
HAL Id: hal-03651992
https://hal.science/hal-03651992

Preprint submitted on 26 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Document Spanners - A Brief Overview of Concepts,
Results, and Recent Developments

Markus L. Schmid, Nicole Schweikardt

To cite this version:
Markus L. Schmid, Nicole Schweikardt. Document Spanners - A Brief Overview of Concepts, Results,
and Recent Developments. 2022. �hal-03651992�

https://hal.science/hal-03651992
https://hal.archives-ouvertes.fr


Document Spanners — A Brief Overview of
Concepts, Results, and Recent Developments
Markus L. Schmid

MLSchmid@MLSchmid.de

Humboldt-Universität zu Berlin

Germany

Nicole Schweikardt

schweikn@informatik.hu-berlin.de

Humboldt-Universität zu Berlin

Germany

ABSTRACT
The information extraction framework of document spannerswas in-
troduced by Fagin, Kimelfeld, Reiss, and Vansummeren (PODS 2013,

J. ACM 2015) as a formalisation of the query language AQL, which

is used in IBM’s information extraction engine SystemT. Since 2013,

this framework has been investigated in depth by the principles of

database management community and beyond. The present paper

gives a brief overview of concepts, results, and recent developments

concerning document spanners.
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algorithms; Automata extensions; Regular languages.
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1 INTRODUCTION
The information extraction framework of document spanners has
been introduced by Fagin, Kimelfeld, Reiss, and Vansummeren [9]

as a formalisation of the query language AQL, which is used in

IBM’s information extraction engine SystemT. A document span-

ner performs information extraction by mapping a document D,
formalised as a word (or string, sequence) over a finite alphabet Σ, to
a relation over so-called spans of D, which are intervals [𝑖, 𝑗⟩ with
1 ⩽ 𝑖 ⩽ 𝑗 ⩽ |D| + 1, where |D| denotes the length of D. Intuitively,
a span [𝑖, 𝑗⟩ of a document D = a1a2 · · · a𝑛 represents the factor

a𝑖a𝑖+1 · · · a𝑗−1. More formally, Spans(D) := {[𝑖, 𝑗⟩ : 1 ⩽ 𝑖 ⩽ 𝑗 ⩽
|D| + 1} is the set of spans of document D. For a fixed finite set X
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of variables, an (X,D)-tuple (or simply, span tuple) is a function
X → Spans(D). An (X,D)-relation is a set of (X,D)-tuples. Now, a
document spanner (over Σ and X) (or simply, spanner) is a function
that maps every document D ∈ Σ∗ to an (X,D)-relation.

To simplify the notation, one usually assumes the variables in

X = {𝑥1, . . . , 𝑥𝑘 } to be ordered, so that a span-tuple 𝑡 : X →
Spans(D) is identified with the 𝑘-tuple (𝑡 (𝑥1), . . . , 𝑡 (𝑥𝑘 )).

Example 1.1. Let Σ = {a, b} and let X = {x, y, z} with x < y < z.
Then the function 𝑆 that maps documents D ∈ Σ∗ to the (X,D)-
relation of all span tuples ( [1, 𝑖⟩, [𝑖, 𝑖+1⟩, [𝑖+1, |D|+1⟩) such that the
𝑖th position ofD is an occurrence of b, is a spanner. For example, 𝑆 maps
the document ababbab to the following span-relation (represented as
a table):

x y z
[1, 2⟩ [2, 3⟩ [3, 8⟩
[1, 4⟩ [4, 5⟩ [5, 8⟩
[1, 5⟩ [5, 6⟩ [6, 8⟩
[1, 7⟩ [7, 8⟩ [8, 8⟩

The initial work on document spanners was dominated by their

original motivation, i. e., a formalisation of the query language AQL

of IBM’s information extraction engine SystemT. In this regard, the

class of document spanners presented in [9] follow a two-stage

approach: Primitive spanners extract span relations directly from

the input document (see Example 1.1), which are then further ma-

nipulated by using particular algebraic operations.
The primitive spanners of [9] are based on particular finite au-

tomata and regular expressions called variable-set automata (vset-
automata, for short) and regex-formulas, respectively. In this paper,

we use a slightly different formalism to represent primitive spanners

illustrated in the following example and further explained in Sec-

tion 2.1. It is straightforward to see that the spanner of Example 1.1

can be formalised by the regular expression

𝛼 := ⊲x (a∨ b)∗ ⊳x · ⊲y b ⊳y · ⊲z (a∨ b)∗ ⊳z .

Here, the symbols ⊲x , ⊳x are meta-symbols called markers, that
define the span extracted by variable x. As usual, we write 𝐿(𝛼)
for the language described by 𝛼 , i.e., the set of all words (over

Σ∪{ ⊲x , ⊳x : x ∈ X}) that match the regular expression 𝛼 . Referring

to Example 1.1, the fact that ⊲x a ⊳x ⊲y b ⊳y ⊲z abbab⊳z ∈ 𝐿(𝛼) means

that ( [1, 2⟩, [2, 3⟩, [3, 8⟩) is in the span relation 𝑆 (ababbab). In this

sense, for a given documentD, the span tuples of 𝑆 (D) are described
by all ways of how 𝛼 can generate a string that equals D with the

marker symbols shuffled in between the actual symbols. Likewise,

one can define a finite automaton that, in addition to the symbols

from Σ, may also read markers on its arcs. Nowadays, it is common

to denote spanners that can be described in such a way as regular
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spanners (we shall discuss in Section 2.2 some particularities about

different representations of regular spanner that, for simplicity, are

neglected in the introduction).

The algebraic operations considered in [9] to further manipulate

the primitive span relations extracted by regular spanner are the

classical relational algebra operations of union ∪, natural join ⊲⊳,

and projection 𝜋 (with their obvious meanings), and additionaly,

as a special operation that is particularly useful for information

extraction from textual data, also the string-equality selection 𝜍=.

String-equality selection is a unary operator parameterised by a

set Z ⊆ X of variables, and the operation 𝜍=Z selects exactly those

rows of the table, for which all spans of columns in Z refer to

(potentially different occurrences of) the same subwords of D. To
clarify this operation, consider the regular spanner 𝑆𝛼 described by

𝛼 := ⊲x (a∨ b)∗ ⊳x · (a∨ b)∗ · ⊲y (a∗b∗)⊳y

and the string-equality selection 𝜍={x,y} . In 𝑆𝛼 (abaaab) we have,

among others, the span tuples ( [1, 3⟩, [5, 7⟩) and ( [1, 3⟩, [4, 7⟩).
However, the string-equality selection 𝜍={x,y} discards the latter

and only selects the former.

In [9], the class of core spanners (capturing the core of SystemT’s

query language AQL) is defined as the closure of the class of prim-

itive spanners that can be defined by a special class of regular

expressions called regex-formulas (and denoted by RGX) under the
relational algebra operations ∪, ⊲⊳, 𝜋 and the string-equality selec-

tion 𝜍= (comprising of the operator 𝜍=Z for all Z ⊆ X). By using

classical closure properties of finite automata, it is shown in [9]

that the class of core spanners can also be characterised by regu-

lar spanners represented by a particular kind of finite automata

called vset-automata and applications of string-equality selections,

followed by a projection operation — this is known as the core-
simplification lemma, which we further discuss in Section 2.3.

Since their introduction in [9], spanners have received a lot of

attention (cf., e.g., [2, 8–13, 15, 16, 27, 30–33, 38–40]). A substantial

part of the literature on document spanners has focused on regular
spanners. In particular, it has been shown that results of regular

spanners can be enumerated with linear preprocessing and constant

delay [2, 10], the paper [27] is concerned with different semantics

of regular spanners and their expressive power, and the articles

[39, 40] study the evaluation of regular spanners on compressed

representations of documents. The paper [32] investigates the eval-

uation of algebraic expressions over regular spanners. Articles that

are concerned with string-equality selection are [12] in which many

hardness results for core spanner evaluation are shown, [11] which,

by presenting a logic that exactly covers core spanners, answers

questions on the expressive power of core spanners, [33] which

shows that datalog over regular spanners covers the whole class of

core spanners, [13] which investigates conjunctive queries on top

of regular spanners, and [38], which incorporates string-equality

selections directly into the regular language that represents the un-

derlying regular spanner. The paper [15] investigates the dynamic

descriptive complexity of regular spanners and core spanners. The

article [31] studies non-regular document spanners of a different

kind, where non-regularity is not caused by string-equality selec-

tions, but rather by representing spanners by context-free language

descriptors (in particular, grammars) instead of regular ones.

The remainder of this paper is structured as follows. Section 2

presents more details on aspects briefly discussed in the introduc-

tion, including a more detailed discussion of representations of

spanners, different semantics, and the core-simplification lemma

(Sections 2.1—2.3), and static analysis and query evaluation tasks

associated with spanners (Sections 2.4 and 2.5). Section 3 gives an

overview of the framework of refl-spanners of [38]. Section 4 focuses
on the scenario of [39, 40] of spanner evaluation on compressed

representations of documents.

2 DOCUMENT SPANNERS
This section presents more details on aspects briefly discussed in

the introduction.

2.1 A General Declarative Approach to
Formalise Document Spanners

The approach of [9] to formalise regular document spanners by

vset-automata is of a somewhat imperative nature: An algorithm

— in form of a finite automaton — is defined that reads an input

document and nondeterministically produces a span tuple. The

extracted span relation is then simply defined as all span tuples

that can be extracted from the document by a run of this algorithm.

A more declarative approach that is not restricted to regular docu-

ment spanners but allows to formalise all document spanners was

presented in [38] and is based on the simple observation that any

pair of document D ∈ Σ∗ and (X,D)-tuple 𝑡 can be represented as a

string over the alphabet Σ∪{ ⊲x , ⊳x : x ∈ X}: We explicitly represent

each span 𝑡 (x) in D with the markers ⊲x and ⊳x. As an example,

for X = {x, y, z}, consider the document D = abcacacbbaa and the

(X,D)-tuple 𝑡 with 𝑡 (x) = [2, 6⟩, 𝑡 (y) = [4, 8⟩, 𝑡 (z) = [1, 8⟩, which
can be represented by the string

⊲z a ⊲x bc ⊲y ac ⊳x ac ⊳y ⊳z bbaa . (1)

In the literature on spanners, such string representations of docu-

ments and span tuples are called subword-marked words or ref-words
(over Σ and X). Both these terms are derived from the work [37],

where similar concepts are used to formalise capture groups and

backreferences in regular expressions. A sound formalisation of

subword-marked words over Σ and X can be obtained by simply

restricting words over Σ ∪ { ⊲x , ⊳x : x ∈ X} in such a way that,

for every x ∈ X, there is exactly one occurrence of each ⊲x and

⊳x, and they occur in this order. Equivalently, we can just say that

subword-marked words over Σ and X are exactly those strings that

can be obtained by inserting the markers { ⊲x , ⊳x : x ∈ X} into some

document D as described by some (X,D)-tuple 𝑡 .
Any given subword-marked word𝑤 represents a document 𝔢(𝑤)

(so 𝔢(·) just erases all markers) and a span tuple st(𝑤) (the function
st(·) just transforms the information where the markers occur into

spans in the obvious way). This means that for any spanner 𝑆 and

documentD, the span relation 𝑆 (D) with𝑚 rows can be represented

as a set 𝐿D of𝑚 subword-marked words (we just insert the markers

into D as described by the span tuples). Referring to Example 1.1,

𝑆 (ababbab) can therefore be represented as
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𝐿ababbab =
{

⊲x a ⊳x ⊲y b ⊳y ⊲z abbab⊳z,

⊲x aba ⊳x ⊲y b ⊳y ⊲z bab⊳z,

⊲x abab ⊳x ⊲y b ⊳y ⊲z ab⊳z,

⊲x ababba ⊳x ⊲y b ⊳y ⊲z ⊳z
}
.

Consequently, any spanner 𝑆 can be represented as a set of

subword-marked words over Σ and X, namely

⋃
D∈Σ∗ 𝐿D. Con-

versely, every set 𝐿 of subword-marked words over Σ and X nec-

essarily describes a spanner J𝐿K with J𝐿K(D) = {st(𝑤) : 𝑤 ∈
𝐿,𝔢(𝑤) = D}. In the following, for any set 𝐿 of subword-marked

words or descriptor𝑀 of a set of subword-marked words, we use

J·K to denote the represented spanner.

We can now define classes of spanners independently of spe-

cialised machine models by defining classes of sets of subword-

marked words. For example, the basic class of regular spanners is
characterised by the class of those sets of subword-marked words

that are regular languages (and any model for defining regular lan-

guages can then be employed as a model for describing regular

spanners). Clearly, one now can replace “regular” by any estab-

lished language class with their own toolkit of algorithmic models

(the case where “regular” is replaced with “context-free” is stud-

ied in [31]). With respect to this approach it is also worth noting

that for any language over the alphabet Σ ∪ { ⊲x , ⊳x : x ∈ X} that
is not necessarily a subword-marked language, we can obtain its

subset of subword-marked words by an intersection with a regular

language. Hence, any class of languages closed under intersection

with regular languages can directly be interpreted as a class of

spanners (in this regard, note that closure under intersection with

regular languages is one of the most natural language operations,

and many relevant classes of formal languages are closed under

this operation, e. g., (deterministic) context-free languages, and all

language classes closed under finite state transductions, see [20, 26]

for further details).

2.2 Particularities of Document Spanners
An important aspect of the semantics of spanners is whether span

tuples are total functions X → Spans (as initially defined in [9])

or whether they can be partial mappings, i. e., for a (X,D)-tuple 𝑡
and x ∈ X it is possible that 𝑡 (x) is undefined (denoted as 𝑡 (x) = ⊥).
This latter case is called the schemaless semantics and has been

introduced and studied in [27]. In terms of the general approach de-

scribed in Section 2.1, the difference between the classical semantics

where span tuples are total functions and the schemaless semantics

can directly be reflected in the definition of subword-marked words,

i. e., we either require all markers to appear, or we allow that some

markers may be missing.

A subword-marked word𝑤 over Σ andX and its associated span

tuple 𝑡 = st(𝑤) are called functional if 𝑡 is a total function on X, a

span relation is called functional if all its elements are functional,

and a spanner 𝑆 is called functional if 𝑆 (D) is functional for every
document D ∈ Σ∗.

The regex-formulas used in [9] are obtained from regular ex-

pressions over Σ in which proper sub-expressions can be enclosed

by ⊲x · · · ⊳x. Such expressions, if interpreted as expressions over

Σ ∪ { ⊲x , ⊳x : x ∈ X}, can define subword-marked languages and

therefore document spanners. Note that such spanners are neces-

sarily hierarchical in the sense that the pairs of brackets ⊲x · · · ⊳x
for different 𝑥 ∈ X are either strictly nested or disjoint; i. e., overlap-

pings like in (1) cannot be described. In particular, this imlies that

the class of spanners solely described by regex-formulas is strictly

contained in those described by vset-automata. However — as a

main observation of [9] — if one considers the {∪, ⊲⊳, 𝜋}-closures
of the class of spanners described by regex-formulas and the class

of spanners described by vset-automata, one obtains the same class

of spanners, namely, the class of spanners that can directly be

described by vset-automata.

Subword-marked words (or runs of vset-automata) do not nec-

essarily represent a document D and an (X,D)-tuple 𝑡 in a unique
way. More precisely, the represented span tuple is invariant with

respect to the order of consecutive occurrences of markers in the

subword-marked word (or the order in which a vset-automata per-

forms consecutive marker-transitions). We discuss in Section 2.4

how this issue can matter for decision problems for spanners. There

are two obvious ways of how to deal with this non-uniqueness,

which have both been considered in the literature. Option 1 is to

normalise by restricting the model of subword-marked languages

(and therefore automata accepting such languages), by fixing an or-

der on { ⊲x , ⊳x : x ∈ X} and requiring factors of consecutive markers

of subword-marked words to respect this order (this has been done

e.g. in [7, 9, 38]). Option 2 is to represent factors of consecutive

markers as sets of markers; the according variant of vset-automata

is called extended vset-automata [10]. In terms of the general ap-

proach described in Section 2.1, this means that subword-marked

words now are built from letters in Σ and elements of the power

set of { ⊲x , ⊳x : x ∈ X}. For example, the subword-marked word

from (1) is represented by { ⊲z }a{ ⊲x }bc{ ⊲y }ac{⊳x}ac{⊳y, ⊳z}bbaa.

2.3 Core-Simplification Lemma
As already mentioned in Section 1, the core spanners are defined as

those spanners that can be described by applying the operations

union, natural join, projection, and string-equality selection to

spanners described by regex-formulas; in symbols, this class is

denoted as JRGXK{∪,⊲⊳,𝜋,𝜍
= }
. The core-simplification lemma states

that any core spanner can be represented as

𝜋Y (𝜍=Z1

𝜍=Z2

. . . 𝜍=Z𝑘
(J𝑀K)) ,

where Y,Z1, . . . ,Z𝑘 ⊆ X, and𝑀 describes a regular language of

subset-marked words (e.g.,𝑀 is a vset-automaton). For functional

spanners, this has been proved in [9], and it also holds verbatim for

the schemaless case (proved in [38] by combining the approach of

[9] with results from [27]).

The core-simplification lemma tells us that, in terms of expressive

power, the string-equality selection (followed by a projection) is the

only feature of core spanners that properly exceeds the expressive

power of regular languages. As recent research has proven, this

seemingly “little” increase of expressivity has severe implications

for the complexity (and even (un)decidability) of static analysis and

evaluation problems; we discuss this in Section 2.4.
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2.4 Decision Problems for Spanners
The following typical decision problems for spanners have been

studied in the literature; the first two of these are evaluation prob-
lems whereas the other are static analysis problems.

ModelChecking: Given a spanner 𝑆 over Σ and X, a document

D ∈ Σ∗, and an (X,D)-tuple 𝑡 , decide whether 𝑡 ∈ 𝑆 (D).
NonEmptiness: Given a spanner 𝑆 over Σ and X and a docu-

ment D ∈ Σ∗, decide whether 𝑆 (D) ≠ ∅.
Satisfiability: Given a spanner 𝑆 over Σ and X, decide whether

there exists a document D ∈ Σ∗ with 𝑆 (D) ≠ ∅.
Hierarchicality: For a given spanner 𝑆 over Σ and X, decide

whether 𝑆 is hierarchical.

Containment: Given two spanners 𝑆1, 𝑆2 over Σ and X, decide

whether 𝑆1 (D) ⊆ 𝑆2 (D) holds for all documents D ∈ Σ∗.

Equivalence: Given two spanners 𝑆1, 𝑆2 over Σ and X, decide

whether 𝑆1 (D) = 𝑆2 (D) holds for all documents D ∈ Σ∗.

Obviously, the complexity and decidability of these problems

depend on the class of spanners at hand.

For regular spanners, due to the positive algorithmic properties

of regular languages, all these problems are decidable and have

acceptable upper complexity bounds. Let us illustrate this for the

problemsModelChecking and Equivalence and the setting where

regular spanners are represented by non-deterministic finite au-

tomata (NFA) that accept subword-marked languages.

We can decide ModelChecking as follows. The input consists of

an NFA𝑀 , a document D and a span tuple 𝑡 . We can check whether

𝑡 ∈ J𝑀K(D) by transforming D and 𝑡 into a subword-marked word

𝑤 and check whether𝑀 accepts𝑤 . The obvious problem with this

approach is what we already have discussed in the last paragraph

of Section 2.2: we do not know a priori in which order we have to

insert consecutive marker symbols into D in order to construct𝑤 .

There are several ways of handling this issue, e. g., we could require

𝑀 to be normalised or to be an extended vset-automaton, or we

could modify 𝑀 such that it satisfies one of these requirements

(potentially resulting in an exponential size blow-up), or we could

try to utilise that we know that𝑀 will only accept proper subword-

marked words to handle the question of the right order of the

markers on-the-fly while processing𝑤 with𝑀 .

The situation is similar for the problem Equivalence: The in-

put now consists of two NFAs 𝑀1 and 𝑀2 that accept subword-

marked languages. One can reduce the question whether𝑀1 and

𝑀2 describe the same spanner to the the question whether suitably

modified NFAs𝑀′
1
and𝑀′

2
accept the same regular language.

The picture is quite different (i. e., worse) for core spanners. Let

us first give an intuition before discussing known results. The power

to define repetitions of strings is a feature that exceeds the expres-
sive power of regular and even context-free languages (the copy
language {𝑤𝑤 : 𝑤 ∈ Σ∗} is the classical textbook example), and, in

terms of the Chomsky-hierarchy, is covered by context-sensitive

languages, which are not famous for having good algorithmic prop-

erties. Leaving classical questions of formal language theory aside,

it is also well-known that the complexity of string processing and

pattern matching problems substantially increases if extended by

string repetition operators (but note that regular expressions as

used in practical contexts are usually extended by such string repe-

tition operators). Finally, string repetitions are also known to pose

very hard combinatorial problems as usually investigated in combi-

natorics on words (e. g., word equations). We shall illustrate with

three particular examples how these observations are crucial for

core spanners.

First, consider the regular expression

𝛼 := ⊲x1 Σ∗ ⊳x1 ⊲x2 Σ∗ ⊳x2 · · · ⊲x𝑛 Σ∗⊳x𝑛

that obviously describes a subword-marked language over Σ and

X = {x1, x2, . . . , x𝑛} (in fact, 𝛼 is a regex-formula). Now check-

ing, for some Z1,Z2, . . . ,Z𝑘 ⊆ {x1, x2, . . . , x𝑛} and a document

D, whether the empty tuple is in

(
𝜋∅ (𝜍=Z1

𝜍=Z2

. . . 𝜍=Z𝑘
(J𝛼K))

)
(D), is

identical to checking whether D can be factorised into 𝑛 factors

such that for eachZ𝑖 all factors that correspond to the variables in

Z𝑖 are the same. This is the pattern matching problem with variables
(also known as the membership problem for pattern languages, or
the matching problem for regular expressions with backreferences),
a well-known NP-complete problem (see, e. g., [24]).

As another example, let 𝑟1, 𝑟2, . . . , 𝑟𝑛 be some regular expres-

sions over Σ, and let 𝛼 = ⊲x1 𝑟1 ⊳
x1 ⊲x2 𝑟2 ⊳

x2 . . . ⊲x𝑛 𝑟𝑛 ⊳
x𝑛

(again,

note that this is a regex-formula). Then there is a word 𝑤 with

(𝜍={x1,x2,...,x𝑛 } (J𝛼K)) (𝑤) ≠ ∅ if and only if

⋂𝑛
𝑖=1 𝐿(𝑟𝑖 ) ≠ ∅. Conse-

quently, core spanners (with only one string-equality selection)

can express intersection non-emptiness of regular languages, a well-
known PSpace-complete problem.

Finally, let us discuss an example of how core spanners can

describe relations typically described by word equations (see [12,
Proposition 3.7, Example 3.8, Theorem 3.13] for details). For given

strings 𝑢, 𝑣 ∈ Σ∗, we write 𝑢 ∼com 𝑣 if there exists a 𝑝 ∈ Σ∗ such
that 𝑢, 𝑣 ∈ {𝑝}∗, and we write 𝑢 ∼cyc 𝑣 if 𝑢 is a cyclic shift of 𝑣 , i.e.,

there exist strings𝑤1,𝑤2 such that 𝑢 = 𝑤1𝑤2 and 𝑣 = 𝑤2𝑤1. It is a

well-known fact that ∼com can be expressed by the word equation

xy = yx (i. e., 𝑢 ∼com 𝑣 if and only if the substitution x ↦→ 𝑢 and

y ↦→ 𝑣 satisfies the equation), and∼cyc can be expressed by the word

equation xz = zy (i. e., 𝑢 ∼cyc 𝑣 if and only if there is some string𝑤

such that the substitution x ↦→ 𝑢, y ↦→ 𝑣 and z ↦→ 𝑤 satisfies the

equation). It is shown in [12, Proposition 3.7] that one can define a

core spanner 𝑆com over Σ and {x, y} such that 𝑆com (D) represents
exactly those pairs (𝑢, 𝑣) of factors of D with 𝑢 ∼com 𝑣 ; analogously,

a core spanner 𝑆cyc (D) can be constructed. In general, it is shown

in [12] that, in a specific sense (see [12, Theorems 3.12 and 3.13] for

details), core spanners are as expressive as word equations with reg-
ular constraints. This provides valuable insight in the complexity of

core spanners, because word equations pose notoriously hard ques-

tions [6]. For example, whether solving word equations (without

regular constraints) is in NP is still unknown — even for quadratic
equations [5, 35] where every variable has at most two occurrences

(which is the case for the two particular word equations mentioned

above).

These explanations show how powerful the string-equality se-

lection is, and, consequently, that extending regular spanners by

this operation (i. e., extending regular spanners to core spanners)

has severe consequences in terms of decidability and expressive

power. In particular, from [12] we know thatModelChecking and
NonEmptiness are NP-hard, Satisfiability and Hierarchicality are
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PSpace-complete, and Containment and Equivalence are even un-

decidable.

2.5 The Enumeration Problem for Regular
Spanners

A special focus of the recent research on spanners has been dedi-

cated to the enumeration problem: Given a spanner 𝑆 over Σ and X,

and a document D, we want to enumerate, without repetition, all

tuples in 𝑆 (D). In this setting, one is interested in algorithms that

proceed in two phases: a preprocessing phase in which suitable data

structures are built, and an enumeration phase in which these data

structures are used to output the result tuples. One aims at run-time

guarantees on the time spent for the preprocessing phase and the

delay during the enumeration phase (i. e., the time needed between

producing two elements of the result). Usually, these run-time guar-

antees are stated in terms of data complexity, i.e., the input size is
measured in the length of the document D while the dependency

on the (size of the representation of the) spanner 𝑆 is hidden in the

O-notation. The best one can hope for is linear preprocessing and

constant delay. And for regular spanners, the enumeration prob-

lem can indeed be solved with linear preprocessing and constant

delay: In [10] it is shown how to achieve this for regular spanners

that are represented by extended deterministic vset-automata. An

immediate consequence of this result is that we can also achieve

linear preprocessing and constant delay enumeration for other

representations of regular spanners (including nondeterministic

automata, regular expressions, etc.) since the time needed for trans-

lating them into extended deterministic vset-automata vanishes in

the data complexity perspective. An important improvement of this

was achieved in [2] (see also [1]), who devised an enumeration algo-

rithm directly for regular spanners represented by vset-automata;

this algorithm has linear preprocessing and constant delay and,

moreover, its preprocessing time and delay are also polynomial in

the size of the vset-automaton’s representation.

3 REFL-SPANNERS
As discussed in Section 2.4, static analysis and evaluation for core

spanners is much more difficult (and in some cases even undecid-

able) compared to regular spanners. We have already seen, on an

intuitive level, how the functionality of string-equality selections is

responsible for this increase in complexity. In order to gain a better

understanding of this phenomenon, let us take a more thorough

look at the interplay of the core spanners’ features.

As discussed in Section 2.4, checking for

𝛼 := ⊲x1 Σ∗ ⊳x1 ⊲x2 Σ∗ ⊳x2 · · · ⊲x𝑛 Σ∗⊳x𝑛 ,

a document D ∈ Σ∗, and sets Z1, . . . ,Z𝑘 ⊆ {x1, . . . , x𝑛} whether
the empty tuple is in(

𝜋∅ (𝜍=Z1

. . . 𝜍=Z𝑘
(J𝛼K))

)
(D)

encodes an intractable pattern matching problem. More precisely,

in order to check this, we have to check whether there is at least

one subword-marked word𝑤 ∈ 𝐿(𝛼) with 𝔢(𝑤) = D, such that the

markers ⊲x · · · ⊳x enclose factors that satisfy the string-equality

selections. Our intuition that in the worst-case we have to exhaus-

tively check all such subword-marked words is confirmed by the

known NP-completeness of this task.

At this point, however, one might ask whether a spanner of

the form

(
𝜋∅ (𝜍=Z1

. . . 𝜍=Z𝑘
(J𝛼K))

)
really describes a reasonable in-

formation extraction task, or whether it can be considered as a

rather special case. After all, this spanner considers all ways of

extracting certain span tuples from a document (described by the

regular spanner 𝛼), checks whether at least one of them satisfies a

complex property described by the string-equality selections, and

finally “returns” (by means of the projection 𝜋∅ ) either yes or no.
This spanner implements a (rather complex) task of string analysis

(or pattern matching or parsing): it answers the question “Does

this string satisfy a certain property?” (or: “Does it have the right

form?”), while it extracts either the empty set or the singleton set

consisting of the empty tuple. This does not seem to fit well to the

original intention of extracting information from a document, i. e.,

the assumption that documents contain information in a sequential

way that we wish to extract and compile into a relational form. In

fact, it is not far-fetched to assume that if we define a spanner for

some information extraction task and this spanner contains a vari-

able x, then we also want — at least as an intermediate result — the

actual content extracted by variable x to appear in our constructed

table (whether the x-column is projected away by some further

processing of the data is another story).

It is easy to see that dropping 𝜋∅ from a core spanner can make

a huge difference. For example, checking for a given span tuple 𝑡

whether

𝑡 ∈
(
𝜍=Z1

𝜍=Z2

. . . 𝜍=Z𝑘
(J𝛼K)

)
(D)

can be done quite efficiently (regardless of the actual string-equality

selections), since 𝑡 already tells us the contents of the extracted

spans.

Since regular spanners may be non-hierarchical (i. e., variables

may address overlapping spans, cf. Section 2.2), core spanners can

use string-equality selections over overlapping spans. It is already

somewhat difficult to come up with a practical example of a regular

spanner that extracts overlapping spans. A possible scenario is that

we do not have enough a-priori knowledge about the structure of

the documents in order to define a spanner in a clean way, e. g.,

we know that regions of interest that we want to extract are sep-

arated by semicolons, but semicolons can also occur inside these

regions with some other meaning. In this case, it can make sense

to allow extracted spans to overlap each other in order to cover all

possibilities. But a reasonable real-world example of an informa-

tion extraction task for which it is necessary to extract overlapping

spans with a regular spanner and then use string-equality selections
on these overlapping spans is arguably rather hard to find. The fact

that string-equality selections on overlapping spans can be used

for describing complicated word combinatorial properties (see Sec-

tion 2.4) raises the question whether we can avoid some complexity

issues of core spanners by prohibiting overlapping spans to be sub-

jected to string-equality selections. Note that such a restriction is

much weaker than restricting to hierarchical spanners, since we can
still extract overlapping spans, we just are not allowed to use the

string-equality operator on overlapping spans (in particular, the full

class of regular spanners — which are not necessarily hierarchical

— is still covered).

The considerations from above are the motivation for the class

of refl-spanners introduced in [38]. Refl-spanners are designed to
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properly lie in between regular spanners and core spanners, with

the overall goal of having an expressive power that covers the

relevant features of core spanners, while at the same time having

complexity and decidability properties that are better than that

of the full class of core spanners. In the remainder of this section,

we discuss the main idea of this class of spanners and give a brief

overview of its properties.

3.1 String-Equalities as Meta Symbols
The only non-regular feature of core spanners is the string-equality

selection. This is immediately clear on an intuitive level, and it is

also demonstrated by the core-simplification lemma (cf. Section 2.3):

a regular spanner plus string-equality selections plus a projection

can describe every core spanner. The main idea of refl-spanners

is to express — to at least some extent — the string-equality selec-

tions also as a regular feature, i. e., by meta symbols in the regular

subword-marked language that describes the regular spanner. This

yields a class of spanners that, just like regular spanners, are fully

described by regular languages (with meta symbols) and therefore

by automata, regular expressions etc. As a (intended) side effect of

this different conceptual approach, refl-spanners are not capable to

describe some of those features discussed above, i. e., features that

are obviously problematic with respect to complexity and decidabil-

ity while at the same time seem not to have substantial practical

relevance.

The overall idea is very simple and directly extends a known-

approach from regular expressions with backreferences (see [14,

37]): In addition to markers ⊲x and ⊳x (that describe the span ex-

tracted by variable x) in subword-marked words, we also allow

x as a meta symbol in subword-marked words, which describes

a copy or reference of whatever factor is extracted in the span of

variable x. In order to make this meaningful, we only have to forbid

that x occurs between ⊲x and ⊳x. This extension of the concept of

subword-marked words (and languages) is called ref-words (and
ref-languages).1

Obviously, the idea is that references x in a ref-word describe

string-equality selections. Let us illustrate this with an example.

Consider the regular spanner represented by

𝛼 := a b∗ ⊲x (a∨ b)∗ ⊳x (b∨ c)∗ ⊲y (a∨ b)∗ ⊳y b∗ , (2)

and assume we are interested in the core spanner 𝑆 := 𝜍={x,y} (J𝛼K).
The subword-marked language 𝐿(𝛼) contains words like

a ⊲x aba ⊳x ⊲y ab ⊳y and a ⊲x aa ⊳x ⊲y ab⊳y

1
In the literature on spanners, subword-marked words (as defined here; see Section 2.1)

are usually called ref-words (see, e. g., [7, 11, 13, 15]). This “misnomer” has historical

reasons: Ref-words have originally been used in [37] (in the context of regular expres-

sions with backreferences) as words that contain references x to some of their subwords,

which are explicitly marked by brackets ⊲x · · · ⊳x . Consequently, the ref-words of [37]
are syntactically the same as what is called ref-words in the context of refl-spanners.

Inspired by the approach of [37], papers have adopted ref-wordswithout any references
x, but with the “subword marking property” by meta symbols ⊲x · · · ⊳x , in order to

describe regular spanners. Especially for refl-spanners, we need ref-words in the sense

of [37], i. e., with actual references, but also the variants without references (which are

called ref-words in some papers), so [38] introduced the term subword-marked word for

the latter. In the context of this development, it is also interesting to note that both the

papers [9] (the origin of document spanners) and [37] (a work on regular expressions

with backreferences) use — apparently without any knowledge of each other when

published — similar automata and regular expression based concepts for describing

spans. In fact, the memory automata from [37] can be seen as vset-automata that also

evaluate string-equality selections on-the-fly.

which, due to the string-equality selection 𝜍={x,y} will not represent
a row in any table extracted by the spanner 𝑆 . In fact, the only part

of 𝐿(𝛼) that matters for 𝑆 is its subset⋃
𝑢∈{a,b}∗

𝐿(a b∗ ⊲x 𝑢 ⊳x (b∨ c)∗ ⊲y 𝑢 ⊳y b∗) .

Consequently, instead of using the subword-marked language given

by 𝛼 , we use the ref-language given by

𝛼 ′ := a b∗ ⊲x (a∨ b)∗ ⊳x (b∨ c)∗ ⊲y x ⊳y b∗ . (3)

A given ref-word 𝑤 describes a document and a span tuple as

follows. First, by 𝔡(𝑤), we denote the “de-referenced version of𝑤”,

i.e., the subword-marked word that is obtained from𝑤 by replacing

each x by whatever appears in between ⊲x and ⊳x (in general, this

has to be done with some care due to possible nesting), e. g., 𝔡(a ⊲x

aba ⊳x ⊲y x⊳y) = a ⊲x aba ⊳x ⊲y aba⊳y. Since 𝔡(𝑤) is a subword-
marked word, it describes a document D and (X,D)-tuple as usual.
For our particular example of (3), the ref-words of the regular

ref-language 𝐿(𝛼 ′) describe exactly the non-regular core spanner

𝑆 := 𝜍={x,y} (J𝛼K). In general, the formal definition of Section 2.1

extends as follows: Any regular ref-language 𝐿 describes the refl-
spanner J𝐿K where, for every document D ∈ Σ∗ we have

J𝐿K(D) :=
{
st(𝔡(𝑤)) : 𝑤 ∈ 𝐿, 𝔢(𝔡(𝑤)) = D

}
.

In symbols, this can also be written as J𝐿K = J𝔡(𝐿)K where 𝔡(𝐿) :=
{𝔡(𝑤) : 𝑤 ∈ 𝐿} is just a subword-marked language. Obviously,

this framework can be used for all kinds of ref-languages (not only

regular ones), but the class of refl-spanners from [38] is based on

regular ref-languages.
Just like regular spanners, refl-spanners are solely defined by

finite automata (or other regular language description mechanisms),

namely automata that accept regular ref-languages.

Let us consider a further, more involved example, where

𝛼 := ⊲x a∗ ⊲y b∗ ⊳x a∗c∗x ⊳y abc y .

An example of a ref-word in 𝐿(𝛼) is𝑤 := ⊲x aa ⊲y bbb ⊳xccx ⊳yabcy.
For obtaining the described document D, the 𝔡(·) function needs to

first substitute the reference x and then the reference y (since the

latter depends on x):

⊲x aa ⊲y bbb ⊳x cc x ⊳y abc y ;

⊲x aa ⊲y bbb ⊳x ccaabbb ⊳y abc y ;

⊲x aa ⊲y bbb ⊳x ccaabbb ⊳y abcbbbccaabbb ;

aabbbccaabbbabcbbbccaabbb .

In the original core spanner formulation, we can define the span-

ner described by 𝛼 as 𝜋{x,y}𝜍
=
{x,z1 }𝜍

=
{y,z2 } (J𝛼

′K), where

𝛼 ′ := ⊲x a∗ ⊲y b∗ ⊳x a∗c∗ ⊲z1 Σ∗ ⊳z1 ⊳y abc ⊲z2 Σ∗ ⊳z2 .

Obviously, a reference x in a ref-language implements a string-

equality selection without extracting a span, while a core spanner
must extract spans in order to apply the string-equality selection.

This is not a restriction for refl-spanners, since we can always also

extract spans of references by using ⊲zx x⊳zx for a new variable zx.
The crucial restriction of refl-spanners compared to core span-

ners is the following: If we want to implement a string-equality

selection 𝜍={x,y} , but the brackets ⊲x · · · ⊳x and ⊲y · · · ⊳y enclose
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other marker symbols, then we cannot simply replace one of them

by a reference without substantially changing the meaning of the

spanner. This obviously limits the expressive power of refl-spanners

in comparison to the full class of core spanners. On the other hand,

it also makes it impossible to define string-equality selections on

overlapping spans, which, in terms of complexity and decidability,

is an asset (see Section 3.3).

3.2 Expressive Power of Refl-Spanners
We first note that in order for refl-spanners to describe a subclass

of core spanners, we have to restrict them in such a way that

the underlying ref-language cannot have an unbounded number of

references for some variable x, as, e. g., in the ref-language described
by ⊲x a∗b ⊳x (x)∗. We call a refl-spanner reference-bounded if it is

described by a ref-language 𝐿 for which there exists a number𝑘 such

that for all𝑤 ∈ 𝐿 and x ∈ X we have |𝑤 |x ⩽ 𝑘 (here, |𝑤 |x denotes
the number of occurrences of the letter x in the word𝑤 ). Without

this restriction, regular ref-languages can describe spanners that

provably are not core spanners, as demonstrated by the example

𝐿(a+ ⊲x b+ ⊳x (a+x)∗a+) (see [9, Theorem 6.1])).

Any reference-bounded refl-spanner translates into a core span-

ner as follows. Intuitively, for every variable x, we use 𝑘 new vari-

ables yx,1, yx,2, . . . , yx,𝑘 (where 𝑘 is the bound on the number of

references), and we replace each reference x by ⊲yx,𝑖 Σ∗⊳yx,𝑖 for
some 𝑖 , and finally use a string-equality selection 𝜍={yx,1,...,yx,𝑘 } .

The question which core spanners can be represented as refl-

spanners is much more difficult. We already have seen a simple

example above, namely, the core spanner 𝑆 := 𝜍={x,y} (J𝛼K) from (2)

can be represented by 𝛼 ′ from (3). However, the situation slightly

changes when replacing 𝛼 with

𝛽 := a b∗ ⊲x a (a∨ b)∗ ⊳x (b∨ c)∗ ⊲y (a∨ b)∗ b ⊳y b∗ ,

since now neither

a b∗ ⊲x a (a∨ b)∗ ⊳x (b∨ c)∗ ⊲y x ⊳y b∗ , nor

a b∗ ⊲x (a∨ b)∗ b ⊳x (b∨ c)∗ ⊲y x ⊳y b∗

is a correct representation. Luckily, in this case we can use

𝛽′ := a b∗ ⊲x 𝛾 ⊳x (b∨ c)∗ ⊲y x ⊳y b∗ ,

where 𝛾 is a regular expression describing the language

𝐿(a (a∨ b)∗) ∩ 𝐿((a∨ b)∗ b).
The situation gets much more difficult when considering core

spanners with string-equality selections on nested spans, or even

overlapping spans. For example, it seems difficult to transform

𝜍={x,y}J𝐿( ⊲x a∗ ⊳x ⊲y ⊲z a∗ ⊳z a∗⊳y)K , or
𝜍={x,y} (J𝐿( ⊲x . . . ⊲y . . . ⊳x . . . ⊳y)K)

into a refl-spanner.

These examples suggest that the refl-spanner formalism is much

less powerful than core spanners, which is to be expected, since we

have to pay a price for the fact that we can solve many problems

for refl-spanners much more efficiently than for core spanners (see

Section 3.3).

As a main result of [38], it is shown that if a core spanner 𝑆 only

uses non-overlapping string-equality selections, then we can define

a refl-spanner that extracts the same span relations as 𝑆 , with the

only difference that some columns are split into several columns.

Let us explain this in some more detail.

A sequence of string-equality selections 𝜍=Z1

, . . . , 𝜍=Z𝑘
is called

non-overlapping with respect to a regular spanner 𝑆 if there are no

x, y ∈ Z1 ∪ · · · ∪ Z𝑘 with x ≠ y such that 𝑆 extracts overlapping

spans for x and y from any document.

Let 𝑡 be a span tuple, let _ ⊆ X and let x ∉ X be a new vari-

able. We write

⊎
_→x (𝑡) to describe the span tuple 𝑡 ′ in which

the columns of variables in _ have been fusioned into a new col-

umn x as follows: 𝑡 ′ (x) = [𝑖′, 𝑗 ′⟩, where 𝑖′ is the minimum of all

𝑖 that occur as “left bounds” of the spans 𝑡 (z) = [𝑖, 𝑗⟩ of the vari-
ables z ∈ _, and 𝑗 ′ is the maximum of all 𝑗 that occur as “right

bounds” of the spans 𝑡 (z) = [𝑖, 𝑗⟩ of the variables z ∈ _. For ex-

ample, let 𝑡 = ( [1, 3⟩, [2, 6⟩, [3, 7⟩) be a ({x1, x2, x3},D)-tuple, then⊎
{x1,x3 }→y (𝑡) = ( [1, 7⟩, [2, 6⟩) is a ({y, x2},D)-tuple. We lift this

operation to an operation on spanners in the obvious way.

The mentioned result of [38] can now be stated as follows. For

any core spanner 𝜍=Z1

. . . 𝜍=Z𝑘
(𝑆), such that 𝑆 is a regular spanner

and 𝜍=Z1

, . . . , 𝜍=Z𝑘
are non-overlapping with respect to 𝑆 , we can

construct a refl-spanner 𝑆 ′ such that

𝜍=Z1

. . . 𝜍=Z𝑘
(𝑆) =

⊎
_1→y1

. . .
⊎

_𝑝→y𝑝
(𝑆 ′) .

Intuitively speaking, as long as the string-equality selections are

non-overlapping, we can transform a core spanner into a refl-

spanner, that describes the core spanner up to the difference that

the actual columns are split into several columns.

3.3 Evaluation and Static Analysis of
Refl-Spanners

With respect to the complexity and decidability of evaluation and

static analysis problems, refl-spanners lie strictly between the classes

of regular spanners and core spanners. Recall from Section 2.4 that

the problemModelChecking can be solved for regular spanners by

checking if a finite automaton accepts a given word, while for the

full class of core spanners the task is intractable. For refl-spanners,

we can mimic the same approach that works for regular spanners —

this is mainly due to the fact that refl-spanners can also be described

by singleNFAs. More precisely, if𝑀 is anNFA that represents a refl-

spanner (i. e., it accepts a ref-language), then we can again combine

𝑡 and D into a subword-marked word𝑤 . However, this𝑤 is not the

ref-word for which we have to check acceptance with respect to

𝑀 , but its image under 𝔡(·), i. e., the subword-marked word after

replacing the references. Instead of checking𝑤 ∈ 𝐿(𝑀), we have to
check whether𝑀 accepts some ref-word 𝑣 with 𝔡(𝑣) = 𝑤 (note that

such a 𝑣 is not uniquely determined by D and 𝑡 ). To this end, we

interpret the x-arcs of𝑀 as paths reading the factor𝑤x of D that

corresponds to reference x (note that𝑤x is uniquely described by

D and the span 𝑡 (x)), and then check whether𝑤 is accepted. If𝑤

is accepted, then the accepting run actually describes a ref-word 𝑣

(via the replaced x-transitions), such that 𝔡(𝑣) is a subword-marked

word with 𝔢(𝔡(𝑣)) = D and st(𝔡(𝑣)) = 𝑡 ; thus, 𝑡 ∈ J𝑀K(D). If𝑤 is

rejected, then no such 𝑣 can exist and therefore 𝑡 ∉ J𝑀K(D). Due
to the replacement of x-arcs by paths of length O( |D|), this algo-
rithm runs in time quadratic in |D|, but, by using standard string

data-structures, it can be improved to linear in |D| (i. e., with the

same running time as for regular spanners); cf. [38].
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In contrast, the problem NonEmptiness (i. e., checking 𝑆 (D) ≠ ∅
when given a spanner 𝑆 and a documentD), can be solved efficiently

for regular spanners by just interpreting marker-transitions of the

NFA as Y-transitions (where Y is the empty word) and checking if

the word D is accepted by this modified NFA. For refl-spanners,
however, this idea does not work and NonEmptiness is NP-hard
[38] (just like for core spanners [12]).

The problem Satisfiability (i. e., checking for given spanner 𝑆

whether there exists a document D with 𝑆 (D) ≠ ∅), reduces to
checking non-emptiness for an NFA in the case of regular spanners,

and the same is true for refl-spanner. Thus, the problem can be

solved efficiently for refl-spanners [38], while it is intractable for

core-spanners [12].

The problem Containment is PSpace-complete for regular span-

ners, since the problem is closely related to the containment prob-

lem for regular languages. For core spanners, on the other hand, the

problem is undecidable (in fact, not even semi-decidable) [12]. For

refl-spanners, we can at least show that the problem is decidable

if we restrict the refl-spanners in such a way that every reference

is necessarily extracted by its own private extraction variable [38].

This seems like a strong restriction for refl-spanners, but note that

for core spanners we necessarily have a rather similar situation: if

we want to use string-equality selections on some spans, we have

to explicitly extract them by variables first.

4 SPANNERS ON COMPRESSED DOCUMENTS
The underlying data model for document spanners are documents

D ∈ Σ∗, i.e., finite strings over a finite alphabet. Unlike relational
data, strings usually contain many redundancies, and there are

simple and straightforward techniques to use these redundancies

for compression. This is especially true for natural language, but

also for more abstract sequences like bio-sequences or sequential

log-files of large systems.

A classical and widely used compression scheme for strings with

substantial practical relevance are so-called straight-line programs
(SLPs). Let us briefly describe this concept in a way that is tailored

to the following exposition. An SLP S is a directed acyclic graph

(DAG) whose nodes all have a left and a right child, except for
the sinks 𝑇𝑥 of the graph, which uniquely represent the symbols

𝑥 of the alphabet Σ. For an illustration see Figure 1. Any node

𝐴 with left and right children 𝐵 and 𝐶 represents the document

𝔇(𝐴) = 𝔇(𝐵)𝔇(𝐶), where𝔇(𝑇𝑥 ) = 𝑥 for the sinks𝑇𝑥 . For example,

for node 𝐵 in Figure 1, we have

𝔇(𝐵) = 𝔇(𝐸)𝔇(𝐶) = 𝔇(𝑇a)𝔇(𝑇b)𝔇(𝐹 )𝔇(𝑇a) (4)

= 𝔇(𝑇a)𝔇(𝑇b)𝔇(𝑇b)𝔇(𝑇c)𝔇(𝑇a) = abbca . (5)

By designating some of the nodes of an SLP to represent documents,

an SLP represents a set of documents, which we will call a document
database. In the example of Figure 1, these designated nodes are 𝐴1,

𝐴2 and 𝐴3; thus, the SLP represents the document database

DDBS = {𝔇(𝐴1),𝔇(𝐴2),𝔇(𝐴3)}
= {ababbcabca, bcabcaabbca, ababbca} .

The classical use of SLPs is as compressed representations of

single strings. Their prominence in various areas of computer sci-

ence is due to the fact that they are mathematically easy, and that
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Figure 1: Graphical representation of an SLP (solid arcs). Left
and right children are indicated by labels 𝑙 and 𝑟 , respec-
tively. The grey parts illustrate the extensions discussed in
Section 4.3. This figure is taken from [40].

they cover many practically applied dictionary-based compres-

sion schemes (e. g., run-length encoding and the Lempel-Ziv-family

LZ77, LZ78, LZW, etc.). A comprehensive introduction to SLPs is
beyond the scope of this overview (we refer to the survey [22] and

the papers [21, 23, 28, 29, 36, 39, 41]). In the best case, SLPs can be

exponentially smaller than the strings they represent, and since

redundancies in texts are likely in practical scenarios, good com-

pressibility is to be expected in most cases. Moreover, many fast

(i. e., linear or near linear time) practical algorithms for computing

SLPs exist.
The papers [39, 40] are devoted to the question of how regular

document spanners can be evaluated directly over SLP-represented
document databases. Let us explain the setting in a bit more de-

tail. Our documents are stored in a document database DDB =

{D1,D2, . . . ,D𝑚} that is represented by an SLP S, i. e., for every 𝑖
with 1 ⩽ 𝑖 ⩽ 𝑚 there is a node 𝐴𝑖 in S with𝔇(𝐴𝑖 ) = D𝑖 (again, see

Figure 1 for an example of an SLP-represented document database

that stores three documents). For a given regular spanner repre-

sented by an automaton 𝑀 and some given 𝑖 with 1 ⩽ 𝑖 ⩽ 𝑚, we

wish to evaluate J𝑀K on the document D𝑖 . The crucial point is that

we want to evaluate J𝑀K on D𝑖 without explicitly constructing

(i. e., decompressing) D𝑖 , which, after all, is stored in our document

database (only) in a compressed form.
2
Since the SLP-compressed

representation of the document might be exponentially smaller

than the actual document, any algorithm that runs polynomially

in the compressed size is, in the best case, only polylogarithmic

in the actual document’s size. This means that even an algorithm

that is linear in the size of the document may be outperformed by

an algorithm that is polynomial in the compressed size. For docu-

ment spanners, this is witnessed by the main result of [39]: Given

a document database DDB = {D1, . . . ,D𝑚} represented by an SLP
S, an 𝑖 ∈ [𝑚] and a regular spanner𝑀 , after a linear preprocessing

in O( |S|) (in data complexity),
3
we can enumerate J𝑀K(D𝑖 ) with

2
Such a task is also called algorithmics on compressed strings in the literature.

3
We shall only discuss data complexity here; for upper bounds in combined complexity,

we refer to the original papers.
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delay O(log |D𝑖 |) (in data complexity). Let us discuss this result in

a bit more detail (we discuss some technical aspects in Section 4.2).

First, observe that the preprocessing time O( |S|) depends on
the compressibility of D𝑖 , i. e., in the best case, we have |S| =

O(log |D𝑖 |), and in the worst case, we have |S| = Ω( |D𝑖 |). In con-

trast to this, the delay is logarithmic in |D𝑖 | independently of the

compressibility achieved by S. This is obviously incomparable to

the uncompressed setting, where one can achieve constant delay

after𝑂 ( |D𝑖 |) preprocessing (cf. the results discussed in Section 2.5).

There are nevertheless practical scenarios, where the compressed

setting seems particularly useful. The compressed setting assumes

that we get our documents already in an SLP-compressed form. This

assumption is actually not a strong restriction, since there are many

practical algorithms that compute SLPs for strings, and that both in

terms of running time and achieved compressibility are — although

not optimal
4
— rather efficient.

5
In the best case where the SLP is

logarithmic in |D𝑖 |, spanner evaluation can be done logarithmically

in the data size (i. e., sublinear in data complexity).

The paper [40] is devoted to the dynamic setting of spanner

evaluation for SLP-represented document databases. The dynamic

setting deals with the situation where the database is subject to

update operations, andwewish to evaluate queries over the updated

database without re-running the preprocessing from scratch. I. e.,

instead of treating the evaluation of the same query over a slightly

changed database as a completely new evaluation problem, we want

to profit from the fact that we have already done the preprocessing

with respect to the query and the original database. For classical

relational database systems, this scenario is completely natural: the

system builds data structures that allow to efficiently compute the

query result and maintains these data structures when the database

is updated. The particular setting introduced in [40] is as follows.

We have available an SLP S that stores a document database

DDB = {D1,D2, . . . ,D𝑚}. Based on the results of [39], we have

several data structures at hand that allow the enumeration of the

results of each of the spanners𝑀1, 𝑀2, . . . , 𝑀𝑘 on any document D𝑖

in DDB with delay O(log |D𝑖 |). We then want to manipulate the ex-

isting documents of DDB by a sequence of text-editing operations

and evaluate the spanners𝑀1, . . . , 𝑀𝑘 on the resulting document.

For example, we may cut the subword from position 5 to 21 from

document D7, insert it at position 12 into document D3, append

this document to D1, and insert the resulting document into our

document database — and we want to do this in such a way that

each of the spanners𝑀1, . . . , 𝑀𝑘 can be evaluated efficiently also on

this new document. The way we build the new document is called

complex document editing and can be described by an expression 𝜑

of a suitable algebra. In [40] it is shown that ifS is strongly balanced
(to be explained in more detail in Section 4.1), then we can construct

the document D𝜑 described by 𝜑 and add it to the SLP representing

DDB, update all data structures needed for enumerating the span-

ners 𝑀1, . . . , 𝑀𝑘 , and maintain the balancedness property of the

SLP — and all this can be done in time O(𝑘 ·|𝜑 |·( |𝜑 | + log L)), where
4
Note that the problem of computing a smallest SLP for a string is NP-complete

(see [3, 4]).

5
In fact, the literature on algorithmics on compressed strings suggest that most basic

string analysis tasks can be performed directly on SLPs. Thus, whenever we are dealing
with textual data, it is even a likely scenario that strings are generally represented

by SLPs, simply because we have the algorithmic machinery for working directly on

SLPs.

L := max{|D𝑖 | : 1 ⩽ 𝑖 ⩽ 𝑚}. In other words, we can perform rather

complex updates with only logarithmic dependency on the lengh

of the actual documents, and — a rather important aspect — this is

generally the case, independently from the SLP-compressibility of

the documents.

The remainder of this section is devoted to some technical aspects

of spanner evaluation on SLP-represented document databases.

Section 4.1 discusses balancedness properties of SLPs, while Sec-
tions 4.2 and 4.3 focus on spanner evaluation in the static setting

and the dynamic setting, respectively.

4.1 Balanced Straight-Line Programs
The results of [39, 40] hinge on balancing properties of SLPs, which
we shall now briefly describe. The order of a node 𝐴 (denoted by

ord(𝐴)) of an SLP is𝑘+1, where𝑘 is the longest path from𝐴 to a leaf

(i. e., leafs have order 1). In particular, ord(𝐴) denotes the number

of iterative applications of the derivation function𝔇(·) that are nec-
essary in order to obtain the string over Σ represented by 𝐴 (see (4)

and (5)). We say that node𝐴 is 𝑐-shallow for some positive integer 𝑐

if ord(𝐴) ⩽ 𝑐 · log |𝔇(𝐴) |. If𝐴 has left child 𝐵 and right child𝐶 , then

we define bal(𝐴) = ord(𝐵)−ord(𝐶), and we say that𝐴 is balanced if
bal(𝐴) ∈ {−1, 0, 1}; and𝐴 is strongly balanced if𝐴 and all its descen-

dants are balanced. We call an SLP S strongly balanced, (𝑐-shallow,
resp.) if all its inner nodes are strongly balanced (𝑐-shallow, resp.).

Obviously, 𝑐-shallowness as well as strongly balancedness can be

viewed as natural properties of balancedness. Moreover, strongly

balancedness corresponds to the balancing property that is also

used for balanced search trees, e. g., AVL-trees. See [17, 18, 36] for

more details on SLP-balancing.
Let us again consider the example of Figure 1. The orders of S’s

nodes are as follows: ord(𝐹 ) = ord(𝐸) = 2, ord(𝐶) = 3, ord(𝐵) = 4,

ord(𝐷) = ord(𝐴3) = 5, ord(𝐴1) = ord(𝐴2) = 6. In particular, all

nodes are balanced except for 𝐴1, 𝐴2, 𝐴3, since bal(𝐴1) = 2 and

bal(𝐴2) = bal(𝐴3) = −2.
We can observe the following important fact about strongly bal-

anced nodes: Every directed path from a strongly balanced node𝐴 to

some leaf has length at least
1

2
log |𝔇(𝐴) | and at most 2 log |𝔇(𝐴) |.

Furthermore, log |𝔇(𝐴) | ⩽ ord(𝐴)−1 ⩽ 2· log |𝔇(𝐴) |. In particular,

this means that any strongly balanced SLP is also 2-shallow.

The main result of [39] crucially builds upon the balancing theo-

rem of [18] stating that there is a constant 𝑐 such that any given SLP
S with a root 𝐴 can be transformed in time 𝑂 ( |S|)into a 𝑐-shallow
SLP S′

with a root 𝐴′
such that |S′ | = 𝑂 ( |S|) and𝔇(𝐴′) = 𝔇(𝐴).

This means that when dealing with SLPs, we may assume that the

given SLPs are 𝑐-shallow (since we can always ensure this property

in linear time in a preprocessing step). Moreover, while we cannot

assume that all documents are highly compressible by SLPs, we
can always ensure 𝑐-shallowness, independently of compressibility

issues.

For the more restrictive property of being strongly balanced,
the situation is slightly different: From [36] we know that any

given SLP S with a root 𝐴 can be transformed into a strongly

balanced SLP S′
with a root 𝐴′

such that𝔇(𝐴′) = 𝔇(𝐴), but this
construction takes time O( |S|·ord(𝐴)). Since we may assume that

S is c-shallow, we can assume that this run-time, as well as |S′ |,
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are in O( |S|· log |𝔇(𝐴) |); and from [17] it is known that the factor

log |𝔇(𝐴) | cannot be avoided.

4.2 Enumeration in the Compressed Setting
Intuitively speaking, the compression of an SLP is done by repre-

senting several occurrences of the same factor of a document by

just a single node. Referring to Figure 1,

𝔇(𝐴1) = 𝔇(𝐸)𝔇(𝐸)𝔇(𝐶)𝔇(𝐶) = ababbcabca .

Thus, the two occurrences of factor ab are represented by the same

node 𝐸, and the two occurrences of factor bca are represented by

the same node 𝐶 . However, the span-tuples to be extracted may

treat different occurrences of the same factor compressed by the

same node in different ways. For example, a spanner may extract

the span-tuple that corresponds to ababb ⊲x cabc ⊳x a. This messes

up the compression, since the two occurrences of𝔇(𝐶) = bca have
now become two different factors: b ⊲x ca and bc⊳xa. So it seems that

extracting a span-tuple enforces at least a partial decompression

of S, because different occurrences of the same factor need to be

treated differently.

The technical challenge that we face also becomes clear by a

comparison to the approach of [2] for spanner evaluation in the

uncompressed case. This approach first computes in the prepro-

cessing one data structure that represents the whole solution set

(i. e., the product graph of spanner and document), and then the

enumeration is done by systematically searching this data structure

(with the help of additional, pre-computed information). Since each

position of the document might be the start or end position of some

extracted span, it is difficult to imagine such a data structure that is

not at least as large as the whole document. In any case, such a data-

structure cannot explicitly contain each position of the represented

document, and therefore must still respect the compression.

Let us take a look at the (classical and well-investigated) task

of checking whether an SLP-compressed string is accepted by a

given NFA (note that algorithms for evaluating regular spanners

over SLP-compressed documents will necessarily also implicitly

solve this task in some way). Let 𝑆 be some node of an SLP S (over

Σ), let𝑀 be an NFA over Σ with states {𝑠1, 𝑠2, . . . , 𝑠𝑛}. We want to

check whether𝔇(𝑆) ∈ 𝐿(𝑀). The general idea is to compute, for

each node 𝐴 that is reachable from 𝑆 , a Boolean (𝑛 × 𝑛) matrix

𝑀𝐴 whose entries indicate from which state we can reach which

state by reading the string 𝔇(𝐴). This can be done recursively

bottom-up along the DAG rooted by 𝑆 : the matrices 𝑀𝑇𝑥 for the

leaf non-terminals are directly given by 𝑀’s transition function,

and for every node 𝐴 with left and right children 𝐵 and 𝐶 , we have

𝑀𝐴 = 𝑀𝐵 ·𝑀𝐶 , where · denotes the Boolean matrix multiplication.

This means that we can in fact check𝔇(𝑆) ∈ 𝐿(𝑀) in timeO( |S|𝑛3)
(this observation is well-known; see, e. g., [22, 25, 34])).

In principle, the enumeration algorithm of [39] extends the idea

sketched above, but in a non-trivial way. It uses suitable variants

and extensions of the matrices 𝑀𝐴 . In the enumeration phase it

considers trees that represent partially decompressed versions of

the SLP. The logarithmic delay bound is ensured by transform-

ing (in the preprocessing phase) the SLP into a 𝑐-shallow SLP (cf.

Section 4.1).

4.3 Complex Document Editing
We can update an SLP-represented document database DDB by

directly adding new nodes (with left and right arcs) to the SLP. As
an example, consider the grey part of Figure 1: by adding the new

nodes 𝐴4, 𝐴5 and 𝐺 in the way described in Figure 1, we add to

DDB a document D4 = D2 · D1 represented by 𝐴4, and a document

D5 = 𝔇(𝐵)𝔇(𝐺) = 𝔇(𝐵)𝔇(𝐷)𝔇(𝐵) = abbcabcaabbcaabbca ,

represented by 𝐴5. Similarly, we can add any document that is de-

fined as concatenation of documents that are already represented

by individual nodes of the SLP. Furthermore, the information com-

puted in the preprocessing of the enumeration algorithm (see Sec-

tion 4.2) can be easily updated.

The situation becomes more difficult if we want to do more

complicated updates, such as “construct the document obtained

by inserting the subword from position 5 to 21 of document D7 at

position 12 into document D3 and appending this document to D1”,

and if we want to maintain some kind of balancing property. The

latter will be important not only for ensuring a logarithmic delay

in the enumeration of spanners, but also for performing updates in

logarithmic time.

The types of updates considered in [40] are expressions over

the following basic operations (note that the latter three can be

described by suitable combinations of the former two):

concat(D,D′): Concatenate D and D′
.

extract(D, 𝑖, 𝑗): Extract the factor from position 𝑖 to 𝑗 from D.
delete(D, 𝑖, 𝑗): Delete the factor from position 𝑖 to 𝑗 from D.
insert(D,D′, 𝑘): Insert D′

at position 𝑘 of D.
copy(D, 𝑖, 𝑗, 𝑘): Considering D, copy the factor from position 𝑖

to 𝑗 and paste it at position 𝑘 .

A CDE-expression 𝜑 over a document database DDB = {D1, . . . ,

D𝑚} is obtained by nested application of the basic CDE-algebra

operations described above. By eval(𝜑) we denote the document

described by 𝜑 . The update task can now be formalised as follows.

We have a document database DDB represented by an SLP S, we
receive a CDE-expression 𝜑 , and we want to modify S in such a

way that it describes DDB∪{eval(𝜑)}. As illustrated by Figure 1,

this can be done easily in the special case that 𝜑 only contains

operation concat. The approach for arbitrary CDE-expressions is

as follows.

We assume that the SLP that representsDDB is strongly balanced
(see Section 4.1).

Let us consider the operation concat(𝔇(𝐵),𝔇(𝐶)), where 𝐵

and 𝐶 are some nodes of the SLP. If we just naively add a new

node 𝐴 with left and right children 𝐵 and 𝐶 , then it represents

concat(𝔇(𝐵),𝔇(𝐶)). However, if ord(𝐵) ⩾ ord(𝐶) + 2, then 𝐴 is

unbalanced. This case has been handled in [36] by first identify-

ing in the part of the SLP that is rooted by 𝐵 a suitable position

where 𝐶 can be inserted in such a way that we only obtain nodes

that are unbalanced by at most 2 or −2; such mildly unbalanced

nodes can then be re-balanced by performing suitable rotations

(these are rotations that are similar to the classical rotations that

are used for rebalancing AVL-trees). An analogous (but substan-

tially more involved) construction (desribed in [40]) also works

for the operation extract(𝔇(𝐴), 𝑖, 𝑗). The crucial point is that for
these constructions, we only have to move (and manipulate) nodes
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for a constant number of times along a path starting in 𝐴. Since

the original SLP is strongly balanced, this implies that the overall

running time is bounded by O(ord(𝐴)) = O(log |𝔇(𝐴) |).
Given a CDE-expression 𝜑 , we can add eval(𝜑) to the SLP repre-

senting the document database by applying these constructions in-

ductively, i. e., bottom-up to the syntax tree of 𝜑 . This yields the fol-

lowing main result from [40]: LetDDB be a document database that

is represented by a strongly balanced SLP S. When given a CDE-

expression 𝜑 over DDB, we can turn S into a strongly balanced

SLP that represents DDB∪{eval(𝜑)}. Moreover, this construction

is carried out in time O( |𝜑 |· log d), where d is the maximum length

of any document of DDB that occurs at a leaf of 𝜑’s syntax tree,

any intermediate document that is represented by a subexpression

of 𝜑 , and the finally resulting document eval(𝜑).
Within the running time of performing a CDE-update, we can

also update the data structures that are necessary to perform the

enumeration phase of the algorithm sketched in Section 4.2. . This

implies that if we have computed these data structures for spanners

𝑀1, 𝑀2, . . . , 𝑀𝑘 (represented byNFA𝑀𝑖 ), then, for every 𝑖 ∈ [𝑘] and
CDE-expression𝜑 , we can always enumerate J𝑀𝑖K(eval(𝜑)) by first
updating DDB according to 𝜑 and then running the enumeration

algorithm. Both the required update as well as the delay is only

logarithmic in the data size.

If, for some CDE-expression 𝜑 , the actual document eval(𝜑) is to
be queried just once without the necessity of permanently storing

it in the document database, then we can just remove all the new

nodes after having queried it, i. e., this can be done within the time

required for constructing the node that represents eval(𝜑).
In comparison to the enumeration algorithm sketched in Sec-

tion 4.2, the mentioned results on CDE-updates require the SLP
to be strongly balanced instead of only 𝑐-shallow. As discussed in

Section 4.1, the strongly balancedness property is stronger than

𝑐-shallowness, and it cannot be ensured in linear time.

Let us conclude with a discussion on how to build, from scratch

and with acceptable running time, an SLP-representation for a

document database. LetDDB = {D1,D2, . . . ,D𝑚}. If the documents

D𝑖 are given as SLPs S𝑖 , then we can make each of those strongly

balanced in time O( |S𝑖 | log |D𝑖 |) (see Section 4.1), and then we can

just combine all these SLPs in order to get an SLP for DDB. In this

regard, it is also worth noting that many practical compression

schemes can be transformed directly into SLPs with moderate size

blow-ups (see [19]). If, on the other hand, the documents are given

in an uncompressed form, then we first have to compress them

by running one of the many SLP-compression algorithms. In this

setting, in order to achieve a better overall compression rate, it

can also make sense to construct an SLP for the single document

D1D2 · · ·D𝑚 , which can then be made strongly balanced, and then

transformed into an SLP that contains a node for eachD𝑖 (this latter

step can be done by CDE-operations).
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