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Coherent magnetic modon solutions in
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magnetohydrodynamics
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A class of exact solutions of the magnetohydrodynamic quasi-geostrophic equations (MQG) ,
which result from rotating shallow water magnetohydrodynamics in the limit of small Rossby
and magnetic Rossby numbers is constructed analytically. These solutions are magnetic
modons, steady-moving dipolar vortices, which are generalizations of the well-known quasi-
geostrophic modons. It is shown that various configurations of magnetic modons are possible:
with or without external magnetic field, and with or without internal magnetic field trapped
inside the dipole. By using the modon solutions as initial conditions for direct numerical
simulations of the MQG equations, it is shown that they remain coherent for a long time,
running over about a hundred deformation radii without change of form, provided the external
and internal magnetic fields are not too strong, and even if a small-amplitude noise is added
to initial conditions.
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1. Introductory remarks and description of the model
Magnetohydrodynamic rotating shallow water model (MRSW) was introduced by Gilman
(2000) as a simple model of the solar tachocline. As is the case of usual shallow-water models
it can be obtained by applying vertical averaging and the mean field hypothesis to the full
primitive equations of magnetohydrodynamics in the (magneto-)hydrostatic approximation
(Zeitlin 2013). Again, as in the case of usual shallow-water models, taking an asymptotic
limit of small Rossby and magnetic Rossby numbers, i.e. of strong rotation, results in a self-
consistent system of (magneto-)quasi-geostrophic (MQG) equations for slow motions, where
fast waves are filtered out (Zeitlin 2013). The MQG model is of use in studies of (quasi-) two
dimensional magnetohydrodynamic turbulence, (e.g. Tobias et al. 2007) still in the context of
the solar tachocline. In the present paper we construct exact solutions of MQG, the magnetic
modons, which are steady-moving dipoles of both magnetic field and vorticity. With the
help of direct numerical simulations with the Dedalus code (Burns et al. 2020), which we

† Email address for correspondence: zeitlin@lmd.ens.fr



2 N. Lahaye & V. Zeitlin

adapted to the MQG simulations, we show that these solutions can be stable or unstable,
depending on the intensity of magnetic field inside and outside the dipole. The construction
of the modon solutions follows the lines of that used recently (Lahaye et al. 2020) to obtain
similar solutions in the quasi-geostrophic limit (TQG) of rotating shallow water model with
horizontal density and/or temperature gradients, the so-called thermal rotating shallow water
(TRSW). It is a generalization of the classical procedure of building the modon solutions of
the “ordinary” quasigeostrophic (QG) equations, first obtained by Larichev & Reznik (1976)
following the idea of construction of the Lamb’s dipole in 2D hydrodynamics. Existence of
such solutions emphasizes a known (Dellar 2003) structural similarity between MRSW and
TRSW.

Let us recall the equations of the MRSW model in the rotating (𝑥, 𝑦) plane:

𝜕𝑡𝒗 + 𝒗 · ∇𝒗 + 𝑓 �̂� ∧ 𝒗 + 𝑔∇ℎ =
1
ℎ
∇ (ℎ 𝒃 ⊗ 𝒃) , (1.1)

𝜕𝑡ℎ + ∇ · (ℎ𝒗) = 0, (1.2)

∇ · (ℎ𝒃) = 0, (1.3)

𝜕𝑡 𝒃 + 𝒗 · ∇𝒃 =
1
ℎ
∇ (ℎ 𝒗 ⊗ 𝒃) , (1.4)

where 𝑓 is the Coriolis parameter, and 𝑔 is the gravity acceleration. The dynamical variables
of the model are the thickness of the layer ℎ, the velocity 𝒗 = 𝑢�̂� + 𝑣 �̂�, and the magnetic
field 𝒃 = 𝑎�̂� + 𝑏 �̂� in the plane, where (�̂�, �̂�, �̂�) are unit vectors along the respective axes,
∇ = �̂�𝜕𝑥 + �̂�𝜕𝑦 . Notice that magnetic field is rescaled with magnetic permeability of the
vacuum and density of the fluid in order to have the dimension of velocity (Alfvèn velocity
corresponding to a given value of the magnetic field). The notation ∇ · (A ⊗ B) is a shorthand
for tensor notation: the 𝑖-th component of such expression is given by 𝜕 𝑗𝐴𝑖𝐵 𝑗 , with summation
over repeated indices from 1 to 3. The Coriolis parameter 𝑓 is constant in the 𝑓 -plane
configuration, and is a linear function of 𝑦 in the beta-plane configuration. In the following
we work with the former, extrapolation of our results to the latter being rather straightforward.
The constraint (1.3) can be resolved by introducing the (scalar) magnetic potential 𝐴

ℎ𝒃 = �̂� ∧ ∇𝐴. (1.5)

Up to a sign 𝐴 is the vertical component of the standard magnetic potential and is, in fact, a
magnetic streamfunction for the horizontal magnetic field integrated over the vertical extent
of the shallow-water layer. In continuity with the previous work (Zeitlin 2013) we keep
calling it magnetic potential. If 𝐿 is a characteristic scale,𝑈 is a characteristic velocity, and 𝐵
is a characteristic value of the magnetic field, the “ordinary” and magnetic Rossby numbers:
𝑅𝑜 = 𝑈

𝑓 𝐿 and 𝑅𝑜𝑚 = 𝐵
𝑓 𝐿 , respectively, measure the relative strength of rotation. For the

solar tachocline, 𝑅𝑜 ∼ 0.1 is a reasonable assumption, and observations of magnetic Rossby
waves indicate that investigating the weak magnetic Rossby number limit is relevant (Tobias
et al. 2007; Dikpati et al. 2018; Zaqarashvili et al. 2021). If both Rossby numbers are small,
and of the same order, as well as the deviations of the free surface from its mean (rest) value
𝐻, and the characteristic scale 𝐿 is of the order of the deformation radius 𝑅𝑑 =

√
𝑔𝐻
𝑓 (i.e.

the Burger number 𝐵𝑢 = 𝑅2
𝑑/𝐿2 = O(1)), the velocity in the leading order is divergenceless,

and can be expressed in terms of a streamfunction 𝜓, which is the leading-order thickness
anomaly ℎ − 𝐻. In the leading order of the asymptotic expansion in 𝑅𝑜, 𝑅𝑜𝑚, the MQG
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equations on the 𝑓 - plane for 𝜓 and 𝐴 thus result, (e.g. Zeitlin 2013):

𝜕𝑡

(
∇2𝜓 − 1

𝐵𝑢
𝜓

)
+ J (𝜓,∇2𝜓) − J (𝐴,∇2𝐴) = 0, (1.6a)

𝜕𝑡𝐴 + J (𝜓, 𝐴) = 0. (1.6b)

Here J (𝑎, 𝑏) = 𝜕𝑥𝑎 𝜕𝑦𝑏 − 𝜕𝑦𝑎 𝜕𝑥𝑏 denotes the Jacobian, and the equations are written
in non-dimensional form. Notice that non-dimensional potential vorticity (PV) 𝑞 in this
approximation is given by the formula

𝑞 = ∇2𝜓 − 1
𝐵𝑢
𝜓. (1.7)

Below we impose 𝐵𝑢 = 1 for compactness, i.e. we use 𝑅𝑑 as spatial scale. PV is not conserved
in the presence of magnetic field, and the equation (1.6a) describes its evolution. The energy
conservation for the system (1.6) can be written in the standard form:

𝐸 =
1
2

∫
𝑑𝑥𝑑𝑦

[
(∇𝜓)2 + 𝜓2 + (∇𝐴)2] = const. (1.8)

Notice, however, that in this form the energy is conserved only for 𝜓 and 𝐴 decaying at
infinity, which is not the case for 𝐴 if the system evolves in an external magnetic field B0. In
the latter case 𝐴→ 𝐴 + �̂� · (x ∧ B0) in the formula (1.8).

Let us say again that the MQG system (1.6) is a quasi-geostrophic (QG) limit of the system
(1.1) - (1.4) at (𝑅𝑜, 𝑅𝑜𝑚) → 0. As a consequence, it does not contain fast magneto-inertia-
gravity waves, although it retains long Alfvèn waves, cf. Zeitlin et al. (2015) and below. The
MQG is mathematically equivalent to 2D incompressible magnetohydrodynamics (2DMHD)
with replacement of the vorticity,∇2𝜓+ 𝑓 , in the latter by the potential vorticity 𝑞 in the former.
Like the standard hydrodynamic QG model, which in the limit of infinite deformation radius,
i.e. 1

𝐵𝑢 → 0, becomes equivalent to 2D Euler equations for incompressible fluid, the MQG
model, in the same limit, becomes equivalent to 2D incompressible magnetohydrodynamics
(2DMHD).

Below we give an analytical derivation of the modon solutions in Sec. 2, and then proceed
in Sec. 3 with numerical simulations initialized with these solutions, which we take either as
are (Sec. 3.1) or perturbed by a weak noise (Sec. 3.2), and at different values of parameters.
We then discuss the results in Sec. 4.

2. Derivation of the magnetic modon solutions
We are looking for a localized solution that is stationary in a frame moving with constant
velocity𝑈 �̂� (co-moving frame), so 𝜓 = 𝜓(𝑥 −𝑈𝑡, 𝑦), 𝐴 = 𝐴(𝑥 −𝑈𝑡, 𝑦).

−𝑈𝜕𝑥𝑞 + J (𝜓, 𝑞) − J (𝐴,∇2𝐴) = 0, (2.1a)
−𝑈𝜕𝑥𝐴 + J (𝜓, 𝐴) = 0. (2.1b)

Equation (2.1b) implies J (𝜓 +𝑈𝑦, 𝐴) = 0, hence 𝐴 = 𝐹 (𝜓 +𝑈𝑦) where 𝐹 is an arbitrary
function. Following Lahaye et al. (2020) we will take it to be linear:

𝐴 = 𝜅(𝜓 +𝑈𝑦), (2.2)

where 𝜅 is a constant measuring the strength of magnetic potential relative to the stream-
function Ψ in the co-moving frame. Likewise, (2.1a) can be rewritten as

J (𝜓 +𝑈𝑦, 𝑞) − J (𝐴,∇2𝐴) = 0.
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Using the expression of 𝐴 in terms of 𝜓 (2.2) we obtain

J (𝐴,∇2𝐴) = 𝜅2J (𝜓 +𝑈𝑦,∇2𝜓),

and therefore the PV evolution equation gives:

J
(
𝜓 +𝑈𝑦, (1 − 𝜅2)∇2𝜓 − 𝜓

)
= 0.

This means that
(1 − 𝜅2)∇2𝜓 − 𝜓 = 𝐺 (𝜓 +𝑈𝑦), (2.3)

where 𝐺 is another arbitrary function, which we will again choose to be linear: 𝐺 (𝑥) = 𝛼𝑥,
where 𝛼 is another constant, which measures, like in the classical modon solution of Larichev
& Reznik (1976), the strength of the PV anomaly in terms of the streamfunction in the
comoving frame.

Following the standard derivation (Larichev & Reznik 1976), we divide the whole plane
into inner (−) and outer (+) regions, with a circular separatrix at some radius 𝑟 =

√
𝑥2 + 𝑦2 =

𝑟0. The parameters 𝛼 and 𝜅 are allowed to take different values in the outer and the inner
domains: 𝛼± and 𝜅±. We thus have the following equations for the streamfunctions 𝜓± in the
outer (+) and inner (−) domains, respectively:

(1 − 𝜅2
±)∇2𝜓± − 𝜓± = 𝛼±(𝜓± +𝑈𝑦). (2.4)

Their solutions should be matched using the standard boundary conditions of continuity of
velocity and pressure at the separatrix.

Solution in the outer region 𝑟 ⩾ 𝑟0:
We are looking for a localized, finite-energy, where the energy is defined in (1.8), solution

which should vanish far away from the center. Hence 𝛼+ = 0 and the following linear equation
results:

(1 − 𝜅2
+)∇2𝜓 − 𝜓 = 0.

A decaying at 𝑟 → ∞ solution is sought by separation of variables in polar coordinates (𝑟, 𝜃).
Keeping in mind that matching with inner solution is performed in the co-moving frame, and
that constant zonal velocity corresponds to a linear in 𝑦 = 𝑟 sin 𝜃 streamfunction, we get:

𝜓+ = 𝐶+𝐾1

(
𝑟/
√

1 − 𝜅2
+

)
sin 𝜃. (2.5)

Here 𝐾1 is the modified Bessel function of the second kind. Notice that the decaying solution
is possible only if 1− 𝜅2

+ > 0, and that the particular case 𝜅+ = 0 corresponds to the magnetic
field being confined in the inner region, while if 𝜅+ ≠ 0 there is a constant background zonal
magnetic field 𝐵 = −𝜕𝑦𝐴 = −𝜅+𝑈 everywhere in the plane, cf (2.2).

Solution in the inner region, 𝑟 ⩽ 𝑟0: The linear equation to solve is:

(1 − 𝜅2
−)∇2𝜓 − 𝜓 = 𝛼−(𝜓 +𝑈𝑦).

The solution is represented as a superposition of a solution to the homogeneous problem, 𝜓ℎ

and a particular solution 𝜓𝑝 of the inhomogeneous problem:

(1 − 𝜅2
−)∇2𝜓ℎ − (1 + 𝛼−)𝜓ℎ = 0. (2.6a)

𝜓𝑝 = − 𝛼−𝑈𝑦
1 + 𝛼−

. (2.6b)

Anticipating matching with the outer solution, we impose the same angular structure, and
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hence get:

𝜓− =

[
𝐶−𝐽1(𝜆𝑟) −

𝛼−𝑈𝑟

1 + 𝛼−

]
sin 𝜃 (2.7)

where 𝐽1 is Bessel function of the first kind, and 𝜆2 = − 1+𝛼−
1−𝜅2−

. Notice a singularity at 𝜅− = 1.
Matching:
Following Larichev & Reznik (1976) we impose the condition of continuity of the co-

moving streamfunction, which provides the maximal smoothness of the resulting solution:

(𝜓+ +𝑈𝑦) |𝑟=𝑟0 = (𝜓− +𝑈𝑦) |𝑟=𝑟0 = 0, (2.8)

which allows to determine 𝐶±:

𝐶+ = − 𝑈𝑟0

𝐾1

(
𝑟0/

√
1 − 𝜅+

) , 𝐶− = − 𝑈𝑟0

(1 + 𝛼−)𝐽1(𝜆𝑟0)
. (2.9)

The magnitude of the modon (streamfunction) is thus primarily driven by𝑈𝑟0 and modulated
by 𝛼−. However, the latter is not a tunable parameter, but is such that the matching conditions
are satisfied, and drives the radial structure of the streamfunction (through 𝜆). Continuity of
the radial derivative of the streamfunction 𝜕𝑟𝜓+ = 𝜕𝑟𝜓− at 𝑟 = 𝑟0 leads to a transcendental
equation for eigenvalues 𝜆 at given 𝑟0 and 𝜅+, and hence 𝛼− at a given 𝜅−.

𝐶+/
√

1 − 𝜅2
+ 𝐾

′
1

(
𝑟0/

√
1 − 𝜅+

)
= 𝐶−𝜆𝐽

′
1(𝜆𝑟0) − 𝛼−𝑈/(1 + 𝛼−), (2.10)

where 𝐶± are given in (2.9), and prime denotes differentiation of a function with respect
to its argument. This transcendental equation is solved numerically using standard routines,
e.g. with the fsolve function of the SciPy Python library.

The lowest eigenvalue corresponds to a steadily translating vortex dipole, a magnetic
modon, the higher eigenvalues correspond to multiple changes of the sign of vorticity inside
the separatrix, which are, presumably, less stable and more sensible do dissipation, with more
sheared velocity, and will be discarded as is usually done. We fix 𝑟0 = 1 (i.e. the typical size
of the modon is equal to the deformation radius, 𝐵𝑢 = 1), and thus get the eigenvalue 𝛼−
as a function of 𝜅− and 𝜅+. As an example, we present in Figure 1 the dependence 𝛼−(𝜅−)
when 𝜅+ = 0. A gap in the curve is visible at 𝜅− = 1. Indeed, for this value of 𝜅−, the
interior equation (2.4) gives Ψ− = −𝛼−(Ψ− +𝑈𝑦) which is incompatible with the boundary
condition Ψ− +𝑈𝑦 = 0 at 𝑟 = 𝑟0, meaning that there is no solution. We should emphasize
that qualitatively different modon configurations result from different choices of the values
of parameters 𝜅±: magnetic field confined inside the vortex dipole at 𝜅+ = 0, 𝜅− ≠ 0, hollow
bubble, in the sense of magnetic field, propagating through the constant magnetic field at
𝜅− = 0, 𝜅+ ≠ 0, and a magnetized dipole propagating in the adverse, or collinear magnetic
field, with respect to the magnetic field at the axis of the dipole, depending on the relative
sign of 𝜅± ≠ 0. Some of these cases are illustrated in Figures 2 - 3.

Before proceeding with numerical simulations, we should make two important remarks.
First, we should stress that as the streamfunction 𝜓+𝑈𝑦 in the co-moving frame is continuous
across the separatrix, and takes zero value, cf. (2.8), the magnetic potential is also continuous,
but its derivative is not if 𝜅+ ≠ 𝜅−, even though the derivative of 𝜓 is continuous, cf. (2.2).
This means that in this case we have a tangential discontinuity of the magnetic field across
the separatrix. Such discontinuities are admissible in non-dissipative MHD (e.g. Landau
& Lifshitz 1984), which is the parent of (1.6), but will be smeared in the presence of
magnetic viscosity (resistivity). We will come back to this point in the discussion of numerical
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Figure 1: Dependence of the first eigenvalue 𝛼− on 𝜅− at 𝜅+ = 0. Curves for other values
of 𝜅+ practically coincide with this one, as variations of 𝛼− are dominated by variations of

𝜅− at a given 𝑟0. Disruption of the curve reflects the singularity at 𝜅− = 1

Figure 2: MQG modon without external magnetic field. From left to right: streamfunction,
vorticity and magnetic potential. Length in units of 𝑅𝑑 in this and subsequent figures.

Figure 3: Magnetic potential associated with a MQG modon without internal magnetic
field (𝜅− = 0, 𝜅+ = 0.02, left), and a regular MQG modon with no tangential discontinuity

of the magnetic field at the separatrix (𝜅− = 𝜅+ = 0.02, right).
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experiments below. As a consequence, we will call the modons with 𝜅+ = 𝜅− regular, and
singular otherwise.

Second, as was already mentioned, in the case 𝜅+ ≠ 0 we have a configuration with
a mean magnetic field which admits (rotational) Alfvèn waves. Unlike magneto-inertia-
gravity waves, Alfvèn waves do not have a spectral gap at low frequencies in the presence
of rotation (cf. Zeitlin et al. 2015), and thus slow waves of this kind are not filtered out in
the QG approximation which corresponds to the fast-time (∼ 1/ 𝑓 ) averaging. Indeed, by
linearizing the system (1.6) about a constant zonal magnetic field 𝐵0, that is by taking

𝐴(𝑥, 𝑦, 𝑡) = 𝐵0𝑦 + 𝐴′(𝑥, 𝑦, 𝑡), (2.11)

where 𝐴′ is a small perturbation, and the streamfunction 𝜓 is considered to be small as
well, by substituting in the linearized equation (1.6a) the expression of 𝑎 obtained from the
linearized equation (1.6b) the MQG equations are reduced to a wave equation for 𝜓:

𝜕2
𝑡𝑡

(
∇2𝜓 − 𝜓

)
− 𝐵2

0𝜕
2
𝑥𝑥∇2𝜓 = 0, (2.12)

which has harmonic wave solutions ∝ 𝑒𝑖 (𝜔𝑡−𝑘𝑥−𝑙𝑦) with the dispersion relation

𝜔2 = 𝐵2
0𝑘

2 𝑘2 + 𝑙2
𝑘2 + 𝑙2 + 1

. (2.13)

These solutions are rotational Alfvèn waves. In the absence of rotation the non-dimensional
𝑓 (= 1) disappears in the denominator of (2.13), and we recover the classical dispersion
relation for Alfvèn waves. What is important in the present context, is that absolute values of
the phase velocity of these waves lie in the interval [0, |𝐵0 |]. The non-dimensional velocity
of the modon 𝑈 is always larger than the value of the non-dimensional magnetic field in
the far outer region |𝐵+ | =

��𝜕𝑦𝐶+
��
𝑟→∞ = |𝜅+𝑈 |, as |𝜅+ | < 1, and hence is larger than the

maximum phase speed of the Alfvèn waves. This allows us to anticipate that the modon does
not emit Alfvèn waves and can remain coherent for a long time.

3. Numerical investigation of the stability of magnetic modons
As was already mentioned, the MRSW (resp. MQG) model is structurally close to TRSW
(resp. TQG). Our experience with TRSW and TQG modons (Lahaye et al. 2020) shows
that they may be subject to small-scale convective-type instabilities, which are known for
vortex solutions in this model (Gouzien et al. 2017). To check whether this is also the case
with MQG modons, and also to see whether sharp gradients of the magnetic fields engender
new instabilities, we performed a set of numerical simulations of the MQG equations using
a doubly-periodic pseudo-spectral code based on the Python library Dedalus (Burns et al.
2020), with modon solutions as initial conditions. The typical resolution corresponded to a
512 × 512 grid with a 3/2 dealiasing factor, and we used a split-explicit 4th order Runge-
Kutta method for temporal integration. Several control runs with higher resolutions were
also performed. As is often done in 2D MHD simulations, (e.g. Tobias et al. 2007), we
applied the standard Newtonian viscosity and magnetic diffusivity to dissipate energy near
the grid scale and ensure numerical stability, in the respective equations of the system (1.6),
and with the same coefficient, i.e. we supposed the magnetic Prandtl number to be one. The
viscosity and magnetic diffusivity coefficients were set to be 5 · 10−4 (i.e. 𝑅𝑒 = 2000) in
most runs. Simulations were run until 𝑡 = 80, a non-dimensional unit of time is the time
taken by the dipole to travel a distance of one deformation radius (i.e. 𝑈 = 1). Notice
that with the values of the viscosity which we used, the time of viscous decay at the
grid scale, given by 𝜈/𝑑𝑥2, is about unity. Tests of the impact of the form of dissipation
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and of the Prandtl number on the results are discussed below in section 3.3. To ensure
numerical stability and limit aliasing, the initial profiles of pressure and magnetic potential
were smoothed with a Gaussian kernel of width twice the grid spacing. The main purpose
of this operation was to smooth out the initial discontinuity in the magnetic field that
exists when 𝜅− ≠ 𝜅+. As will be shown below, in some configurations the modon leaves
behind a wake of weak vorticity and magnetic field anomalies. As boundary conditions
are periodic, this wake perturbs the modon as it re-enters the domain. In order to limit
this effect, we repeated the simulations using a domain that was extended along the 𝑥 axis
by a factor 11/8, and adding a moving sponge layer (of width 3𝐿/8, with 𝐿 the size of
the unexpanded domain) with linear damping to suppress the wake. The boundaries of the
sponge layer had a tanh shape with width 0.2. The maximum amplitude of the damping was
0.5, and its central position and propagation speed were computed using the 𝑥-position of
the barycenter of kinetic energy, updated every Δ𝑡 = 0.1. To investigate the stability of the
modon solutions, and their sensitivity to the values of dynamical parameters, we conducted a
set of experiments with different values of the magnitude of the magnetic field. Six values of
𝜅− and seven values of 𝜅+, in all combinations, were used: 𝜅− = 0, 0.02, 0.05, 0.1, 0.2, 0.5 and
𝜅+ = −0.1,−0.05, 0, 0.02, 0.05, 0.1, 0.2. Notice that configurations with large |𝜅+ − 𝜅− | (and
thus, in the present context, negative 𝜅+), maximise the inner-outer magnetic field strength
differentials and, therefore, the magnitude of the tangential discontinuity of the magnetic field
at the seperatrix. Sensitivity to initial conditions was further tested by conducting a second
set of experiments with the same values of 𝜅±, adding a small-scale noise superimposed onto
the dipolar solution in the initial conditions. The properties of the noise are described in the
Appendix A. Overall, 70 runs are discussed in the following subsection, and about five times
as much were performed in total (see sections 3.2 and 3.3).

3.1. Initialization with the pure modon solutions
The overall result of these simulations is that in any combination of the values of 𝜅± each
of them should be moderate, typically not exceeding 0.1 in absolute value, for the modon to
keep its form. At higher values the above-mentioned small-scale instabilities arise, most often
after a few tens of time units, and destroy the modon. We will exaggeratingly call the modons
“stable” in the former and “unstable” in the latter cases. One should keep in mind that these
denominations are empirical, being entirely based on the results of numerical simulations of
long, but limited duration (𝑡max = 80). The latter is, however, large compared to the typical
eddy timescale of the modon (used for the non-dimensionalisation), which supports the fact
that the stable modons are, at least, long-living coherent structures. We present and discuss
below examples of stable vs. unstable modons in several typical configurations. In all of the
snapshots only a part of the domain of the simulations, which extends from −5 to 5 in units
of 𝑅𝑑 in both directions (±6.875 along the 𝑥 axis for the simulations with a moving sponge
layer), is shown, to make the details of the evolution of the modon clearer. We started by
benchmarking the numerical method with a simulation initialized with a “non-magnetic”
modon, with 𝜅± ≡ 0 and no magnetic field whatsoever. The result is that, as expected, this
modon keeps moving without changing its form and is, thus, stable (not shown).

Modons with no external magnetic field (𝜅+ = 0), such as the one presented in Figure
2 , are stable as long as 𝜅− ⩽ 0.2, meaning that they exactly conserve their form over the
duration of the simulation, travelling at a nearly constant speed (progressively decreasing
under the action of energy dissipation). To make the presentation concise we do not show
their evolution. On the contrary, an instability leading to destruction of the modon takes
place for higher values of 𝜅−, or in the presence of a strong enough external magnetic field,
as shown in Fig. 4 in the case 𝜅− = 𝜅+ = 0.2 (this simulation was extended in time compared
to other simulations to show the destabilization of the modon). Fig. 5 shows the “hollow”
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Figure 4: Evolution of a regular modon with 𝜅± = 0.2. 𝑡 = 0, 80, 90 and 100 (from top to
bottom). Left: streamfunction; middle column: vorticity and right: magnetic potential.
Colours are saturated (especially for the vorticity at initial time). Notice the evolving
labels on the 𝑥 axes reflecting the propagation of the modon in the periodic domain

(values correspond to the 𝑥-distance travelled by the modon, which position is estimated
based on the maximum kinetic energy).
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Figure 5: Evolution of a “hollow” modon with 𝜅+ = 0.2. From top to bottom: 𝑡 = 0, 40 and
80.

modon (the same type as shown in Fig. 3, left panel) with 𝜅+ = 0.2, 𝜅− = 0, which is unstable
with a much faster destabilization compared to the previous case (Fig. 4).

The instability develops as follows: first, vorticity anomalies in the form of narrow filaments
arise in the vicinity of the separatrix and spread along it and beyond, forming a wake at the
lee side of the modon (see e.g. Fig. 4 at 𝑡 = 80 and 90).

The rings of vorticity formed by this process shield the vortices forming the initial
dipole, which leads to their separation and slowing down of the modon. With some delay,
development of vorticity anomalies along the separatrix is accompanied by ejection of any
magnetic field from the core of the vortex pair, still along the separatrix, cf. Fig. 6. This
perturbation then triggers the instability that develops within the dipole starting from the
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Figure 6: Destabilization of the modon as seen in the vorticity field and in the anomaly of
magnetic potential, highlighting the formation of a sharp gradient in the azimuthal

magnetic field in the vicinity of the separatrix and the subsequent destabilization of the
modon triggered near the saddle points. Top row: regular modon (𝜅± = 0.2) at

intermediate stages compared to Figure 4 (second and third rows). Bottom row: hollow
modon (𝜅+ = 0.2, 𝜅− = 0) at intermediate stages compared to Figure 5. Colorbars are

identical in both rows.
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Figure 7: Evolution of the total (black), kinetic (blue), potential (orange) and magnetic
(green) energy anomaly (see eq. 1.8), for two unstable cases (𝜅+ = 𝜅− = 0.2, dash-dotted,
and 𝜅+ = 0.2, 𝜅− = 0, dashed), and one stable case (𝜅+ = 0, 𝜅− = 0.2, solid). Notice the

different ranges of the 𝑦-axis in the two frames.

vicinity of the saddle points at the front and rear of the dipole – i.e. at the intersection of the
modon axis and outer separatrix. The scales involved in this process are small, as seen in the
vorticity field, and are associated with increasing magnitude of the magnetic field anomalies
manifesting itself in the increasing magnetic energy (spatial mean of |∇𝐴|2). The evolution
of the different components of energy, shown in Figure 7, clearly exhibits this increase of
magnetic energy, as well as a decrease of the potential and kinetic energies – the latter resulting
from the enhanced dissipation associated with the production of small scale filaments by the
instability. This implies that the form of the dissipation implemented in the numerical scheme
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Figure 8: Time-scale of development of the instability (colors indicate nondimensional
time units) as a function of 𝜅+ (columns) and 𝜅− (rows) for the simulations initialized with

modon solution. White: stability. Colors: instability, with smaller (darker) to larger
(lighter) times of development of the instability. Modons that turn unstable when some

noise is superimposed on the initial condition are indicated by "P" labels.

can have an impact upon the details of the evolution. We checked in the cases presented in
the paper (corresponding to Figures 4, 5, and also Figures 11 and 13 discussed below) that
numerical convergence is reached by running numerical simulations with double resolution
while keeping all other parameters (including the value of the viscosity and 𝑃𝑟𝑚) constant.
In all cases, the scenario of the destabilization, and the typical scales involved were not
changed, while the timescale of destabilization was only marginally changed (by a few time
units at most). These verifications confirm that the reported small-scale instability and the
mechanism of destruction of the modon are not numerical artifacts. The impact of the form
and magnitude of the dissipation is discussed below in Section 3.3

3.2. Empirical condition for modon stability and impact of initial perturbations
To check the robustness of the modon solutions we repeated the simulations by superimposing
a small-scale noise in streamfunction and magnetic potential onto the analytic modon
solutions, and used thus perturbed solutions as initial conditions. The characteristics of
the noise are given in Appendix A. The overall result of these simulations is that stable
regular modons are sufficiently robust to withstand such perturbation and keep coherence for
a long time.

We synthesize the timescales of destabilization of the different modon configurations in
Figure 8. The estimate for this timescale was obtained considering the change (increase) of
the slope of kinetic energy dissipation as a function of time, as triggering of the instability
is associated with enhanced decrease of kinetic (and potential) energy (cf. Figs. 7 and 9).
Corrections were made for cases in which the instability only started developing at the end of
the simulation, setting 𝑡inst = 𝑡max = 80 (this concerns the cases with (𝜅+, 𝜅−) = (−0.1, 0.1)
and (0.2, 0.2)). Hollow modons with 𝜅+ ⩽ 0.1, which includes the one shown in Fig. 3
(left panel) are stable (not shown). Likewise, regular modons with 𝜅± ⩽ 0.1 are stable (not
shown), while they are (weakly) unstable for 𝜅± = 0.2 (as visible in Fig. 4).

In very few cases, as reported in Figure 8, the addition of a perturbation can destabilize the
otherwise stable modons ("P" labels in the Figure). This occurs for modons with dynamical
parameters (𝜅+, 𝜅−) in the neighbourhood of cases unstable without initial perturbation.
Time evolution of the energy for the regular modon with 𝜅± = 0.2, which is unstable
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Figure 9: Same as Figure 7 but for modons with 𝜅− = 0.2 and two values of 𝜅+, with and
without initial perturbation. Configuration 𝜅± = 0.2 without perturbation (dashed)

corresponds to the dash-dotted lines of Figure 7.

without perturbation (see Figure 4) and a singular modon with same 𝜅− but 𝜅+ = 0.1 – a
configuration that turns unstable if initially perturbed – is given in Figure 9. It shows that the
initial perturbation tends to accelerate the destabilization of the structure.

We can attempt a general conclusion that the greater the values of 𝜅+ and/or 𝜅− (in absolute
value), the more unstable is the dipole. However, from the simulations with 𝜅+ = 0.2 we
infer that the instability develops faster for hollow modons (without internal magnetic field)
as compared to the regular modons, while modons without an external magnetic field were
found stable for 𝜅− up to 0.20.

We believe this could be associated with the tangential magnetic discontinuity that exists
for 𝜅+ ≠ 𝜅−, with the amplitude proportional to the difference between the two, since the
initial perturbation seems to develop first in this region. Indeed, in the case of the regular
modon, the vortex filaments along the separatrix starts developing only after a peak in the
radial direction emerges in the magnetic streamfunction – meaning a sharp gradient of the
magnetic field – at the same location (see Figure 6, upper row).

Thus, there seems to be a competition between the destabilization effects of the magnitudes
of 𝜅− and 𝜅+ taken separately (for instance, experiments with 𝜅− = 0.5 exhibited instability
at very early times), and of their difference. The details of the underlying mechanisms need
further investigation, which is beyond the scope of the present work.

Interestingly, if we superimpose the initial random magnetic noise onto the “non-magnetic”
modon with 𝜅± ≡ 0, this noise aggregates in two magnetic dipoles inside the vortex
dipole before being homogeneized in nearly-circular patches within each pole. This can
be understood from the dynamical equations in the limit of a weak magnetic perturbation 𝐴′:
its action on the PV evolution (eq. 1.6a) becomes negligible and the magnetic field follows
eq. (1.6b), with an additional diffusion term. Magnetic perturbations are then advected along
the streamlines and aggregate and/or get diffused. Then, the modon deflects slightly from the
rectilinear trajectory, although keeps its coherence, as follows from Fig. 10. This deflection
is, apparently, due to asymmetry of the “insider” magnetic dipole with respect to reflexions
in y, resulting from asymmetries in the initial noise.

We should emphasize that the deflection of the modon from its initial trajectory by the
residues of the initial perturbation tends to destabilize the modon because its direction
of propagation deviates from that of the ambient magnetic field. This could explain the
differences in behavior between the modons with and without initial perturbation reported
above, and also that hollow modons are more unstable than their "isolated" counterparts.
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Figure 10: Evolution of a non-magnetic modon with 𝜅± = 0 under the influence of initial
noise. From top to bottom: 𝑡 = 0, 10 and 30. By the end of the simulation, the 𝑦 position of
the modon is about +1. To mitigate the impact of diffusivity, as this case is stable, a lower

viscosity (𝜈 = 2 · 10−4) is used in this simulation.

3.3. Impact of the form of dissipation and of the Prandtl number
All the results presented above were obtained from numerical simulations using a viscosity
term in the PV equation (1.6a), of the form 𝜈∇2(∇2𝜓) and diffusion term in the magnetic
potential equation (1.6b) of the form 𝜈

𝑃𝑟𝑚
∇2𝐴, with 𝜈 = 5·10−4 and a magnetic Prandl number

𝑃𝑟𝑚 = 1. As can be noticed in the behavior of the kinetic energy and, to a lesser extent, in
the magnetic energy in the stable cases – see e.g. Fig. 7 with 𝜅− = 0.2, 𝜅+ = 0 –, the loss
of energy is substantial over the duration of the simulation. Moreover, as stated previously,
the destabilisation of the modon leads to formation of small scales (vorticity filaments and
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magnetic sheets), meaning that the development and saturation of the instability are likely to
be impacted by the dynamics at small scales and, therefore, by the dissipation. To the best of
our knowledge, there is no physically-based closure scheme for the Reynolds-averaged terms
(parametrization) in 2D or shallow water MHD, which is why we used the simple Newtonian
viscosity in the above simulations. To check how sensitive our results are to the form and
magnitude of the dissipation we ran several sets of simulations changing the value 𝜈, but
also the form of the viscosity/diffusivity, passing from the standard to hyper-viscosity and
changing the magnetic Prandtl number. Recalling the link between the MQG and MRSW
models, it would be possible to adapt the dissipation parameterizations developed for the
RSW model, (e.g. Gilbert et al. 2014), but we postpone this development to the future
investigation of the modons in the MRSW framework.

Let us first discuss the impact of the value of the viscosity coefficient at fixed 𝑃𝑟𝑚 = 1. To
this aim, we repeated the whole set of numerical simulations (without sponge layers) with a
smaller value of 𝜈 = 2 · 10−4, and made additional runs for several choices of (𝜅+, 𝜅−) with
even stronger viscosity, 𝜈 = 10−3, or weaker viscosity: 𝜈 = 10−4. The results show that some
modons that appeared stable over the duration of the simulation with 𝜈 = 5 · 10−4 turn to
be unstable at 𝜈 = 2 · 10−4. This concerns one pair of values of (𝜅+, 𝜅−) in the case without
superimposed noise in the initial condition, and five of them in the perturbed case. However,
in most of thus obtained unstable cases the results of the simulations do not appear to be
well resolved because an aliasing occurs, as revealed by inspection of the corresponding
spectra (not shown). This was also the case in the simulations with even weaker viscosity
𝜈 = 10−4, while the simulations with stronger viscosity 𝜈 = 10−3 were suffering from a too
rapid dissipation of the modon, smoothing out any growing instability in most investigated
cases.

This is why we conducted a set of simulations – for all previously exploited values
of 𝜅+ and 𝜅−, and both with perturbed and unperturbed initial conditions – using a
second-order hyper-viscosity (and hyper-diffusivity) instead of the standard viscosity (terms
of the form 𝜈2∇4(∇2Ψ) and 𝜈2/𝑃𝑟𝑚∇4(𝐴) in the PV and magnetic stream function
equations, respectively). This closure scheme, although not based on physical arguments,
as usual, allows for a sharper cutoff in the wavenumber space and for an extended range of
resolved scales, while preserving numerical stability. We used two different values of hyper-
viscosity/diffusivity: 𝜈2 = 10−6 and 10−7. As with the Newtonian dissipation, simulations
with smaller values (𝜈2 = 10−8) turned out to be not properly resolved. To provide some
guidelines, we give here the inverse (hyper-)viscous damping time scale and the cutoff length
scale associated with this dissipation. The former is given by 𝜈𝑝/𝑑𝑥2𝑝, where 𝑝 is the order
of (hyper-)viscosity (𝑝 = 1 for the standard Laplacian viscosity). The latter is based on
the typical CFL timestep 𝑑𝑥/𝑈, and is given by 𝛿𝑥𝑐 = (𝜈𝑑𝑥/𝑈)1/2𝑝, where we take 𝑈=2,
the typical nondimensional value of velocity at the center axis of the modon. The regular
viscosity 𝜈1 = 5 · 10−4 gives an inverse viscous damping time scale equal to 1.3, while the
hyper-viscosity gives 7 and 0.7 for 𝜈2 = 10−6 and 10−7, respectively. For the cutoff length
scale, we have 𝛿𝑥𝑐 = 2 · 10−3 for 𝜈1 = 5 · 10−4, against 9 · 10−3 and 5 · 10−3 for 𝜈2 = 10−6

and 10−7, respectively.
These simulations gave qualitatively similar results regarding the range of 𝜅± values for

which the modons are stable or unstable, and similar scenario of destabilization, although
they produce sharper gradients of vorticity and magnetic field, as could be expected. The
destabilization of the regular modon with 𝜅± = 0.2 with initial perturbation by the noise
is shown in Figure 11. In this case, the typical time scale of instability is slightly larger
compared to the simulation with standard viscosity. It gets shorter with 𝜈2 = 10−7, as shown
in Figure 12. As visible in this Figure, the instability has a more rapid development (sharper
decrease of the kinetic and potential energies, and increase of magnetic energy anomaly)
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Figure 11: Evolution of the regular modon with 𝜅± = 0.2, similar to the one shown in
Figure 4 but with initial noise and hyper-viscosity/diffusivity with 𝜈2 = 10−6. From top to

bottom: 𝑡 = 45, 50 and 55.

once initiated, as compared to the standard viscosity case, favoured by a very small energy
dissipation before the onset of the instability, especially for 𝜈2 = 10−7. The development of
the instability is associated with a deviation of the modon from the axis 𝑦 = 0. This deviation
is already present in some of the simulations with standard viscosity and diffusion, but is
greatly enhanced when an initial noise is present – as mentioned above. Our understanding
is that this deviation follows from the onset of the instability (as shown in Fig. 6), which
is asymmetric. (The symmetry breakdown in the configuration initialized without noise is
"enabled" by discretization errors. In the real world, it could be triggered by a small scale
noise.)
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Figure 12: Comparison of the evolution of the total (black), kinetic (blue), potential
(orange) and magnetic (green) energy anomaly for the unstable regular modon with

𝜅± = 0.2, and perturbed by the noise, for different dissipation schemes: standard viscosity
with 𝜈1 = 5 · 10−4 (continuous), hyperviscosity 𝜈2 = 10−6 (dashed) and 𝜈2 = 10−7

(dash-dotted).

A global comparison of the typical time-scales of destabilization of the modons is given
in Appendix B. A few more configurations turned to destabilize if this form of dissipation
is used, compared to the standard viscosity with 𝜈1 = 5 · 10−4: 𝜅+, 𝜅− = (0.05, 0.2) and
(0.1, 0.1) for 𝜈2 = 10−6 and 6 more for 𝜈2 = 10−7 (see App. B). Surprisingly, and related
to our previous discussion about the criteria for instability, it appears that the absolute value
of 𝜅± seems to be more important than the magnitude of the discontinuity: for instance, the
regular modons with 𝜅± = 0.1 and 0.2 are more unstable than their singular counterparts with
𝜅∓ < 𝜅± (except for negative 𝜅+). This highlights the impact of small-scale dynamics near
the viscous dissipation scale on the development of the instability. Its detailed investigation
is, again, out of the scope of the present paper. In all configurations, modons with 𝜅− = 0.5
were destabilizing on a very short time scale, as in the simulations with standard viscosity
(performed only in the unextended domain and without moving sponge layer).

To investigate the impact of the magnetic Prandtl number, we ran additional simulations
with 𝑃𝑟𝑚 = 0.1 and 𝑃𝑟𝑚 = 10 and compared them to the reference simulations with 𝑃𝑟𝑚 = 1.
We investigated configurations with 𝜅± = 0 and 0.2 (all four cases), both with the standard
Laplacian viscosity 𝜈1 = 5 · 10−4 and the second-order hyper-viscosity 𝜈2 = 10−6. Random
perturbations were superimposed on initial condition. In general, we observed a destabilizing
influence of 𝑃𝑟𝑚 > 1 (and vice-versa). Indeed, the case with 𝜅− = 0.2, 𝜅+ = 0, which is stable
for 𝑃𝑟𝑚 = 1, is unstable for 𝑃𝑟𝑚 = 10 with the standard viscosity and magnetic diffusivity.
Likewise, with order 2 viscosity/diffusivity, the modons with 𝜅+ = 0.2 are unstable for
𝑃𝑟𝑚 ⩾ 1 and stable for 𝑃𝑟𝑚 = 0.1, with faster destabilization for 𝑃𝑟𝑚 = 10 compared
to 𝑃𝑟𝑚 = 1. Figure 13 shows the destabilization of the regular modon with 𝜅± = 0.2 and
𝑃𝑟𝑚 = 10 (and 𝜈2 = 10−6) for comparison with Figure 11, where 𝑃𝑟𝑚 = 1. It exhibits finer
patterns (in particular in the magnetic field) and a more rapid development of the instability:
all fields are shown at earlier times in the simulation, while the stages of destabilization are
similar to the ones shown in Fig. 11 (two bottom rows).

4. Discussion
We thus demonstrated the existence of magnetic modons – localized vortex dipoles associated
with magnetic dipoles – which are steadily moving with or without external magnetic field and
are exact solutions of the MQG equations. The intensities of internal and external magnetic
fields in such configurations are free parameters, and configurations without external, or
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Figure 13: Evolution of the regular modon with 𝜅± = 0.2, similar to the one shown in
Figure 11 but with 𝑃𝑟𝑚 = 10. From top to bottom: 𝑡 = 30 and 35.

without internal magnetic field are realizable. The modons with a disparity between internal
and external magnetic fields are, however, singular, in a sense that they contain a tangential
discontinuity of the magnetic field at their inner-outer region separatrix. By direct numerical
simulations initialized with analytical modon solutions we found that both regular and
singular modons keep their coherence for a very long time running without change of form
for about a hundred deformation radii if the intensity of the magnetic field is sufficiently small
(“stable” modons), and are subject to small-scale instabilities manifesting themselves in the
vorticity and magnetic fields, which lead to a destruction of the modons, if the magnetic fields
inside and/or outside are sufficiently strong (“unstable” modons). It is worth emphasizing
that although the mechanism of destruction is qualitatively consistent with the flux expulsion
mechanism advanced by Weiss (1966), the latter appears as a consequence of the vorticity
perturbation which arises in the vicinity of the separatrix, and looks very similar to the
saddle-point instability, which is well-known in the theory of dynamical systems. If a noise is
superimposed onto the initial modon, “stable” configurations keep their coherence for long
times, but their trajectories may be deflected. The stable/unstable nature of the modons exhibit
some sensitivity to the nature and strength of the dissipation used. Although it is difficult to
extrapolate our numerical results to the inviscid limit nor to some more realistic dissipation
regime, which would require a knowledge of the impact of the small-scale structure on the
resolved flow, our results show that the magnetic modons can be stable for a long duration
(tens of typical time units) even in weakly viscous/diffusive regimes, for small but finite values
of 𝜅± (typically ≈ 0.1). As we know, the modon solutions in “ordinary” QG and in TQG,
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which are, respectively, the asymptotic limits of RSW and TRSW equations, survive, albeit
slightly distorted, if considered within the parent models (RSW and TRSW, correspondingly,
cf. Ribstein et al. (2010), Lahaye et al. (2020)). To check if this is the case with MQG,
numerical simulations with the full MRSW, which would accurately resolve both inertia-
gravity and Alfvèn waves, as well as discontinuities of the magnetic field and eventual sharp
fronts (shocks), are needed. 1D numerical schemes capable to do this exist (Zeitlin et al.
2015; Bouchut & Lhebrard 2016, 2017), but 2D schemes appeared only recently, cf Duang
& Tang (2021) and references therein. However, they lack rotation and are not sufficiently
well-tested. Work on the well-balanced finite-volume scheme for 2D MRSW is in progress.

Let us comment on the 𝑓 -plane approximation used above. Switching to the beta-plane
approximation, that is to 𝑓 = 𝑓0+𝛽𝑦, would introduce a left-right asymmetry, but construction
of the corresponding modon solutions is rather straightforward, following the classical
algorithm which was developed by Larichev & Reznik (1976), precisely, for the beta-plane
configuration. The beta-effect will restrict possible values of the modon velocity, in order to
avoid resonances with magneto-Rossby waves, but we can expect that the structure of the
magnetic modon solutions would remain qualitatively the same. In this context it is worth
mentioning that we expect that magnetic modons would arise as solutions in the certain
regimes of parameters of the MRSW equations on the equatorial beta-plane, where 𝑓0 ≡ 0,
like this is the case with “ordinary modons” Rostami & Zeitlin (2019).

The modons in plasma physics are usually considered in the framework of the Hasegawa-
Mima equation for drift waves (cf. e.g. Horton & Hasegawa 1994), which is equivalent to the
ordinary QG equation on the beta-plane. To our knowledge, the only construction close to
ours, as well as the term “magnetic modon”, were used in the framework of two-dimensional
incompressible magnetohydrodynamics by Chui & Moffatt (1996), where a magnetic
potential in a configuration corresponding to the streamfunction of the “hydrodynamical”
modon in this case, the Lamb-Batchelor dipole but without vorticity anomaly, was taken as
an initial condition for the magnetic relaxation process (cf. Moffatt 1986), in order to obtain
the vorticity modon as the end state.

Concerning the physical significance of the obtained modon solutions, they are obviously
important for tracer transport, as they capture fluid, and also magnetic field, in their cores.
The domain of validity of our solutions covers quasi-bidimensional flows at weak (typically
⩽ 0.1) Rossby and magnetic Rossby numbers, and order one Burger number, i.e. structures
of the size of the deformation radius (which is not well quantified in the solar tachocline).
Extension to larger Burger numbers (smaller structures) is obvious, as the MQG model
tends to 2D-MHD as 𝐵𝑢 → ∞. As their standard, “hydrodynamical”, counterparts do in
the process of geostrophic adjustment Ribstein et al. (2010) in RSW, the magnetic modons
would also change the fundamental process of magneto-geostrophic adjustment in MRSW
Zeitlin et al. (2015), if their persistence is confirmed in the MRSW model, as discussed
above. Namely, in the case of initial dipolar perturbation of vorticity we expect that together
with emission of fast magneto-inertia-gravity and Alfvèn waves, as described in Zeitlin et al.
(2015), a part of the initial perturbation, if it is dipolar in vorticity and strong enough, will
form a modon which will slowly, compared to the fast waves, drift away carrying with it
vorticity and magnetic field anomalies. Moreover, at the stellar equator, where the MRSW
predicts a specific spectrum of equatorial waves (Zaqarashvil 2018), the above-mentioned
possibility to generate equatorial modons could completely change the scenario of relaxation
of localized perturbations, as it is the case with standard RSW Rostami & Zeitlin (2019). Let
us finally mention that thermal effects can be included in MRSW along the same lines as
in passing from RSW to TRSW. Modons with both magnetic field and temperature/density
anomalies can be obtained using the same construction as above in such thermal MRSW
model (TMRSW). We plan to check these scenarios in future work.
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Appendix A. Properties of the noise used in the perturbed initial conditions
In the section, we give the properties of the noise superimposed to the analytical modon
solution in the initial conditions. We used a power spectral distribution with a shape of a
bump, given by

𝑘𝑎

(𝑘 + 𝑘0)𝑏
(A 1)

with 𝑎 = 8, 𝑏 = 22, 𝑘0 = 256/4/𝜋/𝐿, where 𝐿 is the size of the domain and 𝑘 is the
modulus of wavenumber. Here, 𝑘0 roughly corresponds to the wavenumber of maximum
energy. We used random phases and different realizations of the random process for the
streamfunction and the magnetic potential. The noise thus constructed for the streamfunction
has an equivalent mean kinetic energy equal to one, while the noise for the magnetic potential
has unit variance. Finally, these perturbations are multiplied by a small amplitude parameter
(chosen to be 10−4), multiplied by the modon streamfunction to keep a localized perturbation,
and added to the initial streamfunction and magnetic potential.

Appendix B. Time-scale of modon destabilization
We provide in Figure 14 the same kind of estimate of the modon destabilization time scale as
previously shown in Figure 8, for the second-order hyperviscous simulations with both values
of 𝜈2, and with perturbation of the initial condition by the noise. The criterion used here
is the location of maximum relative kinetic energy dissipation, as dissipation is particularly
pronounced during the instability stage when this form of dissipation is used, as discussed in
the main text. It is compared with the same estimate as in Figure 8 for the simulations with
standard viscosity and 𝜈1 = 5 · 10−4 but with random noise added in the initial condition.
Comparison between the simulations with hyper and regular viscosity is only qualitative,
since the criterion used is not the same, but using different criteria was the only way to obtain
meaningful estimates for each type of simulation taken independently.
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