3, 4], many-body quantum physics [5, 6],
quantum simulation of interactions in a lattice [7�9], or
topological protection [10, 11].

With the large complexity of addressing a real-life
problem, integration of a large number of qubits and res-
onators while keeping very long coherence in a quantum
processor becomes inevitable. In this context, a lossless,
high inductance element, called superinductance [12],
whose impedance is comparable to, or larger than, the
resistance quantum RQ = h/4e2 ≈ 6.5 kΩ at microwave
frequencies, is a promising building block. It naturally
provides large integration by drastically reducing device
footprint, and is also a key feature to realize protec-
tion from decoherence [13�15] or to achieve strong light-
matter coupling [16, 17]. However, while the conventional
approach of building a superinductance using large ar-
rays of Al-AlOX based Josephson junctions (JJ)s [18�20]
have already enabled exploring rich physics, the fabrica-
tion technology is incompatible with scalable platforms,
and becomes increasingly challenging upon increasing the
number of JJs in the array. This has recently motivated
the study of alternative new materials for fabrication
of scalable and high-coherence superconducting quan-
tum devices [21�23]. Fabrication of superinductances us-
ing kinetic inductance of disordered superconductor thin
�lms became a promising alternative to Al, and di�erent
materials such as TiN [24�27], NbTiN [28], NbN [29, 30],
AlOx [21, 31, 32], InOx [33, 34], doped Si [35], W [36]
have been investigated.

In this letter we demonstrate TiN superconducting cir-
cuits fabricated with a VLSI, CMOS-compatible process
featuring, at the same time high �lm quality, ultra-low
microwave losses down to the quantum regime and high
kinetic inductance. Microwave electrodynamics of dis-
ordered TiN [37, 38], as well as study of low-frequency
resistivity investigating di�erent aspects, such as e�ect of
magnetic disorders on the superconducting behavior [39],
have been already reported in TiN and NbTiN. Very
high quality resonators, with internal quality factor at
high electric �eld as large as 107 [25, 26] have been re-
alized using thick �lms of TiN and various fabrication
techniques [27, 39�41]. NbTiN-based nanowire superin-
ductances have been used to demonstrate a �uxonium
qubit [42]. However, with reducing thickness, which is
needed to reach large kinetic inductances, and increas-
ing amount of disorder, the microwave losses and sample
variability increase, compromising future integration in
large scale devices. Hence, a detailed understanding of
microwave loss mechanisms in these emerging materials is
highly needed [43]. We investigate microwave properties
of disordered TiN thin �lms down to very low thickness,
and we identify the dominating microwave loss mecha-
nisms.

TiN �lms of di�erent thicknesses t were deposited, us-
ing VLSI CMOS-compatible physical vapour deposition
(PVD) method on high-resistivity, 725 µm thick silicon
(100) wafer of 200 mm diameters. Excellent homogeniety
and uniformity of �lm characteristics were achieved as
a result of VLSI process [Supplementary section-I]. We
�rst characterize the TiN thin �lms of di�erent thick-
nesses by measuring sheet resistance R� as a function of
temperature T . R� were measured using standard low-
frequency four-terminal lock-in measurement technique,
with bias current kept low enough to avoid Joule heat-
ing, and below the critical current of the superconduct-
ing state. Superconducting transitions were observed
in �lms with thickness down to t = 3 nm [Supplemen-
tary Fig. S2]. From these measurements, we extract the
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Figure 1. (a) Superconducting transition temperature TC

(blue open circles, left axis) and normal state sheet resistance
Rs (red �lled squares, right axis) obtained just before su-
perconducting transitions versus TiN �lm thickness t. The
dashed lines are guides to the eye. (b) Magnitude (top pan-
nel) and phase (bottom pannel) of S11 parameter of a TiN
microwave resonator with t = 3 nm, with resonance frequency
fR = 5.563 GHz measured using a 3D waveguide. We extract
Qi = 0.9 × 105, Qc = 4.1 × 105 and < n >= 1.3 from the �t
(blue thick line) to the data points [44].

normal-state sheet resistance Rs [Fig. 1(a)], which is the
value of R� obtained just before the superconducting
transition. RS increases by nearly two orders of magni-
tude as the �lm thickness reduces; from 5.7 Ω/� observed
for t = 100 nm �lm to 522.0 Ω/� in t = 3 nm �lm. We
then extract the superconducting transition temperature
Tc [Fig. 1(a)], de�ned as T at which R� drops below
1.0 % of Rs. The Tc decreases from 4.5 K measured for
t = 100 nm �lm to 3.3 K for t = 3 nm �lm. Such de-
crease in TC with decreasing t is common in disordered
thin-�lm superconductors [45]. The residual-resistance-
ratio RRR de�ned as RRR = R�(300 K)/Rs is a mea-
sure of disorder present in thin �lms and characterizes
�lm quality. The largest value of RRR=1.3 observed for
the t = 100 nm �lm is similar to RRR typically reported
in high quality TiN thin �lms [46, 47]. In Tbl. I, we sum-
marize di�erent characteristic parameters of our TiN thin
�lms.

Table I. Thin �lm characteristics

Thickness RRR TC RS LK

(nm) (K) (Ω/�) (pH/�)

3 1.10 3.0 522.0 239.0

5 1.17 3.4 254.4 103.0

10 1.17 3.9 93.5 33.4

20 1.23 4.1 41.2 14.0

50 1.25 4.3 13.3 4.2

100 1.33 4.5 5.7 1.7

We then designed multiple microstrip λ/2 microwave
resonators of di�erent �lm thicknesses and aspect ratio;
a total of 4 resonators using 3 nm �lm, 7 resonators us-
ing 5 nm �lm, and 6 resonators using 10 nm �lms, and
measured complex scattering parameters with a vector
network analyzer, both in planar microstrip geometry
(refered to as 2D later on) and rectangular 3D waveg-
uide [see Supplementary section-IV for details]. All the
microwave measurements described below have been per-
formed at the base temperature of the dilution refriger-
ator of 25 mK, unless otherwise speci�ed. We obtain
coupling quality factor QC , internal quality factor Qi
and mode frequency fR by �tting the data with stan-
dard �t procedures [44]. The average photon number
n circulating in the resonator is estimated using n =
PinQ

2
l /(~π2)f2RQC , where Pin is the attenuated input

power, and the loaded quality factor Q−1
l = Q−1

i +Q−1
C .

In Fig. 1(b-c), we show representative plots of magnitude
(Fig. 1(b) ) and phase of (Fig. 1(c)) re�ection parame-
ter S11, for a t = 3 nm TiN resonator measured in a
3D waveguide. From the �t to the datapoints, we ob-
tain Qi ∼ 0.9× 105, measured in the single photon limit.
Qi ∼ 105 in the single photon limit for such a thin �lm
(∼ 3 nm) high kinetic inductance resonator is comparable
to the best values reported thus far [27, 31, 48�50].

Sheet kinetic inductance LK of a disordered supercon-
ductor scales inversely with super�uid density in the ma-
terial. We obtain consistent LK using both DC and mi-
crowave characterizations, as described below. We mea-
sure resonators with length 6.5 mm and width of 2 µm
and di�erent �lm thicknes t and thus di�erent LK , which
exhibit multiple modes; e.g. 10 modes were observed
with t = 3 nm resonator [supplementary Fig. S6]. The
mode dispersion deviates progressively from expected lin-
ear behaviour at higher fR. The experimental dispersion
�ts with a modi�ed version of long-range Coulomb in-
teraction model [20], developed taking into account the
charge screening by the presence of a ground plane at the
back of the device chip [51]. We extract LK from the �t,
which is the only �t parameter in the model. We also per-
form a �nite-element electromagnetic simulation using
Sonnetr, and obtain fR for our speci�c device geometry,
and di�erent values of LK , which is an input parameter in
the simulations. The experimentally obtained fR is then
used to �t into this simulated fR versus LK relationship,
and estimate the LK for our TiN �lms. Finally, we also
extract LK of the �lms from the resistivity measurements
[shown in Fig. 1] using LK = ~RS/π∆0 [27, 28], where
the T = 0 superconducting gap is obtained using the BCS
relationship ∆0 = 1.76kBTC . Fig. 2 plots LK obtained
from all the above mentioned measurements, for di�erent
t, showing excellent agreement between the three di�er-
ent methods. We emphasize here that all the DC and
microwave measurements presented until now and to be
discussed later for a speci�c t are carried out from dif-
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Figure 2. Sheet kinetic inductance LK versus TiN �lm thick-
ness t. The blue dashed line is a guide to the eye. LK com-
puted from superconducting transition temperature TC and
normal state sheet resistance Rs as LK = ~Rs/1.76πkBTC

is plotted with blue open circles. LK obtained from reso-
nance frequency versus mode number dispersion relation for
microstrip λ/2 resonators are shown with red open box. In
black �lled circles, we show plots of LK obtained from electro-
magnetic simulation using Sonnetr, where LK were tuned as
a parameter of simulation to match mode frequency fR for a
resonator of a given dimensions with experimentally obtained
fR. The errorbars represent spread in absolute value of the
estimation from multiple resonators of di�erent dimensions.
Inset: Plots of LK , obtained using third method, from 6 dif-
ferent microwave resonators made with 5 nm TiN �lm, show
a spread of less than 8% in LK . The errorbars are estimated
using resonance linewidth as an error estimate for fR of the
observed resonance.

ferent parts of 200 mm diameter wafers. The agreement
of LK over all such measurements indicates excellent ho-
mogeneity of the stoichiometry and thickness, which is
an asset of VLSI fabrication.

For the t = 100 nm �lm, we obtain very small value
of LK = 1.0 pH/�, at the limit where LK contributes
negligibly to the total inductance. LK increases with
decreasing t, reaching a signi�cant value of 239 pH/�
(Tbl. I) for t = 3 nm, two orders of magnitude larger
than the value for t = 100 nm �lm. This increase in
LK with decrease in t is a consequence of reduction of
super�uid density in the superconducting state. Our ob-
servation of such an increase in the LK with decreasing
t is in qualitative agreement with TiN �lms deposited
using other methods [27] and other disordered thin-�lm
superconductors.

While we obtain large value of LK for thin TiN �lms,
stability and low-loss at microwave frequencies are ba-
sic requirements for a scalable quantum technology plat-

form. As a result of high �lm quality, as characterized
above [also Supplementary section-III], we observed ex-
cellent long term stability of microwave resonators, char-
acterized as minimal shift in resonance frequencies mea-
sured over time period of several months [Supplementary
Fig. S7], contrary to what is often observed in very thin
�lms.

A very common source of loss in superconducting
quantum devices are two-level systems (TLS) [52]. A
series of detailed investigations showed that impurities
residing at the metal-substrate interface is the major con-
tributor to the TLS losses. This can be attributed to the
order of magnitude larger participation of stored electric
�eld in metal-substrate interfaces, as compared to metal-
air or substrate-air interfaces [52]. On the other hand,
as the kinetic inductance fraction α = Lkinetic/Ltotal
approaches unity, susceptibility to quasiparticles (QP),
and in turn, induced microwave losses due to QP in-
creases [31, 53]. Non-equilibrium quasiparticles in high
kinetic inductance granular aluminum resonators have
been found to be the dominant source of microwave
losses [31, 49, 50]. We study the evolution of Qi of mul-
tiple TiN resonators, both in planar microstrip geome-
try and in rectangular 3D waveguide achieving di�erent
metal-substrate participation ratio pms, with variation of
microwave power and temperature to unravel the under-
lying loss mechanisms.

Qi for a t = 5 nm resonator increases, from Qi ∼
2.0× 105 measured at single photon limit, by ∼ 2 times
to Qi ∼ 4.5×105 over four orders of magnitude increase
in the photon number n, and then tends to saturate
[Fig. 3(a)]. In the inset of Fig. 3(a), we show plots of Qi
versus n, measured for a resonator made with t = 3 nm
TiN. We observe here distinct behaviours for the Qi ver-
sus n for this two di�erent thicknesses. For 3 nm TiN,
we observe Qi ∼ 0.9 × 105 in the single photon limit,
which indicates larger loss in the t = 3 nm resonators as
compared to t = 5 nm resonators. Over the three orders
of magnitude increase in n, Qi shows only a weak depen-
dence on n for the t = 3 nm resonator. Such larger losses
in t = 3 nm resonator as compared to t = 5 nm resonator
have been consistently observed over multiple resonators
with di�erent fR and aspect ratios, while the substrate
and the entire fabrication procedure remained the same.

To gain more insight, In Fig. 3(b), we combine Qi
in the single photon limit versus pms, computed fol-
lowing standard methodology [54�56], for our TiN res-
onators [�lled circles and squares] and also from lit-
erature survey of resonators [open squares and pen-
tagons], and transmon qubits dominated by capacitive
losses. The dashed lines represent an empirical relation
of Qi = [pms tan δ]−1, being governed solely by dielec-
tric loss in substrate quanti�ed by the tan δ parameter.
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Figure 3. Microwave losses in TiN resonators. (a) Internal quality factor Qi versus average photon number n measured
for a t = 5 nm resonator. The blue open circles are the data points while the red lines are �t to the data points using QP
(Supplementary Eqn. S1) induced loss model. Right-bottom inset: Qi versus n measured for a t = 3 nm resonator (blue
open circles), and �t to the data points, similar to that shown in the main panel. (b) Qi versus metal-substrate participation
ratio. The open squares represent superconducting microwave resonators and transmon qubits from literature [red squares from
Ref. [54] and blue squares from Ref. [31]]. Open pentagons represent high kinetic inductance granular aluminum microwave
resonators [31], in which Qi were limited by quasiparticle loss. Our microwave resonators are represented by black (5 nm TiN)
and green (3 nm TiN) �lled squares and circles. The black �lled squares correspond to Qi of 2D microstrip resonators, while
�lled circles represent Qi of resonators measured using rectangular 3D waveguide. The dashed lines represent Qi = [pms tan δ]−1

for three di�erent values of dielectric loss tangent tan δ, in range with typically measured values for high quality Si or sapphire
substrates [31, 54�56]. (c-d) Temperature dependence of losses in TiN microwave resonators. Plots of Qi versus T measured
for (c) t = 5 nm (d) and t = 3 nm TiN resonators. The thick lines are �t to the data using Eqn. 1, which takes into account
thermally induced quasiparticles.

A cluster of data points from literature [open square],
for which the dominant loss is from two-level systems at
metal substrate interface, obeys this empirical relation.
Qi in our 2D (planar) microstrip TiN resonator [black
�lled square] match well with predicted value obtained
using tan δ ∼ 5.5 × 10−3, which is typical for standard
high-quality Si substrates. However, a far-away ground
plane provided by the metal body of a 3D rectangular
waveguide signi�cantly reduces pms by diluting the elec-
tric �eld in the substrate. We observe that the mea-
sured Qi is limited to ∼ 105, one order of magnitude less
than that predicted by Qi = [pms tan δ]−1. Similar sup-
pression of Qi by orders of magnitude compared to the
predicted [pms tan δ]−1 were observed in high kinetic in-
ductance granular aluminum resonators measured in sim-
ilar 3D waveguides [pentagons]. The losses in this case
were found to be dominated by quasiparticles [31]. For
large pms (≥ 10−3, [black �lled squares]) the dominant
loss is naturally from TLS at metal-surface interface, as
any other loss mechanisms are masked o�. On the other
hand, as the pms is reduced for the resonators measured
in 3D waveguide [�lled circles], larger suppression of Qi
than predicted by Qi = [pms tan δ]−1 clearly suggests
that other loss mechanisms become progressively dom-
inant for high kinetic inductance TiN resonators. We
obtain excellent �t to the n dependance of Qi with the
model of n-dependent loss due to localized QP [31] [see
Supplementary section-VI for details], which suggests
that QP induced losses are probably the dominant loss

mechanism in our resonators, similar to previous obser-
vations in high kinetic inductance resonators [31, 50, 57].
QP can be generated in these devices because of pho-
tons, phonons or other high-energy particles, and often
manifest as sudden frequency jumps of the resonators by
`bursts' of quasiparticles. However, identifying the ex-
act origin of these QP is an active �eld of research, and
beyond the scope of this work.

We then studied the temperature dependance of the
losses to gain more insight into the various mecha-
nisms possibly at stake. Qi remains essentially T in-
dependent until about 400 mK, and then decreases
monotonously, but sharply with further increasing T
[Fig. 3(c-d)]. As T increases, the thermal equilibrium
quasiparticle density nqp increases [58, 59], as given by
nqp(T ) = D(EF )

√
2πkBT∆ exp(∆0/kBT ), whereD(EF )

is the density of states at the Fermi energy, and ∆0 is the
superconducting gap at T = 0. The increasing nqp results
in additional loss in microwave resonators, governed by:

1

Qi
= 2α

√
kBT

πhfR
exp

(
− ∆0

kBT

)
+

1

Qa
(1)

with α = Lkinetic/Ltotal being the kinetic inductance
fraction, and 1

Qa
is loss because of other loss mechanisms,

which, in our case, is dominated by loss due to non equi-
librium localized QP, as discussed previously. ∆0 ob-
tained from the �ts to the data [thick lines in Fig. 3(c-d)]
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using Eqn. 1, with α = 1 and ∆0 being the only free pa-
rameter, agrees well within 10% uncertainty [27, 60] with
the BCS prediction of 1.76kBTC . We note here that, ob-
served saturation in Qi for T ≤ 400 mK is contrasting to
TLS predictions, where saturation of TLS because of pro-
vided thermal energy results in an increase in Qi. Hence
the measured T dependance of Qi is in agreement with
the previous discussion suggesting that the microwave
loss in the single photon limit in TiN resonators in 3D
waveguide is not predominantly TLS limited but rather
due to the presence of non-equilibrium quasiparticles.

The total kinetic inductance of a superinductor of
length l and width w can be estimated as Lkinetic =
l
wLK = ~

1.76πkB
l
w
RN

TC
, whereas, in the limit of l� w � t,

t being the thickness, the geometric inductance can be
approximated to Lgeo ≈ µ0

2π l ln( 2l
w ) [57, 61]. For our

t = 3 nm TiN resonator, we obtain Lkinetic = 290 nH,
which is comparable to typical values of∼ 100 nH of high-
impedance superinductors used in high-coherence �uxo-
nium qubits [13, 21, 42, 62]. We also obtain α = 0.98
and α = 0.99 for t = 5 nm and t = 3 nm TiN resonators,
respectively, justifying the constraints α = 1 in the �t in
Fig. 3(c-d). Such large LK , or equivalently α ∼ 1, is key
towards obtaining high characteristic impedance. We es-
timate impedance Zc =

√
L/c, where L and c are induc-

tance and capacitance per unit length of the resonator,
of 3.2 kΩ for our t = 3 nm TiN resonator, measured in
the 3D waveguide. We measure Zc as high as 4.2 kΩ
for a t = 3 nm TiN resonator with fR = 8.7 GHz in a
2D geometry [see Supplementary section-VII for details].
Zc can be further modulated by modifying l/w of the
resonator.

In summary, we studied the microwave properties of
superconducting TiN thin �lms fabricated with a VLSI
platform. We showed that the �lms remain supercon-
ducting down to at least 3 nm, with a critical tempera-
ture still exceeding 3 K. When reducing the �lm thick-
ness, the kinetic inductance increases up to 239 pH/� for
a 3 nm thick �lm. In microwave resonators, we demon-
strate very large total inductance of several hundreds of
nH and characteristic impedance Zc ≈ 4.2 kΩ together
with state-of-the-art losses in the single photon regime,
i.e. internal quality factors Qi ≈ 105. We show evi-
dence that the remaining losses can be attributed to non-
equilibrium quasiparticles. Mitigation strategies, such
as an improved shielding or phonon traps might help
to reduce the losses even further in the future. Our
TiN showed negligible degradation due to aging, con-
trary to what is often observed in very thin �lms. All
these demonstrations open up the possibility to develop
industrial scale fabrication of superconducting microwave
circuits. The compatibility of TiN with large magnetic
�eld will also allow to integrate it into hybrid circuits
using semiconductor spins and superconducting circuits.
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