
HAL Id: hal-03652005
https://hal.science/hal-03652005

Preprint submitted on 26 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Evaluation Over SLP-Represented Document
Databases With Complex Document Editing

Markus L. Schmid, Nicole Schweikardt

To cite this version:
Markus L. Schmid, Nicole Schweikardt. Query Evaluation Over SLP-Represented Document
Databases With Complex Document Editing. 2022. �hal-03652005�

https://hal.science/hal-03652005
https://hal.archives-ouvertes.fr

Query Evaluation Over SLP-Represented Document Databases
With Complex Document Editing

Markus L. Schmid

MLSchmid@MLSchmid.de

Humboldt-Universität zu Berlin

Germany

Nicole Schweikardt

schweikn@informatik.hu-berlin.de

Humboldt-Universität zu Berlin

Germany

ABSTRACT
It is known that the query result of a regular spanner over a single

documentD can be enumerated afterO(|D|) preprocessing andwith

constant delay in data complexity (Florenzano et al., ACM TODS

2020, Amarilli et al., ACM TODS 2021). It has been shown (Schmid

and Schweikardt, PODS’21) that if the document is represented

by a straight-line program (SLP) S, then enumeration is possible

with a delay of O(log |D|), but with preprocessing that is linear

in |S| (which, in the best case, is logarithmic in |D|). Hence, this

compressed setting allows for spanner evaluation in sub-linear time,

i. e., with logarithmic upper bounds for preprocessing and delay, if

the document is highly-compressible.

In this work, we extend these results to the dynamic setting.

We consider a document database DDB = {D1,D2, . . . ,Dm } that

is represented by an SLP SDDB, and that supports regular span-

nersM1,M2, . . . ,Mk (meaning that we have data structures at our

disposal that allow O(log |Di |)-delay enumeration of the result of

spanner Mj on document Di). Then we can perform an update

by manipulating the existing documents of DDB by a sequence

of text-editing operations commonly found in text-editors (like

copy and paste, deleting, or copying factors, concatenating docu-

ments etc.), and add the thus constructed document to the data-

base. Such an operation is called complex document editing and

is given by an expression φ in a suitable algebra. Moreover, after

this operation, the document database still supports all the regular

spannersM1, . . . ,Mk . The total time required for such an update is

O(k · |φ | · log d), where d is the maximum length of any intermediate

document constructed in the complex document editing described

byφ. We stress the fact that the size |SDDB | of the SLP (which upper

bounds the preprocessing in the static case) is potentially logarith-

mic in the data, but generally depends on the compressibility of

the documents (in the worst case, it is even linear in the data). In

contrast to that, we can guarantee that the dependency on the data

of our updates is logarithmic regardless of the actual compression

achieved by the SLP. In particular, any such update performed by

complex document editing adds documents whose length may be

exponentially larger than the time needed for performing such an

update.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9260-0/22/06. . . $15.00

https://doi.org/10.1145/3517804.3524158

Our approach hinges on balancing properties of SLPs, and for our
updates it is vital to manipulate the SLP that represents the database

in such a way that these balancing properties are maintained.

CCS CONCEPTS
• Information systems → Information retrieval; • Theory of
computation→ Database query languages (principles); Data struc-
tures and algorithms for data management; Design and analysis of
algorithms; Automata extensions; Regular languages.

KEYWORDS
Algorithmics on Compressed Data, Document Spanners, Dynamic

Setting, Information Extraction, Straight-Line Programs

ACM Reference Format:
Markus L. Schmid and Nicole Schweikardt. 2022. Query Evaluation Over

SLP-Represented Document DatabasesWith Complex Document Editing. In

Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems (PODS ’22), June 12–17, 2022, Philadelphia, PA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3517804.3524158

1 INTRODUCTION
Since its introduction, the information extraction framework of

document spanners [4] has intensively been investigated in the

database theory community. For example, query results of regular

spanners can be enumerated with linear preprocessing and constant

delay in data complexity (see [1, 5]). In [22], spanner evaluation

over compressed data has been investigated, where the document

D is represented by a straight-line program (SLP) — a lossless com-

pression scheme for textual data widely used in different areas of

theoretical computer science and particularly well-suited for algo-

rithmics on compressed data. The main result of [22] is that after a

preprocessing linear in the size of the SLP the query result of a span-

ner can be enumerated with O(log |D|) delay (in data complexity).

In the best case, the SLP’s size is logarithmic in |D| as well, which

means that the SLP-compressed setting allows sub-linear spanner
enumeration, where the dependency on the data size is only loga-

rithmic. In this paper, we extend the SLP-compressed setting to the

dynamic case, i. e., where the data is subject to updates.

The considered setting is as follows. A document databaseDDB =
{D1,D2, . . . ,Dm } is represented by an SLP S and we have several

data structures at hand that allow the enumeration of spanners

M1,M2, . . . ,Mk on any documentDi inDDBwith delayO(log |Di |).

We then want to manipulate the existing documents of DDB by a

sequence of text-editing operations and evaluate chosen spanners

on the resulting document. For example, we cut the subword from

position 5 to 21 from document D7, insert it at position 12 into doc-

ument D3, append this document to D1, and then run spannersM5

https://doi.org/10.1145/3517804.3524158
https://doi.org/10.1145/3517804.3524158

andM8 on the resulting document. Such a sequence of operations is

called complex document editing and is described by an expression

φ of a suitable algebra.

We can show that if S is balanced (to be explained in more detail

later on), then we can construct and add the documentDφ described

by φ to DDB, update all data structures needed for enumerating the

spannersM1, . . . ,Mk , and maintain the balancedness property ofS

in time O(k ·|φ |· log d) in data complexity, where d is the maximum

length of any intermediate document constructed in the complex

document editing described byφ. Since d is upper bounded by 2 |φ | ·L
(this can be shown by induction), where L := max{|D| : D ∈ DDB}
is the maximum length of any document in DDB, this running time

can also be stated as O(k ·|φ |·(|φ | + log L)).
This means that we can add large documents to the database in

time that is only logarithmic in the size of the new documents, or

logarithmic in the size of the current database’s documents. Conse-

quently, just like [22] shows that the SLP-compressed setting allows

sub-linear (static) evaluation, we show that the SLP-compressed

setting allows sub-linear updates. Moreover, while the preprocess-

ing of [22] is sublinear only if the document is highly compressible,

and only the delay is guaranteed to be logarithmic, we show in this

paper that, regardless of the compressibility of the data, the depen-

dency on the data is always at most logarithmic in our updates.

In order to give some intuition for this result, we shall briefly

explain how SLPs work. An SLP is a directed acyclic graph whose

nodes all have a left and a right successor, except for the sinksTx of

the graphs, which uniquely represent the symbols x of the alphabet

(see Figure 1 for an illustration). Any node A with left and right

successors B and C represents the document D(A) = D(B)D(C),
where D(Tx) = x for the sinks Tx . For example, for node B in

Figure 1, we have

D(B) = D(E)D(C) = D(Ta)D(Tb)D(F)D(Ta)

= D(Ta)D(Tb)D(Tb)D(Tc)D(Ta) = abbca .

For achieving this paper’s main result, we exploit the fact that

Dφ can be constructed from (parts of) documents that are already

represented in a concise way, i. e., by parts of our SLP. However, for
identifying the correct parts of the SLP, we need to traverse paths

of the DAG. To ensure that these paths are short, we work with

SLPs that are balanced in such a way that any path starting in some

node A has length O(log |D(A)|). Consequently, the balancedness
property is vital for our running time bound, and the main technical

challenge tackled in this paper is that our updates must maintain

this property of the SLP. It turns out that the particular balancing
property known from AVL-trees and investigated in the context of

SLPs in [7, 20] suits our needs here.

There are two further aspects to be discussed. Firstly, if we want

to support a completely new spanner for our document database,

then we have to compute the necessary data structures from scratch,

which can be done (as in [22]) in time linear in the size of the SLP
that represents the database (in data complexity). Secondly, if we

want to add a new document D′
that cannot conveniently be de-

scribed by complex document editing of the existing documents,

then we can proceed as follows. In case that D′
is already repre-

sented by a balanced SLP S′
, we can just add it in time O(|S′ |) and

update our data structures in the same time. If S′
is not balanced

yet, then we have to first balance it. Using recent balancing results

for SLPs [7, 8], this can be done in time O(|S′ | log |D′ |). Finally, if

we are given D′
as a plain text in an uncompressed form, then we

cannot avoid to first compute an SLP for it. This, however, is a well-

known algorithmic task with many existing efficient algorithms (cf.

the discussion in Section 5).

Organisation. Since the original contributions of this paper con-
cern the dynamic setting for SLP-represented document databases

and complex document editing, we start with this aspect and de-

fer the discussion of how our results can be applied to document

spanners to the end of our exposition.

Section 2 fixes basic notation and recalls the concept of straight-

line programs (SLPs). Section 3 presents our data model of SLP-
represented document databases. In Section 4 we define our dy-

namic setting based on complex document editing, andwe prove our

main results on maintaining SLP-represented document databases

under complex document editing. In Section 5 we discuss the task

of adding new documents to the database. Section 6 is devoted eval-

uating document spanners on document databases in the presence

of complex document editing. We conclude with some final remarks

given in Section 7. Due to space restrictions, many proof details

had to be deferred to the paper’s full version.

2 PRELIMINARIES
LetN = {1, 2, 3, . . .} and [n] = {1, 2, . . . ,n} forn ∈ N. For a (partial)
mapping f : X → Y , we write f (x) = ⊥ for some x ∈ X to denote

that f (x) is not defined; and we set dom(f) = {x : f (x) , ⊥}.

By P(A) we denote the power set of a set A, and A+ denotes the

set of non-empty words over A, and A∗ = A+ ∪ {ε}, where ε is
the empty word. For a word w ∈ A∗

, |w | denotes its length (in

particular, |ε | = 0), and for every b ∈ A, |w |b denotes the number

of occurrences of b inw . A word v ∈ A+ is a factor (or subword) of
a wordw ∈ A+ if there are u1,u2 ∈ A∗

withw = u1vu2.
For all our algorithmic considerations, we assume the RAM-

model with logarithmic word-size as our computational model.

We fix a finite set Σ, the terminal alphabet, whose size will be
treated as a constant. Documents are just words D ∈ Σ+, and |D|

denotes their length. We use straight line programs as concise rep-
resentations of documents.

A straight-line program (SLP) is a tuple S = (N , Σ,R), where N
is the finite set of non-terminals, Σ is the terminal alphabet, and
R ⊆ N × (N ∪ Σ)+ is a finite set of rules satisfying the following

conditions: R is a function N → (N ∪ Σ)+ and the relation {(A,B) :
(A,w) ∈ R, |w |B ⩾ 1} is acyclic (this is also called the acyclicity
condition). As a convention, we write rules (A,w) ∈ R also in the

form A → w ; and viewing R as a function, we write R(A) to denote

the rule’s right hand side w . The size of S is defined by |S| :=

|N | +
∑
(A,w)∈R |w |.

For every A ∈ N and a ∈ Σ, the 1-step derivation is defined

by DS(A) := R(A) and DS(a) := a. We extend the 1-step deriva-

tion to a morphism (N ∪ Σ)+ → (N ∪ Σ)+ by DS(α1 . . . αn) :=

DS(α1) . . .DS(αn), for αi ∈ (N ∪ Σ), 1 ⩽ i ⩽ n. For every α ∈

(N ∪ Σ)+, we set D1

S
(α) := DS(α) and D

k
S
(α) := DS(D

k−1
S

(α)), for

every k ⩾ 2. The wordDS(α) := D |N |

S
(α) is the derivative of α . Due

to the acyclicity condition,DS(α) ∈ Σ+ for every α ∈ (N ∪Σ)+. The

order of a non-terminal A ∈ N is defined by ordS(A) := min{k :

Dk
S
(A) = DS(A)}. If the SLP under consideration is clear from

the context, we also drop the subscript S from DS(·), DS(·) and

ordS(·).

SLPs as Compressions. The main purpose of SLPs is their use
as compressed representations of words. Their prominence in var-

ious areas of computer science is due to the fact that they are

mathematically easy, and that they cover many practically applied

dictionary-based compression schemes (e. g., run-length encoding

and the Lempel-Ziv-family LZ77, LZ78, LZW, etc.). A comprehen-

sive introduction to SLPs is beyond the scope of this paper (we refer
to the survey [12] and the papers [11, 13, 16, 17, 20, 22, 23]). In the

best case, SLPs can be exponentially smaller than the strings they

represent, and since redundancies in texts are likely in practical

scenarios, good compressibility is to be expected in most cases.

Moreover, many fast practical algorithms for computing SLPs exist.

Normal Forms and Balanced SLPs. An SLP S = (N , Σ,R)
is in Chomsky normal form if, for every rule (A → w) ∈ R we

have w ∈ (N 2 ∪ Σ). We say that an SLP is in normal form if it

is in Chomsky normal form and {Tx : x ∈ Σ} ⊆ N , such that

(Tx → x) ∈ R for every x ∈ Σ, and (A → BC) ∈ R with B,C ∈ N
for every A ∈ N \ {Tx : x ∈ Σ}. We call Tx the leaf non-terminals
and all other A ∈ N \ {Tx : x ∈ Σ} inner non-terminals. We note

that if S is in normal form, then |S| ⩽ 3|N |.

For an SLP in normal form, we shall also use the following con-

venient notation. For every rule A → BC , we set lc(A) = B and

rc(A) = C . This means that we can also represent the set of rules

by functions lc(·) and rc(·), and for every inner non-terminal A, the
rule for A is A → lc(A)rc(A).

An SLP S = (N , Σ,R) in normal form can be represented by

an edge-labelled directed acyclic graph (DAG) as follows. The set

N of non-terminals is the set of nodes, and the edge-relation is

given by the functions lc(·) and rc(·). I.e., from every inner non-

terminal A ∈ N , there is a left arc to its left child lc(A), and a right
arc to its right child rc(A). We assume that the DAG has arc labels

that indicate whether an arc is a left or a right arc. This graph is

acyclic due to the acyclicity condition of the SLP. In the following,

we call this graph the S-DAG (see Figure 1 for an S-DAG). The

sinks (i. e., nodes without outgoing arcs) are exactly the leaf non-

terminals. The longest path from a node A to a sink has exactly

length ord(A) − 1 (note that sinks have a length-0 path to a sink

and, by definition, they have order 1). We say that B is a descendant
of A if A , B and there is a path from A to B in the S-DAG.

We say that non-terminal A is c-shallow for some c ∈ N if

ord(A) ⩽ c · log |D(A)|. For every non-terminal A ∈ N with rule

A → BC , we define bal(A) = ord(B) − ord(C); we say that A is

balanced if bal(A) ∈ {−1, 0, 1}; and A is strongly balanced if A and

all its descendants are balanced. We call an SLP S in normal form

strongly balanced (c-shallow, resp.) if all its inner non-terminals

are strongly balanced (c-shallow, resp.). The notions of c-shallow
SLPs and strongly balanced SLPs have been studied in the litera-

ture (cf., [7, 8, 20]). The following can be easily shown by induction

(cf., [7]; for the reader’s convenience, a proof is also provided in

Appendix A).

A1

A2

B

D

C

E

Ta

F

A3

Tb
Tc

A4A5

G

l

r

lr

l

r

l

r

lr

l

r

l

r l

r

l

r

r

l

r

l

Figure 1: The S-DAG of the SLP from Example 3.1 is shown
in black (and solid arcs). Left and right arcs are indicated
by labels l and r , respectively. The grey parts illustrate the
extensions discussed in Example 4.1.

Lemma 2.1. LetS be an SLP in normal form and letA be a strongly
balanced non-terminal of S. Then, every directed path of the S-DAG
that starts in A and ends in a leaf non-terminal of S has length at
least 1

2
log |D(A)| and at most 2 log |D(A)|. Furthermore, log |D(A)| ⩽

ord(A)−1 ⩽ 2· log |D(A)|.

3 DOCUMENT DATABASES
A document database (over Σ) is a finite collection DDB = {D1,D2,

. . . ,Dm } of documents (over Σ). We will represent a document

database by an SLP as follows. For an SLP S = (N , Σ,R), we call
docs(S) := {D(A) : A ∈ N } the set of documents represented by S.

The SLP S is viewed as a representation for a document database

DDB if DDB ⊆ docs(S). This means that for every D ∈ DDB there

is a non-terminalAD ∈ N withD(AD) = D, but, since in generalS’s
compression requires many factors of documents to be represented

by non-terminals, there may also be non-terminals A ∈ N that

represent a document D(A) < DDB.
We assume that along with the SLP that representsDDBwe store

a mapping D 7→ AD, such that for every document D from DDB
we can access AD in constant time. For simplicity, we also say that

an SLP S represents a DDB = {D1,D2, . . . ,Dm } by non-terminals
A1,A2, . . . ,Am to indicate that D(Ai) = Di for every i ∈ [m].

Example 3.1. LetS = (N , Σ,R) be an SLP in normal form that rep-
resents a document database DDB = {D1,D2,D3} by non-terminals
A1,A2, A3 with the S-DAG illustrated in Figure 1. Note that D(F) =
bc, D(E) = ab, D(C) = D(F)a = bca, D(B) = D(E)D(C) = abbca,
D(D) = D(C)D(B) = bcaabbca. This means that D3 = D(A3) =

D(E)D(B) = ababbca, D2 = D(A2) = D(C)D(D) = bcabcaabbca
and D1 = D(A1) = D(A3)D(C) = ababbcabca. The orders of S’s
non-terminals are as follows: ord(F) = ord(E) = 2, ord(C) = 3,
ord(B) = 4, ord(D) = ord(A3) = 5, ord(A1) = ord(A2) = 6. In par-
ticular, all non-terminals are balanced except for the non-terminals
A1,A2, A3, since bal(A1) = 2 and bal(A2) = bal(A3) = −2.

In our algorithms, we will ensure that the SLP S representing a

document database DDB is in normal form and strongly balanced.

The SLP will be stored in a basic SLP data structure of S, i.e., a data

concat(D,D′) = D · D′ ,

extract(D, i, j) = D[i, j+1⟩ ,

delete(D, i, j) = D[1, i⟩ · D[j+1, d+1⟩ ,

insert(D,D′,k) = D[1,k⟩ · D′ · D[k, d+1⟩ ,

copy(D, i, j,k) = insert(D,D[i, j+1⟩,k)

= D[1,k⟩ · D[i, j+1⟩ · D[k, d+1⟩ .

Figure 2: The CDE-algebra operations; D,D′ are documents,
d = |D|, i, j are positions of D, and k is a gap of D.

structure that allows, for every inner non-terminalA, constant-time

access to the non-terminals lc(A) and rc(A) and to the numbers

ord(A) and |D(A)|. When given the S-DAG of S, this data structure

can easily be computed in time O(|S|) in a bottom-up fashion

starting with the sinks of the S-DAG. The purpose of this basic

SLP data structure is to facilitate the efficient handling of SLPs.

4 COMPLEX DOCUMENT EDITING
Given a document database DDB = {D1, . . . ,Dm }, we want to

create new documents by a sequence of text-editing operations. We

use the following notation. The elements 1, 2, . . . , |D| are the posi-
tions, and the elements 1, 2, . . . , |D|+1 are the gaps of a documentD
(here, “gap k” refers to the gap between positions k−1 and k of D).
For two documents D1,D2, we denote by D1 ·D2 the concatenation
of D1 and D2, i. e., the document obtained by appending D2 at the

end of D1. We often omit the operator ‘·’ and use juxtaposition. For

a document D and positions i, j of D with i ⩽ j we define D[i, j+1⟩
as the factor of D that starts at position i and ends at position j . For
example, abcaacb[2, 5⟩ = bca.

We introduce an algebra for complex document editing (CDE-

algebra) whose basic operations are defined in Figure 2. A CDE-
expression φ over a document database DDB = {D1, . . . ,Dm } is

obtained by nested application of the basic CDE-algebra operations,

starting with documents in DDB. For a CDE-expression φ, we de-
note by |φ | the total number of its operations, i. e., the number of

internal nodes of its syntax tree. We write eval(φ) for the document

obtained from evaluating the expression φ on DDB. For example,

the CDE-expression

φ := concat(D1, insert(D3, extract(D7, 5, 21), 12))

describes the complex document editing already mentioned in the

introduction, i. e., the document obtained by taking the factor of

D7 from position 5 to 21, inserting this at gap 12 into document D3,

and then appending this document to D1. This expression φ has

size |φ | = 3.

Recall from Section 3 that we represent a document database

DDB by a strongly balanced SLP in normal form S = (N , Σ,R). In
order to represent a new document described by a CDE-expressionφ
within the same framework, we introduce the notion of an extension
of S: An SLP S′ = (N ′, Σ,R′) is called an extension of S if S′

is in

normal form, N ′ = N ∪ Ñ with N ∩ Ñ = ∅, and, for every A ∈ N ,

R′(A) = R(A). We call N the old non-terminals and Ñ the new

non-terminals. Note that the extension S′
still contains all old non-

terminals with exactly the same rules, while new non-terminals

Ã ∈ Ñ can have rules Ã → BC , where B and C can be old or new

non-terminals. Moreover, for every A ∈ N , DS′(A) = DS(A) and
ordS′(A) = ordS(A); and if A is (strongly) balanced in S, then A is

also (strongly) balanced in S′
. Another helpful point of view is that

the S′
-DAG is obtained from the S-DAG by just adding some new

nodes with their left and right arcs. An example of an extension is

illustrated by the grey part of Figure 1 (see also Example 4.1). For

convenience, we often will describe extensions by defining only

the set Ñ of new non-terminals and defining, for each such new

non-terminal, its rule.

Example 4.1. Let SLP S = (N , Σ,R) be the SLP from Example 3.1
that is illustrated by Figure 1 and that represents the document data-
base DDB = {D1,D2,D3} by the non-terminals A1,A2,A3.

Now consider the extensionS1 = (N ∪{A4}, Σ,R∪{A4 → A2A1}).
This extension adds document D4 := D2 · D1, represented by the
new non-terminal A4, to the document database (see Figure 1 for
an illustration). We can also create the slightly more complicated
extension S2 = (N ∪ {A5,G}, Σ,R ∪ {A5 → BG,G → DB}). This
extension adds document

D5 := D(B)D(G) = D(B)D(D)D(B) = abbcabcaabbcaabbca ,

represented by the new non-terminal A5, to the document database
(this is also illustrated by Figure 1).

The extensions of Example 4.1 are quite simple, as they only

add documents to DDB that are constructed by concatenating

existing documents. If, for example, we want to add the docu-

ment that is obtained by replacing factor D1[2, 6⟩ from D1 with

factor D2[3, 7⟩, i. e., the document given by the CDE-expression

insert(delete(D1, 2, 5), extract(D2, 3, 6), 2), then finding a suitable

extension is more complex. This section’s main result shows that

such extensions can be computed efficiently.

The remainder of this section is devoted to the proof of our fol-

lowing main theorem (Theorem 4.3). In this theorem, we assume

that the CDE-expressionφ is represented in a reasonable waywhere

the documents Di ∈ DDB that occur at the leaves of φ’s syntax
tree are represented by single non-terminals Ai of the SLP. The
maximum intermediate document size |maxφ (DDB)| induced by a

CDE-expression φ on the document database DDB is the maximum

length of any document of DDB that occurs at a leaf of φ’s syntax
tree, any intermediate document that is represented by a subexpres-

sion of φ, and the finally resulting document eval(φ). By induction,

one easily obtains the following (see Appendix B for a proof):

Lemma 4.2. Let DDB be a document database and let φ be a CDE-
expression over DDB. Then

|maxφ (DDB)| ⩽ 2
|φ | ·max{ |D| : D ∈ DDB} .

Ourmain result’s statement is that extending an SLP-represented
document database DDB according to a given CDE-expression φ,
while maintaining the property of being strongly balanced, can be

done in time O(|φ |· log |maxφ (DDB)|) — and by Lemma 4.2, this is

in O(|φ |2 + |φ | · logmax{ |D| : D ∈ DDB}).

Theorem 4.3 (CDE extension theorem). Let DDB be a docu-
ment database that is represented by a strongly balanced SLP S in

normal form. When given the basic SLP data structure for S and a
CDE-expression φ over DDB, we can construct a strongly balanced
extension S′ of S, along with its basic SLP data structure, and a
non-terminal Ã of S′, such that DS′(Ã) = eval(φ).

This construction takes time O(|φ |· log d) for d := |maxφ (DDB)|.
In particular, the number |Ñ | of new non-terminals is in O(|φ |· log d).

Note that O(|φ |· log d) ⊆ O(|φ |2 + |φ |· log{ |D| : D ∈ DDB}).

The proof proceeds by induction on the construction of φ, i.e.,
bottom-up along φ’s syntax tree. For each of the CDE-algebra’s

operations depicted in Figure 2, we prove a lemma for extending the

SLP so that it also represents the result of this operation. The main

challenge is to prove according lemmas for the operations concat
and extract; the remaining operations can then be implemented

easily as they are defined via concatenation and extraction.

The remainder of this section is devoted to the lemmas for concat
and extract, which we call concatenation and extraction lemma.

The concatenation lemma. In our constructions, it can hap-

pen that for some nodes the balance factor of balanced nodes

changes from −1, 0, or 1 to −2 or 2 (i. e., nodes become unbalanced).

As a remedy, a main ingredient of our construction for operation

concat is a balancing lemma that allows to re-balance such nodes:

Lemma 4.4 (balancing lemma). Let S = (N , Σ,R) be an SLP
in normal form let A ∈ N with rule either A → BC or A → CB,
let B , C , let C be strongly balanced, let ord(C) = ord(B) + 2, and
let node C in the S-DAG have in-degree 1 (i. e., A is the only non-
terminal such thatC has an occurrence in R(A)). We can construct an
SLP S′ = (N ∪ Ñ , Σ,R′) with the following properties:

(a) Ñ = {Ṽ } or Ñ = ∅.
(b) R′ is obtained from R by only changing the rules of A and C and,

if Ñ , ∅, adding the rule for Ṽ . The in-degree of non-terminals
of S does not increase in S′.

(c) For every F ∈ N \ {C}, DS′(F) = DS(F).
(d) A is balanced in S′. Every balanced descendant of A in S is still

balanced in S′. Every descendant of A in S′ either belongs to
Ñ or is a descendant of A in S. If Ñ , ∅, then Ṽ is a balanced
descendant of A in S′.

(e) ordS′(A) ∈ {ordS(A), ordS(A)−1}.

The construction can be carried out in constant time, provided that
we have available the basic SLP data structure for all non-terminals
of S that are reachable from A.

The proof of this lemma relies on rotations similar to the ones

commonly used for balanced search trees (like AVL-trees). How

such rotations can be used for SLPs is folklore and has already

been sketched in [20]. For our applications, we needed to formulate

and prove the balancing lemma with several additional conditions,

and we argue directly on the S-DAG instead of derivation trees. A

detailed proof will be provided in the paper’s full version.

What follows is the precise statement of the concatenation lemma,

along with a brief proof sketch. The lemma’s essence and its proof

idea have already been sketched in [20]. But for our purposes — as

we want to apply it repeatedly within an inductive construction —

we need the following more detailed statement and more precise

algorithmic properties. Working out these details in a way that fits

to our overall framework was non-trivial.

Aℓ = B

Lℓ Aℓ−1

Lℓ−1 ...

A2

L2
A1 = D

C

lc(C) rc(C)

ord(D) ∈ {ord(C), ord(C)+1}

(a) The B-to-D path with ord(B) − ord(C) ⩾ 2.

Ã := Ãℓ

Lℓ

Ãℓ−1

...
Lℓ−1

Ã3

L3
Ã2

L2
Ã1

D C

(b) The extension S1 of

S.

Figure 3: Themain construction of Lemma 4.5. The newnon-
terminal Ã1 is balanced, but all other new non-terminals
Ã2, . . . , Ãℓ may be unbalanced.

Lemma 4.5 (concatenation lemma). Given the basic SLP data
structure of an SLP S = (N , Σ,R) in normal form, and strongly
balanced B,C ∈ N , we can compute in time O(|ord(B) − ord(C)|) an
extension S′ = (N ∪ Ñ , Σ,R′) of S, along with its basic SLP data
structure, and an Ã ∈ Ñ , such that

DS′(Ã) = concat(DS(B),DS(C)). (1)

Furthermore, the following is true:

(a) Every X̃ ∈ Ñ is strongly balanced in S′,
(b) |Ñ | ⩽ max{ 1 , 2· |ord(B)−ord(C)| − 1 }, and
(c) ord(Ã) ∈ {m,m+1} form := max{ord(B), ord(C)}.

Proof Sketch. We focus on the casewhere ord(B) ⩾ ord(C)+2.
We start in node B of the S-DAG and move along the right-arcs un-

til we find a node D with ord(D) − ord(C) ∈ {0, 1} (see Figure 3(a)).

Then we make a copy of this B-to-D-path (with new non-terminals

Ãi) and the non-terminal C inserted, as shown in Figure 3(b). It

can be seen thatD(Ã) = concat(D(B),D(C)) and that Ã1 is strongly

balanced. However, for every i ∈ [ℓ−1], ord(Ãi) = ord(Ai) + 1 is
possible, and therefore, bal(Ãi+1) = bal(Ai+1) − 1 = −2 is possi-

ble, i. e., some Ãi+1 might be unbalanced. The idea is now to use

the balancing lemma (Lemma 4.4) to re-balance all unbalanced Ãi .

However, the balancing lemma may decrease the order of Ãi (and

therefore the balance factors of Ãj with j > i), and it can only

be used for re-balancing unbalanced non-terminals with balance

factor 2 or −2. Therefore, we have to carefully argue inductively

that the balancing lemma can in fact always be applied until all

non-terminals are balanced. A detailed proof will be provided in

the paper’s full version. □

The extraction lemma. We now provide the precise statement

and a proof sketch of the extraction lemma. The proof relies on two

ingredients: First, we identify suitable non-terminals that represent

documents whose concatenation precisely yields the desired fac-

tor D[i, j+1⟩. Afterwards, we iteratively apply the concatenation

lemma to construct the desired extension of the SLP. The main

challenge is to achieve all this within the desired time bound.

Lemma 4.6 (extraction lemma). Given the basic SLP data struc-
ture of an SLP S = (N , Σ,R) in normal form, a strongly balanced
A ∈ N , and i, j ∈ {1, 2, . . . , |DS(A)|} with i ⩽ j, we can compute
in time O(ord(A)) an extension S′ = (N ∪ Ñ , Σ,R′) of S, along
with its basic SLP data structure, and an Ã ∈ N ∪ Ñ such that
DS′(Ã) = extract(DS(A), i, j). Furthermore, every X̃ ∈ Ñ ∪ {Ã} is
strongly balanced in S′, and |Ñ | ⩽ 16·ord(A).

Proof Sketch. Let us first assume we have already proven the

lemma’s statement for the special cases of i = 1 (∗) or j = |D(A)| (∗∗),
but with a smaller size bound on the number of new non-terminals.

We argue by induction on ord(A) that then the lemma’s statement

also holds in its general form: Let i, j ∈ {1, 2, . . . , |DS(A)|} with
2 ⩽ i ⩽ j < |D(A)|, and let A → BC be the rule of A. If j ⩽ |D(B)|
or if i > |D(B)|, then we are done by induction (i. e., we can use

the lemma’s statement on B or C , respectively). Hence, we assume

that i ⩽ |D(B)| and j > |D(B)|. Then, we have D(A)[i, j⟩ = D1 · D2

for D1 := D(B)[i, |D(B)|+1⟩ and D2 := D(C)[1, j ′+1⟩ with j ′ :=

j − |D(B)|. This means that we have the special case (∗∗) with

respect to B and the special case (∗) with respect to C . Hence, by

assumption, we can compute a non-terminal B̃ with D(B̃) = D1

and a non-terminal C̃ with D(C̃) = D2. With an application of the

concatenation lemma (Lemma 4.5), we can therefore compute a

non-terminal Ã with D(Ã) = D1 · D2 = extract(DS(A), i, j).
Next, we discuss how (∗) can be proven (the case (∗∗) is sym-

metric). Let j ∈ {1, . . . , |D(A)|−1}. Since |D(A)| > j, we can start

in node A and move along the left arcs, until we find for the first

time a non-terminal A1 (with direct predecessor X1) that satisfies

|D(A1)| ⩽ j. We also know that |D(X1)| = |D(A1) ·D(rc(X1))| > j,
since otherwise X1 would have been a valid choice instead of A1.

Therefore, we can now repeat this step: from rc(X1) we move along

the left arcs, until we find for the first time a non-terminal A2 (with

direct predecessorX2) that satisfies |D(A1)·D(A2)| ⩽ j . By iterating
this, we can compute descendants A1, . . . ,Aℓ and X1, . . . ,Xℓ of A,
such that Ai = lc(Xi) for all i ∈ [ℓ], and Xi+1 is a descendant of
Xi for every i ∈ [ℓ−1], and D(A)[1, j+1⟩ = D(A1) · · ·D(Aℓ) (see

Figure 4). Moreover, ℓ ⩽ ord(A) and these non-terminals can be

computed in time O(ord(A)).
The next task is to apply the concatenation lemma for (ℓ−1)

times with respect to the non-terminals Ai : The first application

constructs a new non-terminal Ãℓ−1 with D(Ãℓ−1) = D(Aℓ−1) ·

D(Aℓ), the second application constructs a new non-terminal Ãℓ−2

with D(Ãℓ−2) = D(Aℓ−2) ·D(Ãℓ−1) = D(Aℓ−2 · Aℓ−1 · Aℓ), and, in

general, the i-th application constructs a new non-terminal Ãℓ−i
with D(Ãℓ−i) = D(Aℓ−i) ·D(Ãℓ−(i−1)) = D(Aℓ−i · Aℓ−i+1 · · ·Aℓ).

The overall runtime guarantee obtained from the concatenation

lemma is O(t) for t :=
∑ℓ−1
i=1 |ord(Aℓ−i) − ord(Ãℓ−(i−1))| (letting

Ãℓ := Aℓ). We have to show that this is in O(ord(A)). This is far
from trivial, and the naive analysis only yields a poorer runtime

X1

A1 rc(X1)

X2

A2 rc(X2)

. .
.

Xℓ−1

Aℓ−1 rc(Xℓ−1)

Xℓ

Aℓ

Figure 4: Illustration for handling case (∗) in the proof of
Lemma 4.6. The solid arcs are left and right arcs; while the
snake-shaped arcs are paths (of length ⩾ 0) of only left arcs.

guarantee of O(ord(A)2). To see why, consider the particular case

where ℓ is of size roughly ord(A) andXi+1 = rc(Xi) for all i ∈ [ℓ−1].

The concatenation lemma only ensures ord(Ã) ∈ {m,m+1} form :=

max{ord(B), ord(C)}, where Ã is the non-terminal with D(Ã) =
concat(D(B),D(C)). Thus, in our iterated application of the con-

catenation lemma it seems possible that ord(Ãℓ−i) ≈ ord(Aℓ−i) + i

and hence t might be as large as

∑ℓ−1
i=1 i , i.e., of size Ω(ℓ

2).

To achieve the runtime guarantee ofO(ord(A)), we have to make

a deeper analysis to obtain a more thorough estimation. By in-

duction we can show that for every i ∈ [ℓ−1] there exists an

ri ∈ {0, 1, 2} such that ord(Ãℓ−i) = ord(Aℓ−i) + ri . This implies

that t ⩽
∑ℓ−1
i=1 ri +

∑ℓ−1
i=1 (ord(Aℓ−i) − ord(Aℓ−(i−1))). The first sum

is in O(ℓ), the second sum is a telescope adding up to ⩽ ord(A). In
summary, this yields the claimed runtime guarantee of O(ord(A)).
A detailed proof will be provided in the paper’s full version. □

5 ADDING DOCUMENTS DIRECTLY
In this section, we briefly discuss the following scenario: We already

have available the basic SLP data structure of a strongly balanced

SLPSDDB that represents a document databaseDDB. Nowwewant

to insert a new documentD into the document database (by suitably

extending the SLP SDDB and its basic SLP data structure), and we

want to do this without applying complex document editing.

We use known results on single rooted SLPs, i. e., SLPs whose
S-DAG has only one root (a node without incoming edge(s)), which

are also denoted by S = (N , Σ,R, S0), where S0 is the root. Such
SLPs are usually interpreted as representing the single document

D(S0). Two single rooted SLPs are equivalent if their roots derive
the same document.

If D is given by a single rooted SLP S with root S0, then we

transform it into an equivalent strongly balanced S′
in normal

form. This can be done in time O(|S|· log |D|) as follows: We first

use the balancing result from [7] or [8] (which bound, for some

constant c , each ord(A) by c · log |D(A)| or by c · log |D|, respectively).

Afterwards, we apply the concatenation lemma (Lemma 4.5) to all

rules in a bottom-up fashion, and while doing so we ensure that the

non-terminals of the newly generated SLP S′
are disjoint from the

non-terminals already present inSDDB. Finally, we extendSDDB by

simply adding the non-terminals of S′
and their associated rules.

An obvious question is if this constuction can even be carried

out in time O(|S|), avoiding the factor log |D|. The answer is “no”,

as shown in [7].

In case that the new document D is not provided in form of

an SLP, but given as a plain text, we first compute an SLP S for

D, and afterwards proceed as before. This adds an additive term

tcompress(D) to the overall running time, where tcompress(D) is the
running time of computing S — i.e., of compressing the document

D by an SLP. This task is theoretically well-understood and there

also exists a rich toolbox of practical methods solving this task (cf.,

[2, 3, 9, 10, 20]). In fact, it is justified to assume that tcompress(D)
is linear or a low-degree polynomial in |D|; and the size of the

constructed SLP can be expected to be rather small in most practical

cases.

If we want to add several documents D1,D2, . . . ,Dm to an SLP-
represented document database, or if we want to build the docu-

ment database {D1,D2, . . . ,Dm } from scratch, then we can iterate

the approach from above. However, in order to achieve a better

compression (at the cost of a slightly increased running time), we

may, instead, proceed as follows: First, construct the document

D = D1 · D2 · · ·Dm and then proceed as described above. The thus

obtained SLP S for D can afterwards, by usingm applications of

the extraction lemma (Lemma 4.6), be transformed into an SLP that

represents the document database DDB = {D1,D2, . . . ,Dm } by

suitable non-terminals A1,A2, . . . ,Am .

6 QUERYING DOCUMENT DATABASES
This section is devoted to efficient query evaluation on document

databases in the presence of complex document editing. The sce-

nario is as follows: Assume we have represented a document data-

base DDB by a strongly balanced SLP S in normal form, we have

available the basic SLP data structure, and this basic SLP data struc-

ture has already been enriched to a query data structure that sup-
ports the efficient evaluation of queries Q1, . . . ,Qk that have previ-

ously been registered in our document database system. When

given a CDE-expression φ, the CDE extension theorem (Theo-

rem 4.3) tells us how to extend the SLPS and its basic SLP data struc-

ture such that the extension contains a new non-terminal Aφ with

D(Aφ) = eval(φ). This section now deals with the question of how

to extend the existing query data structure to the new non-terminals

such that the queriesQ1, . . . ,Qk can be efficiently evaluated also on

the new document described by φ. It turns out that, when building

upon the framework of [22], this can be achieved in time linear

in the number of new non-terminals, for each of the registered

queries Q1, . . . ,Qk . Recall from Theorem 4.3 that the number of

new non-terminals is in O(|φ |· log d) for d := |maxφ (DDB)|.
To present details on this construction, we have to provide back-

ground on the particular query model and the approach of [22] for

evaluating these queries on SLP-represented documents.

Document spanners. The query model we adopt here is the

information extraction framework of document spanners [4]. We

assume that the reader is familiar with this framework, and we

only provide the necessary notations here. Let D be a document.

For every i, j ∈ [|D|+1] with i ⩽ j, the “tuple” [i, j⟩ is called a span
of D. Such a span [i, j⟩ obviously represents the factor D[i, j⟩ of
D. Spans(D) denotes the set of all spans of D, and we let Spans =
{[i, j⟩ : i, j ∈ N, i ⩽ j}.

For a finite set X of variables, an (X,D)-tuple (or just span-tuple
if X and D are clear from the context) is a partial function X →

Spans(D). An (X,D)-relation is a set of (X,D)-tuples. A spanner
(over terminal alphabet Σ and variables X) is a function that maps

every document D ∈ Σ+ to an (X,D)-relation. In this work, we

consider regular spanners (over Σ and X), i.e., spanners that can

be represented by a finite automaton M (cf. [1, 4–6, 14, 18, 21]).

Since we want to build upon the approach of [22], we have to use

their representation of regular spanners, whereM is a DFA or an

NFA that accepts a certain language of subword-marked words. For
describing this, we need some more notation.

For a set X of variables, we use a special alphabet ΓX = { ▷x , ◁x :

x ∈ X} of markers. An (X,D)-tuple t is represented as a marker
set t̂ := {(▷x , i), (◁x, j) : x ∈ dom(t), t(x) = [i, j⟩}. A set Λ ⊆

ΓX × N is a partial marker set if it is a subset of some marker set

that represents an (X,D)-tuple. For a partial marker set Λ and a

documentDwith max{ℓ : (σ , ℓ) ∈ Λ} ⩽ |D|+1, the partial subword-
marked word m(D,Λ) is obtained by inserting Λ’s markers into D,
i. e., m(D,Λ) := A1b1 . . .A |D |b |D |A |D |+1, where bi is the letter at
position i in D and Ai = {σ : (σ , i) ∈ Λ}. To avoid clutter, we will

often omit those Ai where Ai = ∅. If Λ is a (non-partial) marker set

that describes an (X,D)-tuple t , then m(D,Λ) is called a subword-
marked word. For simplicity, we shall also write m(D, t) instead of

m(D,Λ) in case that Λ is the marker-set representation of t .
Now, a finite automatonM represents the spanner JMK defined

as follows: for every document D, an (X,D)-tuple t is in JMK(D)
if and only if the subword-marked word m(D, t) is accepted byM .

Any NFA or DFA that represents a spanner in this way is called a

spanner automaton.

Example 6.1. Let X = {x, y}, Σ = {a, b, c} and D = abcbcaab.
Then t with t(x) = [2, 6⟩ and t(y) = [6, 8⟩ is an (X,D)-tuple (or,
in tuple notation, t = ([2, 6⟩, [6, 8⟩)). The marker set representation
of t is {(▷x , 2), (◁x, 6), (▷y , 6), (◁y, 8)}, and m(D, t) = a { ▷x } b c b c
{◁x, ▷y } a a {◁y} b.

Figure 5 shows a regular spanner (over Σ and X) represented by
a DFAM . For example,M accepts abcbc{ ▷x }aa{◁x}b, which means
that ([6, 8⟩,⊥) ∈ JMK(D). Analogously, ([1, 3⟩,⊥) ∈ JMK(D) and
(⊥, [5, 6⟩) ∈ JMK(D).

Spanner evaluation on SLP-represented documents. We

focus on the following query evaluation task: LetM be a spanner

automaton. Enumerate, without repetitions, and with a guaranteed

bound on the maximum delay, all span-tuples in JMK(D(A)), where
A is a non-terminal of the SLP that represents our document data-

base. In [22] it has been shown that this problem can be solved

with a delay ofO(log |D(A)|) after a preprocessing phase that takes
time linear in the size of the SLP. This section’s aim is to lift this

approach to the setting of complex document editing. To do so, we

1

2 3

4 5

6

{ ▷x }

{ ▷y }

{◁x}

{◁y}

Σ Σa, b

c

a, b

c

Figure 5: A DFA that represents a spanner over alphabet
{a, b, c} and variables {x, y} (1 is the initial state and 6 is the
only accepting state).

first have to recall the auxiliary data structures that are computed

in the preprocessing phase of the algorithms of [22]. Fortunately,

we only need to argue that these auxiliary data structures can be ex-

tended when extending the SLP, so that the results of [22] still apply.
Thus, we shall present these data structures on an intuitive level

and defer more detailed definitions and technical considerations to

the paper’s full version.

LetM be a spanner automaton with state spaceQ = {1, 2, . . . ,q},
initial state 1, accepting states F and transition function δ . For
every non-terminal A of the SLP S that represents our document

database, we define (q ×q)-matrices TMA , RMA and, if A is an inner

non-terminal, IMA . These matrices are called A’s tuple matrix, A’s
reachability matrix, and A’s intermediate states matrix, respectively.
For every pair i, j of states ofM , TMA [i, j] contains all marker sets

Λ such that M can go from state i to state j by reading the word

D(A)with the markers ofΛ inserted, i.e., the wordm(D(A),Λ). Note
that this means that TMA contains a full representation of the entire

query result JMK(D(A)) — we will neither have time nor space to

precompute and store all this explicitly. But we do have time and

space available for computing and storing the matrices RMA and IMA ,

which are defined as follows.

RMA [i, j] contains one of three possible flags that indicate whether

TMA [i, j] is the empty set, whether TMA [i, j] only contains the empty

marker set (meaning that we can read D(A) between states i and
j, but only without any markers), or whether neither of these two

apply. For an inner non-terminal A with rule A → BC , we define
IMA [i, j] to consist of all the states k such that M can read some

marked version of D(B) between states i and k , and some marked

version of D(C) between states k and j.
As noted above, we will avoid to precompute and store the tuple

matrices TMA for all the non-terminals A of the SLP — we compute

and store them only for the leaf non-terminals, i.e., the non-terminals

Tx for x ∈ Σ whose rule is Tx → x .
We are now ready to precisely define the query data structure

mentioned at the beginning of this section. Let S be an SLP in

normal form that represents a document database DDB, and let

M1, . . . ,Mk be deterministic spanner automata. When speaking

of the query data structure for S and M1, . . . ,Mk we mean the

basic SLP data structure of S, enriched by the following auxiliary

information: for eachM ∈ {M1, . . . ,Mk } and every

• non-terminal A of S we have stored the matrix RMA ,

• inner non-terminal A of S we have stored the matrix IMA ,

• leaf non-terminal Tx (for x ∈ Σ) we have stored the matrix TMTx .

Using these notions, the main result of [22] is as follows (in terms

of data complexity, i.e., treating the size of the spanner automaton

as a constant).

Theorem 6.2 ([22]). Given an SLP S and given a deterministic
spanner automatonM , the query data structure for S andM can be
computed in time O(|S|).

Furthermore, given the query data structure forS andM , and given
a non-terminalA ofS, the query result JMK(D(A)) can be enumerated
with delay O(ord(A)).

If S is an arbitrary SLP in normal form, then the delay bound

O(ord(A)) can in the worst case be of the same order as the total size

of the SLP. This problem was handled in [22] by ensuring that A is

c-shallow for some constant c , since then ord(A) is inO(log |D(A)|).
As already discussed in Section 5, for single rooted SLPs with root

S0 it is known from [7, 8] that c-shallowness of S0 can be achieved

in time linear in the size of the SLP — and this was used in the

preprocessing phase of [22]. In the present paper, we enforce that

the SLP is strongly balanced, which also implies that every non-

terminal of the SLP is c-shallow (cf., Lemma 2.1). Moreover, as

demonstrated in Section 4, the property of being strongly balanced

can be maintained by our updates based on complex document

editing (note that c-shallowness for all non-terminals can also be

achieved in linear time by the result of [7], but it seems rather

difficult to maintain this property upon extensions of the SLP).

Spanner evaluation in the presence of complex document
editing. The next lemma shows how to update the query data

structure forS andM1, . . . ,Mk in case thatS is extended by adding

a number of new non-terminals Ñ along with their associated rules.

The runtime statement, again, is in terms of data complexity, i.e.,

treating the size of the spanner automaton as a constant.

Lemma 6.3. Let S be an SLP in normal form and letM be a deter-
ministic spanner automaton such that the query data structure for S
and M has already been computed. Let S′ be an extension of S by
a set Ñ of new non-terminals (and their rules). Within time O(|Ñ |)

we can extend the existing query data structure into the query data
structure for S′ andM .

The proof uses the methods of [22] and visits the new non-

terminals (and only the new non-terminals) in a bottom-up fashion

according to the S′
-DAG (i.e., the lower their order in S′

is, the

earlier they are visited). Details will be provided in the paper’s full

version.

Combining this with the CDE extension theorem (Theorem 4.3)

and with Theorem 6.2, we obtain this section’s main result:

Theorem 6.4. LetDDB = {D1,D2, . . . ,Dm } be a document data-
base that is represented by a strongly balanced SLP S in normal form.
LetM1, . . . ,Mk be deterministic spanner automata. When given the
query data structure for S and M1, . . . ,Mk and a CDE-expression
φ over DDB, we can construct a strongly balanced extension S′ of
S and the query data structure for S′ and M1, . . . ,Mk , and a new
non-terminal Ã of S′, such that D(Ã) = eval(φ). This construction
takes time O(k ·|φ |· log d) for d := |maxφ (DDB)|.

Afterwards, upon input of any D ∈ docs(S′) (represented by a
non-terminal of S′) and any i ∈ [k], the query result JMi K (D) can
be enumerated with delay O(log |D|).

7 FINAL REMARKS
We conclude with an outlook on implications and possible exten-

sions of this work.

A note on extraction and further manipulation of the ac-
tual data. In the information extraction framework of [4], regular

spanners are employed as basic extractors of span-relations, which

are then further queried or manipulated by a spanner algebra (see
also [19]). In this regard, the string equality selection plays a promi-

nent role, which, for given columns x and y of a span-relation,

selects those tuples whose x-span [ix, jx⟩ and y-span [iy, jy⟩ sat-
isfy D[ix, jx⟩ = D[iy, jy⟩. In the SLP-compressed setting it is not

entirely obvious how the actual data D[i, j⟩ for a given span [i, j⟩
can be accessed. Of course, for the non-terminal A that describes

D, we could construct the entire document D(A)[i, j⟩ as a plain

text in time O((j−i)· log |D(A)|), or just access the symbol on po-

sition i of D(A) in time O(log |D(A)|). However, the real asset of
the SLP-compressed setting is that for any span [i, j⟩, by one ap-

plication of the extraction lemma (Lemma 4.6) we can also get

in time O(log |D(A)|) a strongly balanced SLP-representation for

D(A)[i, j⟩. Moreover, if we are enumerating JMK(D(A)) with delay

O(log |D(A)|), then the application of the extraction lemma is sub-

sumed by the delay, which means that we can assume that for every

individual span we are also provided with a non-terminal that de-

rives exactly this span. Since one can decide whether D(A) = D(B)
in time polynomial in the compressed size |S|, instead of the un-

compressed size |D(A)| and |D(B)| (see [12, Section 5]), we can

even use the spanner algebra without explicitly decompressing any

SLP-represented data.

A note on other evaluation problems. In this paper, we fo-

cus on regular spanners as query class, and on the enumeration

problem in particular. However, our approach of complex docu-

ment editing is also applicable to other evaluation tasks, including

testing (i. e., checking whether t ∈ JMK(D) for a given span-tuple

t) and non-emptiness (i. e., checking whether JMK(D) , ∅). Precise

results concerning these evaluation tasks in the setting of complex

document editing will be incorporated in this paper’s full version.

A note on a more general kind of queries. The spanner

automata considered as query class in this paper can be viewed

as finite automata that read an input over Σ and just insert some

meta-symbols (i. e., sets of markers) between symbols of this input.

Hence, spanner automata are essentially finite transducers. It is

not difficult to see that our results also extend to arbitrary finite

transducers, i.e., to the more general query class considered in [15].

ACKNOWLEDGMENTS
The first author is supported by the German Research Founda-

tion — project number 416776735 (gefördert durch die Deutsche

Forschungsgemeinschaft (DFG) – Projektnummer 416776735).

The second author is partially supported by the ANR project EQUUS

ANR-19-CE48-0019; funded by the German Research Foundation —

project number 431183758 (gefördert durch die Deutsche Forschungs-

gemeinschaft (DFG) – Projektnummer 431183758).

The authors thank the anonymous referees for their careful evalua-

tion and feedback.

REFERENCES
[1] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. 2021.

Constant-Delay Enumeration for Nondeterministic Document Spanners. ACM
Trans. Database Syst. 46, 1 (2021), 2:1–2:30. https://doi.org/10.1145/3436487

[2] K. Casel, H. Fernau, S. Gaspers, B. Gras, andM.L. Schmid. 2020. On the Complexity

of the Smallest Grammar Problem over Fixed Alphabets. Theory of Computing
Systems (2020). https://doi.org/10.1007/s00224-020-10013-w

[3] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A.

Shelat. 2005. The smallest grammar problem. IEEE Transactions on Information
Theory 51, 7 (2005), 2554–2576.

[4] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. 2015. Document Spanners:

A Formal Approach to Information Extraction. J. ACM 62, 2 (2015), 12:1–12:51.

[5] Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and

Domagoj Vrgoc. 2020. Efficient Enumeration Algorithms for Regular Document

Spanners. ACM Trans. Database Syst. 45, 1 (2020), 3:1–3:42. https://doi.org/10.

1145/3351451

[6] D. Freydenberger, B. Kimelfeld, and L. Peterfreund. 2018. Joining Extractions of

Regular Expressions. In Proc. PODS’18. 137–149.
[7] Moses Ganardi. 2021. Compression by Contracting Straight-Line Programs. In

29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021,
Lisbon, Portugal (Virtual Conference). 45:1–45:16. https://doi.org/10.4230/LIPIcs.

ESA.2021.45

[8] Moses Ganardi, Artur Jez, and Markus Lohrey. 2021. Balancing Straight-line

Programs. J. ACM 68, 4 (2021), 27:1–27:40. https://doi.org/10.1145/3457389

[9] K. Goto, S. Maruyama, S. Inenaga, H. Bannai, H. Sakamoto, and M. Takeda.

2011. Restructuring Compressed Texts without Explicit Decompression. CoRR
abs/1107.2729 (2011). http://arxiv.org/abs/1107.2729

[10] Artur Jez. 2015. Approximation of grammar-based compression via recompres-

sion. Theor. Comput. Sci. 592 (2015), 115–134. https://doi.org/10.1016/j.tcs.2015.

05.027

[11] J. C. Kieffer and E.-H. Yang. 2000. Grammar-based codes: A new class of universal

lossless source codes. IEEE Trans. on Information Theory 46, 3 (2000), 737–754.

[12] M. Lohrey. 2012. Algorithmics on SLP-compressed strings: A survey. Groups
Complex. Cryptol. 4, 2 (2012), 241–299. https://doi.org/10.1515/gcc-2012-0016

[13] M. Lohrey. 2014. The Compressed Word Problem for Groups (Springer Briefs in
Mathematics ed.). Springer.

[14] F. Maturana, C. Riveros, and D. Vrgoc. 2018. Document Spanners for Extracting

Incomplete Information: Expressiveness and Complexity. In Proc. PODS’18.
[15] Martin Muñoz and Cristian Riveros. 2020. Constant-delay enumeration algo-

rithms for document spanners over nested documents. CoRR abs/2010.06037

(2020). arXiv:2010.06037 https://arxiv.org/abs/2010.06037

[16] C. Nevill-Manning and I. Witten. 1997. Identifying Hierarchical Structure in

Sequences: A linear-time algorithm. J. Artif. Intelligence Research 7 (1997), 67–82.

[17] C. G. Nevill-Manning. 1996. Inferring Sequential Structure. Ph.D. Dissertation.
University of Waikato, NZ.

[18] L. Peterfreund. 2019. The Complexity of Relational Queries over Extractions from
Text. Ph.D. Dissertation.

[19] Liat Peterfreund, Dominik D. Freydenberger, Benny Kimelfeld, and Markus Kröll.

2019. Complexity Bounds for Relational Algebra over Document Spanners. In

Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019.
320–334.

[20] W. Rytter. 2003. Application of Lempel-Ziv factorization to the approximation of

grammar-based compression. Theor. Comput. Sci. 302, 1-3 (2003), 211–222.
[21] Markus L. Schmid and Nicole Schweikardt. 2021. A Purely Regular Approach to

Non-Regular Core Spanners. In 24th International Conference on Database Theory,
ICDT 2021, March 23-26, 2021, Nicosia, Cyprus. 4:1–4:19. https://doi.org/10.4230/

LIPIcs.ICDT.2021.4

[22] Markus L. Schmid and Nicole Schweikardt. 2021. Spanner Evaluation over

SLP-Compressed Documents. In PODS’21: Proceedings of the 40th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event, China,
June 20-25, 2021. 153–165. https://doi.org/10.1145/3452021.3458325

[23] J. A. Storer and T. G. Szymanski. 1982. Data compression via textual substitution.

Journal of the ACM 29, 4 (1982), 928–951.

APPENDIX
A PROOF OF LEMMA 2.1

Proof of Lemma 2.1. Let k := ord(A)−1. We represent the sub-

graph of the S-DAG spanned byA as a binary tree: the tree’s root is

labelled by A, each node labelled by an inner non-terminal A′
has a

left child labelled by lc(A′) and a right child labelled by rc(A′), and

nodes labelled by leaf non-terminals are leaves of the tree. Note

https://doi.org/10.1145/3436487
https://doi.org/10.1007/s00224-020-10013-w
https://doi.org/10.1145/3351451
https://doi.org/10.1145/3351451
https://doi.org/10.4230/LIPIcs.ESA.2021.45
https://doi.org/10.4230/LIPIcs.ESA.2021.45
https://doi.org/10.1145/3457389
http://arxiv.org/abs/1107.2729
https://doi.org/10.1016/j.tcs.2015.05.027
https://doi.org/10.1016/j.tcs.2015.05.027
https://doi.org/10.1515/gcc-2012-0016
https://arxiv.org/abs/2010.06037
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.4230/LIPIcs.ICDT.2021.4
https://doi.org/10.1145/3452021.3458325

that this tree has height k , and it has exactly |D(A)| leaves. This

implies that |D(A)| ⩽ 2
k
and therefore log |D(A)| ⩽ k = ord(A)−1.

Since A is strongly balanced, we know that on any path from

A to some leaf, the order can decrease from a node to its direct

successor by at most 2, and hence any such path has length at least

⌈k
2
⌉. Since 1

2
log |D(A)| ⩽ 1

2
k , this means that any path from A to

some leaf has length at least
1

2
log |D(A)|.

In order to finish the lemma’s proof, it only remains to show

that ord(A)−1 ⩽ 2· log |D(A)| holds for all strongly balanced non-

terminals A. We prove this by induction on k := ord(A)−1.
For the induction base, k = 0 andA is a leaf non-terminal. Hence,

|D(A)| = 1 and 2· log |D(A)| = 0 = k .
For the induction step, A is an inner non-terminal with rule

A → BC , and the induction hypothesis holds for B and C . I.e., for
each D ∈ {B,C} we have ord(D)−1 ⩽ 2· log |D(D)|, i.e., |D(D)|2 ⩾

2
ord(D)−1

. Let k := ord(A)−1. Since A is balanced, one of its two

children B,C has order k and the other one has order either k

or k−1. Thus, |D(A)|2 =
(
|D(B)| + |D(C)|

)
2

= |D(B)|2 + |D(C)|2 +

2·|D(B)|·|D(C)| ⩾ 2
k−1+2k−2+2·

√
2
k−2·

√
2
k−1 ⩾ 2

k−1+2k−1 = 2
k
.

Hence, 2· log |D(A)| ⩾ k = ord(A)−1. □

B DETAILS ABOUT CDE-EXPRESSIONS
We first define CDE-expressions over a document database DDB
in more detail. For every D1,D2 ∈ DDB, all positions i, j of D1,

and every gap k of D1, each φ ∈ {concat(D1,D2), extract(D1, i, j),
delete(D1, i, j), insert(D1,D2,k), copy(D1, i, j,k)} is a CDE-expres-
sion over DDB; the value eval(φ) of φ is a document defined by the

equalities shown in Figure 2. Moreover, for all CDE-expressions

φ1,φ2 over DDB, all positions i, j of eval(φ1), and every gap k
of eval(φ1), we let concat(φ1,φ2), extract(φ1, i, j), delete(φ1, i, j),
insert(φ1,φ2,k), and copy(φ1, i, j,k) be CDE-expressions overDDB
with

eval(concat(φ1,φ2)) = concat(eval(φ1), eval(φ2)) ,

eval(extract(φ1, i, j)) = extract(eval(φ1), i, j) ,

eval(delete(φ1, i, j)) = delete(eval(φ1), i, j) ,

eval(insert(φ1,φ2,k)) = insert(eval(φ1), eval(φ2),k), and

eval(copy(φ1, i, j,k)) = copy(eval(φ1), i, j,k) .

For a CDE-expression φ over a document database DDB, we also
consider its syntax tree Tφ = (Nφ ,Eφ), i. e., an ordered tree of maxi-

mum degree 2. Every inner node t ∈ Nφ is labelled with (concat) or
(insert,k) and has two children, or it is labelled with (extract, i, j),
(delete, i, j), or (copy, i, j,k) and has only one child; every leaf is

labelled with a document from DDB. We observe that there is a

natural bijection between φ’s subexpressions and Nφ . For every
node t ∈ Nφ , we define Dφ,t := eval(φt), i. e., Dφ,t is the document

represented by the subexpression of node t . We also define |φ | to be
the number ofTφ ’s internal nodes. Themaximum intermediate docu-
ment size of φ is defined by |maxφ (DDB)| = max{|Dφ,t | : t ∈ Nφ }.

Next, we provide a proof of Lemma 4.2.

Proof of Lemma 4.2. Let maxDDB := max{|D| : D ∈ DDB}. By
induction we show that

|eval(φ)| ⩽ 2
|φ | ·maxDDB (2)

holds for every CDE-expression φ. Note that the lemma’s statement

is an immediate consequence of this.

First, we observe that (2) holds if φ is a single operation of

the CDE-algebra: In this case, we have |φ | = 1. Moreover, if φ =
extract(D, i, j) orφ = delete(D, i, j), then |eval(φ)| ⩽ |D| ⩽ maxDDB.
If φ = concat(D,D′) or φ = insert(D,D′,k), then |eval(φ)| ⩽
|D| + |D′ | ⩽ 2maxDDB. If φ = copy(D, i, j,k), then |eval(φ)| ⩽
2|D| ⩽ 2maxDDB.

Next, we consider the induction step. If φ = extract(ψ , i, j) or
φ = delete(ψ , i, j), then

|eval(φ)| ⩽ |eval(ψ)| ⩽ 2
|ψ | ·maxDDB ⩽ 2

|φ | ·maxDDB .

If φ = concat(ψ ,ψ ′) or φ = insert(ψ ,ψ ′,k), then

|eval(φ)| = |eval(ψ)| + |eval(ψ ′)|

⩽ 2
|ψ | ·maxDDB + 2

|ψ ′ | ·maxDDB

= maxDDB · (2 |ψ | + 2 |ψ
′ |)

⩽ maxDDB · (2 |φ |) .

If φ = copy(ψ , i, j,k), then

|eval(φ)| ⩽ 2 · |eval(ψ)|

⩽ 2 · 2 |ψ | ·maxDDB

= 2
|ψ |+1 ·maxDDB

= 2
|φ | ·maxDDB .

□

C THE CDE-ALGEBRA LEMMAS FOR THE
OPERATIONS DELETE, INSERT, AND COPY

For completeness, we state here the lemmas for the CDE-algebra

operations delete, insert and copy. Since these operations can be

expressed by the operations concat and extract, the corresponding
lemmas can easily be proven by using the Lemmas 4.5 and 4.6.

Lemma C.1 (deletion lemma). Given the basic SLP data structure
of an SLP S = (N , Σ,R) in normal form, a strongly balanced A ∈

N , and i, j ∈ {1, 2, . . . , |DS(A)|} with i ⩽ j, we can compute in
time O(ord(A)) an extension S′ = (N ∪ Ñ , Σ,R′) of S, along with
its basic SLP data structure, and an Ã ∈ Ñ , such that DS′(Ã) =

delete(D(A), i, j). Furthermore, every X̃ ∈ Ñ is strongly balanced in
S′.

Lemma C.2 (insertion lemma). Given the basic SLP data struc-
ture of an SLP S = (N , Σ,R) in normal form, strongly balanced
A,B ∈ N , and a k ∈ {1, 2, . . . , |DS(A)|+1}, we can compute in
time O(max{ord(A), ord(B)}) an extension S′ = (N ∪ Ñ , Σ,R′) of
S, along with its basic SLP data structure, and an Ã ∈ Ñ , such
that DS′(Ã) = insert(D(A),D(B),k). Furthermore, every X̃ ∈ Ñ is
strongly balanced in S′.

Lemma C.3 (copying lemma). Given the basic SLP data struc-
ture of an SLP S = (N , Σ,R) in normal form, a strongly balanced
A ∈ N , and i, j ∈ {1, 2, . . . , |DS(A)|} with i ⩽ j, and a k ∈

{1, 2, . . . , |DS(A)| + 1}, we can compute in time O(ord(A)) an ex-
tension S′ = (N ∪ Ñ , Σ,R′) of S, along with its basic SLP data
structure, and an Ã ∈ Ñ , such that DS′(Ã) = copy(D(A), i, j,k).
Furthermore, every X̃ ∈ Ñ is strongly balanced in S′.

By these lemmas, together with Lemma 4.5 and Lemma 4.6, we

have a lemma for each of the basic operations of the CDE-algebra.

Using this, the proof of Theorem 4.3 is straightforward.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Document Databases
	4 Complex Document Editing
	5 Adding Documents Directly
	6 Querying Document Databases
	7 Final Remarks
	Acknowledgments
	References
	A Proof of Lemma 2.1
	B Details About CDE-Expressions
	C The CDE-Algebra Lemmas for the Operations Delete, Insert, and Copy

