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Axial refocusing precision model with light fields
Zhaolin Xiao∗, Jinglei Shi†, Xiaoran Jiang†, Christine Guillemot† (IEEE Fellow)

Abstract—In light field imaging, axial refocusing precision cor-
responds to the minimum distance in the axial direction between
two distinguishable refocusing planes. The refocusing precision
can be essential for applications like light field microscopy. In
this paper, we introduce a refocusing precision model based on
a geometrical analysis of the flow of rays within the virtual
camera. The model establishes the relationship between the
feature separability of refocusing and different camera settings.
As extending numerical aperture (NA) in classical imaging,
the baseline extension of light field also gives more accurate
refocusing results. To test the axial refocus precision, we conduct
experiments with 1st generation Lytro camera as well as a
Blender light field simulation. The results is basically consistent
with our prediction. Then, we show that computationally extend-
ing the light field baseline increases the axial refocusing precision
on real plenoptic camera and light field microscopy datasets.

Index Terms—Light field, Computational photography, Axial
resolution, Sampling analysis, Digital refocusing.

I. INTRODUCTION

L IGHT field imaging has become popular in the last
years, due to its potential for a variety of applications.

In particular, post-capture digital refocusing can be easily
implemented by shifting and adding the sub-aperture images
[1], [2], [3], [4], [5]. In theory, the light field focal plane can
be moved continuously along the axial direction. However, in
real systems, due to limited spatial resolution and baseline, the
number of distinguishable focal planes is limited in the axial
direction. In order to distinguish from the concept of NA in
classical imaging, we use the baseline to denote the distance
between two farthest separated angular views throughout this
paper. In traditional imaging, the notion of depth of field (DoF)
is a widely accepted metric for axial resolution, and for which
a theoretical analysis can be found in [6]. The definition of
DoF concerns the acceptable sharpness within a given axial
range, but we are instead interested in the focus precision,
i.e.the feature separability between each focal plane and its
adjacent planes when applying digital refocusing.

In this paper, we introduce a light field axial refocusing
precision (LF-ARP) model within a general virtual camera.
This model allows us to calculate the minimum spacing
between two distinguishable adjacent refocusing positions in
the axial dimension, given the fixed focal length, the baseline
of the main lens (or aperture size), the sensor size and its
resolution, and the object plane distance. Please note that the
considered refocusing precision differs from the notion of DoF,
it does not only consider the in-focus regions, but also the out-
of-focus blur. The out-of-focus blur is function of the distance
between the objects and the current focal plane, which can
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Fig. 1. Light field refocusing precision illustration. (a) a low refocusing
precision case. A given disparity corresponds to a specific focal plane when
applying digital refocusing, b represents the baseline in the angular plane.
Using a 1.0X baseline, the difference between refocusing at disparity =
0.0 and disparity = +0.5 can be hardly perceivable. (b) High precision
refocusing with the same focus setting as in (a), from which we can see clear
differences with a computational 2.0X enlarged baseline. (c) On the right
zoomed views, stamens and leaves can be clearly found lying on different
depth layers with high refocusing precision.

affect the possibility to distinguish objects at different axial
positions.

The refocusing precision can be essential for some applica-
tions, e.g. light field microscopy [7], [8], and light field particle
image velocimetry (LF-PIV) [9], [10]. However, we show
that the classical Fourier slicing refocusing method [11] or
the spatial shifting-adding re-sampling technique [1] produce
refocused images do not allow differentiating features within
the predicted precision, as shown in Figures 1(a) and (b) where
we used the same focal plane setting. When using the shift-
and-add refocusing method on the original light field, one
can hardly see refocusing differences in Figure 1-(a). On the
contrary, Figure 1-(b) shows that, by enhancing the refocusing
precision, e.g. by increasing the baseline, we can better distin-
guish the objects at different axial positions. Please notice that,
while the light field baseline often denotes the spacing between
two adjacent views (or cameras), here the term baseline will
refer to the spacing between two farthest views (or cameras).
To extend the angular baseline, we introduce a learning-based
view extrapolation algorithm in [12]. As shown in Figure 1,
if the different objects need to be distinguished via refocusing,
one can optimize the capture configuration parameters, such as
the focal length, the aperture size or the baseline, the distance
to the object plane. Here, we present a geometrical analysis of
the axial precision model, which reveals the relations between
the axial refocusing precision and the camera parameters.
Quantitative and qualitative experiments are also conducted
using both real and synthetic light field datasets.
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II. RELATED WORK

A light field can be seen as a sampling of the plenoptic
function introduced by Adelson and Bergen in [13] to describe
the radiance of light rays emitted by a scene along any
direction, at any time and for every wavelength. By assuming
that the light rays are not attenuated along a line, light fields
are commonly represented as 4D functions with spatial and
angular coordinates [14], [15].

Let LF (x, y, u, v) be the 4D representation of a light
field, in which XY and UV stand for the spatial and angular
planes respectively. For sake of simplicity, in the rest of the
manuscript, we consider a 2D slice LF (x, u) of the light field.
At capture time, physically changing the object distance or the
focal length are two most straight forward operations to adjust
image focus. Chang et al. [16] designed a focus-tunable lens
with precise tracking of the focal length, which can scan 1600
focal planes per second.

Post-capture synthetic refocusing [1] can also produce a
focal stack, i.e. a sequence of images each focused on a
different plane, by re-sampling the input light field as

Iα (x) =

∫
u

LF0 (x+ αu, u) (1)

Therefore, one can generate different refocusings from the
light field LF0 by varying the parameter α, which implies the
focal depth. Theoretically, one can set a focal plane Ωα0 at a
different axial position by tuning the parameter α. Figure 2(a)
illustrates the effect of refocusing on a 2D slice of the light
field, where X and U denote spatial axis and angular axis
respectively. The disparity variation αu is 0 on the original
focal plane. The shifting factor α ∈ [−∞,+∞], is positive or
negative when we focus closer or further respectively from the
original focus plane. This leads to different shearing angles in
the sampling space, as shown in Figures 2(b) and 2(c).

Fig. 2. Differences between original and re-sampled light fields. (a) The
original 2D light field, (b) The positive shifting corresponds to a re-sampling
of the original light field in (a), in order to move the focus plane closer in the
axial direction. (c) The negative shifting is opposite to (b). (d) The shifting
leads to a resolvable re-sampling even without sub-pixel interpolation.

However, the number of focal stack images, or slices in the
resulting volume, is limited by the axial resolution of the light
field. Indeed, if α is small, then even for the outmost view
umax, the disparity variation α∗umax may be less than 1 pixel.

In this case, without sub-pixel interpolation, the re-focused
images obtained by the re-sampled light field will appear the
same as the re-focused images computed from the original
light field. Similarly, if the disparity of the outmost view umax
with respect to the central one is less than 1 pixel, then the
shearing angle will be less than θmin (red box in Figure 2-
(a)), and the re-focused images with the original or re-sampled
light fields will not show any difference without sub-pixel
interpolation. If the shearing angle is larger than θmin, it will
be obviously resolvable because of the contribution of the
new angular samples, as shown in Figure 2-(d) (marked in
the slanted red line).

In classical imaging systems, increasing the numerical aper-
ture (NA) decreases the DoF, but leads to a higher axial
resolution (also called depth resolution) [17], [18]. Many
solutions have been proposed to deal with the narrow DoF
problem, such as image deblurring based on 3D PSF modeling
and all-in-focus image fusion from multiple axial scans [19].
In the object space, Chen et al. [20] and Hahne et al. [21]
proposed different optical models to accurately measure the
distance of the object plane based on a geometric analysis
of the standard plenoptic camera. Further, Hahne et al. [21]
derived the distance to the refocused object plane and its
corresponding DoF for different light fields, which has been
experimentally verified by placing objects at the predicted
distances.

Unlike the DoF distance in [21], the separability of LF-ARP
refers to whether light field re-sampling will affect the integral
imaging result, considering both the sharp focused regions and
the blurred defocused regions. For each axial position, we
derive the minimum light field re-sampling so that shifts of 1
pixel of the most extreme views, when constructing the focal
stack with the shift-and-add procedure, yields distinguishable
refocusing planes. The refocusing precision Arp is equivalent
to the DoF only if the DoF of all the focal slices are non-
overlapping, which is not verified in most of cases.

III. AXIAL REFOCUSING PRECISION

We start by defining the refocusing precision in light field
imaging and by recalling the notion of DoF. Then, we describe
the proposed light field axial refocusing precision (LF-ARP)
model.

A. Refocusing precision: definition

Let Ω0 be a given focal plane on the object side, Ωα
+

0 and
Ωα

−

0 are the nearest distinguishable planes around Ω0 from
the far side and the near side respectively. The refocusing
precision is defined as the minimum distance between two
distinguishable adjacent focal planes Ωα

+

0 and Ωα
−

0 in the
object space, and can be expressed as

Arp (LF0,Ω0) =
[
d
(

Ωα
−

0

)
, d
(

Ωα
+

0

)]
s.t. ‖LFα0 − LF0‖∞ < ε, if α ∈ [α−, α+]

(2)

where d(Ω0) stands for the distance between the target focal
plane of Ω0 (on the object side) and the camera plane (or the
aperture plane) UV . Here, the UV plane is assumed to lay at
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the zero axial position. The parameter ε denotes a negligible
difference between the original light field LF0 and the re-
sampled one LFα0 . Figure 3 shows the difference between
the axial refocusing precision and the DoF in the object
space, and shows that the two adjacent distinguishable focus
planes and the image planes located at distances d

(
Ωα

−

0

)
and d

(
Ωα

+

0

)
from the camera plane do not correspond to

the borders of the DoF. The DOF is the distance (red and
blue dash lines), within which the object is in-focus, i.e.
without optical blur. The DOF has been exaggerated compared
to the dimension of the imaging system for better visibility.
Due to finite and discrete sampling of the 4D light field, the

Fig. 3. Difference between light field DoF and refocusing precision. The pink
and blue shadowed regions correspond to the definition of traditional DoF. The
refocusing precision is defined as the minimum distance Arp between two
distinguishable adjacent focal planes in the object space.

Arp (LF0,Ω0)) cannot be infinitely small with a fixed spatio-
angular resolution. Therefore, deriving the range [α−, α+] for
each possible focal plane Ω0 is the main goal of this paper.

B. Depth of Field (DoF)

The axial re-focusing precision has some relationship with
the concept of DoF. In traditional imaging, the DOF limit is
given by

DoF =
λn

NA2 +
n

MNA
e (3)

where λ stands for the light wave length, n represents the
refraction index of medium, and NA is the numerical aperture
of the entire imaging system. The variable e is the minimum
resolvable distance in the image plane of the main lens,
whose lateral magnification from object to image plane is
M . Theoretically, the total DoF is determined primarily by
wave optics (first term of Equation (3)) if the pixels are small
enough to not limit resolution. But, in case of lower numerical
apertures, the DoF is dominated by the geometrical optical
circle of confusion (CoC) represented by the second term of
Equation (3).

Please note that, if assuming the DoFs of all the focal slices
are non-overlapping in a focal stack, only the in-focus regions
are concerned, then the refocusing precision Arp is equivalent
to the DoF . However, this assumption usually does not hold in
real light field imaging systems for the two following reasons.
First, since the pixel size may not be small enough to satisfy
the theoretical wave DoF limit, the actual DoF of the different
slices of the focal stack may be larger and overlapping in most
practical systems, as shown in Figure 3. Second, the refocused

pixel size is Nu×Nv times larger than the sensor pixel size or
the diffraction-limited spot size. Here, Nu×Nv is the angular
resolution. Therefore, in the case of real light field imaging
systems, and assuming Nu = Nv , the DoF of refocused image
is given by [6]

DoF ≈ (2 +Nu)λn

2NA2 (4)

where the geometrical optical CoC, which is Nu/2 times larger
than the wave optics term, dominates. As a consequence, the
DoF of light field imaging is significantly larger than the DoF
of traditional imaging with the same resolution sensor. There-
fore, in order to obtain a better spatial or lateral resolution,
Broxton et al. [22] suggest to apply 3D-deconvolution on the
defocused angular samples. The DoF resolution can also be
enhanced by applying image based super-resolution, e.g. the
state-of-art learning based light field super-resolution [23].

While the DOF only measures the range of in-focus area,
our motivation here is to provide a model that measures the
distance between adjacent distinguishable focus planes. Unlike
the discussion on the distance of refocused object plane and
the corresponding DoF in [21], the proposed model reveals
the refocusing or re-sampling precision given a constant image
plane and fixed field of view (FoV).

C. Axial refocusing precision model
In this section, we propose a refocusing precision Arp

model, in which both the image plane and the FoV are
assumed to be fixed.

Fig. 4. Illustration of axial refocusing precision. The axial refocusing
precision is a function of the object distance d, the focal length f , the angular
baseline of the main lens b, and the sensor size s. Since a 1 pixel shift of the
outmost view corresponds to the minimum possible re-sampling of the light
field, for any possible object side focal plane Ω0, we can derive the distances
to nearest resolvable adjacent refocusing positions Ωα+0 and Ωα−0 in both
directions.

Assuming the image plane distance V to be constant when
re-focusing with light field imaging, the following thin lens
equation gives the relationship between the object distance d
and the virtual focal length f after re-focusing

1

d
+

1

V
=

1

f
(5)

where the focal length f is a variable, and d denotes the
distance between the virtual focal plane and the physical main
lens.



SIGNAL PROCESSING: IMAGE COMMUNICATION 2022 4

Let us now consider re-focusing with the shift-and-add
procedure. Let rx and ry represent the horizontal and vertical
resolutions of the sensor, and b stands for the baseline width.
Considering a 1 pixel shift, by geometrically analyzing Figure
4, one can deduce that the light field refocusing precision Arp,
for any possible focal plane Ω0, can be expressed as

Arp(LF0,Ω0) = φ(d, f, b, s)

= [d− d(α−), d+ d(α+)]

= [d(1− M ′e′

b/2 +M ′e′
), d(1 +

M ′e′

b/2−M ′e′
)]

(6)

where
e′ =

s(d− f)

f
√
rx2 + ry2

(7)

is the minimum distinguishable re-sampling distance in mil-
limeters (mm), in the object side, corresponding to the diffrac-
tion limit λ

2NA on the image side. In most of practical
imaging systems, the pixel size is larger than this diffraction
limit, so that the pixel size corresponds to the minimum re-
sampling unit e on the focal plane, as shown in Figure 2(d).
Figure 3 indeed shows that the 1 pixel shift of outmost views
corresponds to the minimum resolvable unit distance e on the
focal plane Ω0. As shown in Figure 4, d(α−) and d(α+)
represent the distances between the backward and forward
refocus planes and the focal plane, which are marked as
the green, blue and red planes respectively. Please note that,
d(α−) and d(α+) are different from d

(
Ωα

−

0

)
and d

(
Ωα

+

0

)
,

which are measured with respect to the coordinate origin of
the optical center. The term M ′ is the reciprocal of lateral
magnification factor M (i.e.from image side to object side) for
the imaging system having a magnifying lens (e.g. a light field
microscope). Please see more details of the model derivation
in the AppendixVI.

The above LF-ARP model is a function of the object
distance d, the focal length f , the width of baseline b, and
the sensor size s. In traditional imaging, the sensor size s is
constant, hence changing the focal length f implies changing
the field of view (FoV). However, our model shows that,
in the case of light field imaging, computational refocusing,
i.e. changing the focus plane in which the object of interest
is assumed to be, is equivalent to changing both the focal
length f and the sensor size s, while keeping the physical
distance between the image plane and the aperture plane
constant, i.e.V is a constant. Figure 4 shows that a 1 pixel
shift changes the convergence of the corresponding angular
sample, as illustrated by the slight shifting orientations of the
outmost view in purple, blue and green lines.

The concept of DoF can be seen as a metric based on focus
and blur separation, in which the CoC varies with the shift
of the image plane. Unlike the DoF, the proposed Arp model
is derived assuming a given constant image plane V . More
precisely, the FoV of P0 and P ′ (i.e. the physical width of the
virtual images on Ωα+0 and Ω0 respectively in the object space)
stays the same when refocusing on different axial planes Ωα+0
and Ω0, i.e. the image of the object, remains constant, when
re-focusing.

Please note that it assumes a thin lens model and does
not account for possible off-axis aberrations. All the variables
of our LF-ARP model correspond to physical measures. If
the parameters of equation (6) and equation (7) are known,
one can easily compute the axial indistinguishable refocusing
ranges for each object plane, for a given minimum possible
re-sampling limit, e.g. 1 pixel size. The refocusing separability
not only depends on the axial depth, but also on the scene tex-
ture. But, only the minimum refocusing separability distance
is derived by considering the characteristic of camera part,
the object scene texture frequency is assumed high enough to
satisfy the resolvable requirements in this paper.

Equations (6) and (7) show that the Arp can be better with
a close capture, or when using a lens with a long focal length.
Figure 5-(a) shows how the distances d(α−) and d(α+) on the
axial direction, and the Arp vary when re-focusing with a shift
of the outmost view of multiple e units. We can indeed see
that the variation of the distance d(α−) contributes more to the
Arp decrease than the one of d(α+). We can indeed see that
the blue curve is always above the green curve, which indicates
that the distance d(α+) contributes more to the Arp decrease
than the one of d(α−). This means that the physical distance
between the current focal plane and the closest distinguishable
adjacent focal plane in the axial direction will be larger when
refocusing further, than when refocusing on a plane closer to
the main lens.

Since the Arp decrease is non-linear as u increases, axial
separability can be improved via spatial super-resolution [22],
however the authors in [22] give depth-dependent band limits
for spatial super-resolution, indicating that one can not recover
the spatial resolution up to the band limit using sharp focused
angular samples. Instead of applying spatial super-resolution,
computationally expanding the baseline b can be another
option to increase the Arp. As we show in Figure 5-(b),
there is a correlation between the Arp and the baseline width
b that following the equations (6).

IV. EXPERIMENTS

In this section, we test the refocus precision model consid-
ering synthetic scenes generated using the light field plugin
of the Blender software [24]. The quantitative and qualitative
comparisons are made using multiple synthetic light fields, and
real light fields captured by 1st generation Lytro cameras, as
well as on light field microscopy datasets.

A. Testing of the refocus precision model

To meet the resolvable requirements, ideally, we would need
to capture a 3D scene with highly textured objects full filling
the FoV, and then axially shift the object plane. Instead, for
this first experiment, we created a synthetic experimental scene
assuming a capture using a 9∗9 camera array, with parameters
ideally set as shown in Fig.6, i.e.focal length f = 100.0mm,
baseline b = 42.65mm, multiply factor M ′ = 1.0, sensor size
s = 35.0mm and its resolution rx = ry = 512.

For a first validation of the proposed Arp model, we created
a synthetic scene using Blender. The scene consists of two
clipped standard resolution cards (RCs) placed at different
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Fig. 5. LF-ARP for different parameter settings. (a) d(α−), d(α+) and Arp when re-focusing corresponding to a shift of multiple e units of the outmost
view. Here, we set f = 30mm, s = 28mm,M ′ = 1.0, rx = ry = 512, b = 10mm, d = 500mm. The Arp range is the sum of the blue curve and the
green one, which correspond to d(α−) and d(α+) respectively. (b) Arp as a function of the object distance d for different values of the baseline b. The
setting of f , s, M ′ and rx, ry is the same as in (a).

Fig. 6. Refocusing visual comparison when two boards are separated by a distance that is lower or higher than the LF-Arp value using Blender simulations.
In the experiment, the estimated d(α−) is equal to 6053 mm with a refocusing made at 7000 mm. For this reason, the resolution board is first placed at
6500 mm (within the Arp range, in the top row), and then at 5500 mm (out of the Arp range, in the bottom row). We show the zoomed refocusing results
when the resolution boards are in focus, or out-of-focus respectively. From 8.0x zoomed views (the green boxes), we can see clearly the separability changing
between the two different separations, especially for the defocused case.

positions in the axial direction (see the left part of Fig.6). We
placed a reference RC at a distance of 5.0mm, 6.0mm and
7.0m from the UV plane (i.e., the aperture plane) respectively,
while the second RC is placed at neighbouring positions. The
placement of the second RC at different neighboring positions
allows us to measure refocus differences between focus planes
in the same focal stack. Assuming a fixed image plane V , we
calculated the ideal Arp range by varying only f, s.

For validating the model, we performed re-focusing at dif-
ferent planes, and then we compared the refocusing results of
the regions corresponding to the two RCs, at five different axial
positions, closer and further away from the reference focus
plane, as shown in table I. We computed the focus/sharpness
measure of the image regions of the two RCs. These measures
should be very close when the re-focus at the two positions in
the axial direction is not distinguishable. In order to measure

the separability of the two RCs, we employed the local phase
coherence-based sharpness index [25] (LPC-SI). Instead of
PSNR or SSIM, we use LPC-SI because it needs no reference
image. Another reason is that the LPC-SI is less sensitive to
the variation of scale and FoV as moving the second RC.
In a same focal stack, let FSref be the image region of the
reference RC, which is placed at the original object plane at
d0, and FSm be the image region of the compared movable
RC, which can be placed at a neighbouring axial position dk.
As in equation 8, we consider a new quantitive measure of
the focal stack based refocusing separability RDiff(·), which
measures sharpness and blur of multiple focal slices as

RDiff(dk) =
S̄I(FSm(dk), FSref )

S̄I(FSm(d0), FSref )
, (8)
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Fig. 7. Quantitative focus measurements when placing the resolution board inside and outside the Arp at different axial positions. (a)-(c) are focus measurements
using LPC-SI. In each subplot, the red line and blue line show the distinguishable differences of refocusing when putting the resolution board outside the
LF-Arp. The green lines are reference refocusings when setting the resolution board at 5000 mm, 6000 mm, and 7000 mm. If putting the resolution board
inside the LF-Arp, the refocusing difference is hardly distinguishable, as shown by the other lines. (d) shows the mean difference between the reference
refocusing and the refocusing inside or outside LF-Arp.

where

S̄I(FSa, FSb) =
1

2N + 1

N∑
i=−N

(SI(FSia)−SI(FSib))
2 (9)

and where SI(·) is the LPC-SI sharpness measure as defined in
[25] (LPC-SI), FSia and FSib are two different image regions
in the i− th focal slices respectively.

For each pair of the reference and compared RCs at
< d0, dk >, we first draw the LPC-SI curves when both RCs
are placed at the original object plane d0, e.g. the 5000l (the
reference one) curve and 5000r (the compared one) curve in
Fig.7 (a). From Fig.7, we can see that the two curves are highly
consistent when the two RCs are placed at the reference object
plane. The consistency implies that the refocusing of the two
RCs is indistinguishable for all focal slices, in both the sharp
focused and blurred defocused regions. When placing the
compared RCs away from the reference position and outside
the Arp range, their refocusing becomes more distinguishable,
especially when it is severely defocused (see the red and blue
curves in Fig.7). When keeping the compared RCs inside the
Arp, the curves are similar with the reference one. A visual
comparison is shown in Fig.6.

The refocus precision is decreasing when the reference
object plane moves away from the UV plane. We can indeed
see that the curves become closer to each other, as shown in
Fig.7 (b) and (c). Fig.7 (d) shows that the mean of RDiff
is 3 to 4 times higher, compared to the positions outside and
inside the Arp range.

In order to further test the refocusing precision, we simulate
a natural scene, which is composed of multiple pieces of
complex textures. Different from the two RCs scene, as shown

in the top right sub-images of Fig. 8, the scene is assumed to
be captured at the distance d0 = 2000mm, with the focal
length f = 30.0mm, baseline b = 113.14mm and sensor
size s = 28.0mm. These parameters have been ideally set
according to the camera viewpoint.

Fig. 8. Validation of the proposed refocus precision model. We show the
LPC-SI between images refocused on adjacent planes within and outside the
refocus precision limit Arp = [d − d(α−), d + d(α+)] at different axial
positions. On the top right, the synthetic scene with ideal camera settings is
generated using the Blender light field plugin [24] with the parameters shown
in Table II.

Fig. 8 shows that, within the refocus precision limit Arp =
[d− d(α−), d+ d(α+)], with interval near and far boundaries
denoted d − d(α−) and d + d(α+) respectively, the LPC-SI
difference between two refocused images on adjacent planes
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is very small (green curves), while it becomes much larger
(red color lines) when the spacing between two refocus planes
is larger than the Arp interval. The dashed and solid lines
indicate the LPC-SI variation when increasing and decreasing
the refocus distance respectively. From Fig. 8, we can see
that the axial separability or resolvability is significantly
higher when the refocus plane spacing is larger than the Arp
limit, which indicates the correctness of the proposed Arp
model. Please note that, there is no standard metric for the
measurement of axial separability or resolvability, which not
only depends on the characteristics of the camera, but also on
the scene texture.

Fig.9 shows our experiment setup for testing the refocus
precision of the 1st generation Lytro camera. The refer-
ence RC is placed in front of the camera, at distances of
500mm, 600mm, 700mm, 800mm, 900mm, 1000mm from
the aperture plane respectively. The second RC is then placed
at neighbouring positions using a translation device, which
can be precisely controlled in steps of ±0.01mm by a digital
controller. The RCs are placed perpendicular to the optical
axis of the camera, so that the axial distance between the
camera aperture plane and the RCs can be simply measured
using a laser rangefinder. In order to keep the illumination
constant, we use a 200 W LED photographic light at a color
temperature of 6500 K. The Arp limit will be less than 1mm
at a distance of 200mm or even closer. Therefore, we choose
to measure the Arp limit at a range from 500mm to 1000mm.
The movable RC is placed at reference positions from 10
to 20 times a step of 1mm on both sides. The setting of
the Lytro camera is manually fixed while capturing a same
reference position, i.e.the reference RC is constant. In real
scene experiments, we employ the same refocusing precision
metric, and set RDiff(·) = 2.5. In the experiments, we use
a focal length f = 35.0mm, a baseline b = 17.5mm and
sensor size s = 7.67mm, rx = 3280, ry = 3936, M = 1.0 as
the ideal parameters of the 1st generation Lytro camera. Due
to the non-ideal illumination and sensor noise, the captured
real scenes are more blurred and noisy than the simulated
ones. Therefore, we consider smaller clipped regions of both
RCs for computing the LPC-SI. Fig. 10 (a)-(c) shows that the
peak of the red curve (outside the Arp range) is obviously
different from the other curves. Due to the noise and blur of
the sampling stage, the LPC-SI values are within a smaller
range than for the simulated scene, which leads to a lower
separability in refocusing. The predicted and measured Arp
values of the Lytro camera along the axial direction are shown
in Fig. 10 (d). Due to the presence of noise and distortion, and
the limited number of tested discrete axial positions, there is an
obvious difference between the measured and predicted values
of Arp, e.g. at the positions of 600mm, 800mm, 900mm and
1000mm. Nevertheless, we can still see the high similarity
in trend and values from the curves, which indicates the
correctness of the proposed Arp model. The proposed Arp
model is only validated with discrete re-focus planes positions.
Validating the model for a continuum of positions on the
optical axis would require designing a scene with carefully
chosen distribution of objects, texture for each object, camera
exposure settings, etc.

B. Evolution of refocusing precision with the baseline

By extending the baseline (or the aperture), the digital
refocusing can produce a shallower DoF, thus leading to
more accurate refocusing. To validate the axial refocusing
enhancement, we further tested the resolvability or separability
of the adjacent refocusing results. Different from the LPC-
SI metric, the SSIM is employed to measure the differences
between two adjacent refocus images. In Figure 11, for each
axial focal plane (corresponding to different disparities), we
give the mean SSIM of 7 Stanford microscopy datasets. A
small value of mean SSIM indicates high separability. The
black curve stands for separability for each axial focal plane
with the ground truth 1.0X baseline light field, while the other
curves marked with cross and triangles represent the axial
separability of refocused results with 2.0X and 4.0X baselines
respectively. We can see that the curves follow the same trend
as those in Figure 5 (b), in the sense that the Arp value is lower
when increasing the baseline, i.e. that enables a more precise
refocusing. And the refocusing separability is decreasing in a
non-linear manner when moving the focal plane further away
from the original conjugate focal plane Ω0 at axial position
d0 on the object side, as also shown in Figure 5 (a).

Fig. 11 shows the curves of the extrapolation method
proposed in [26] based on multi-plane images (MPI) and of
the shearing and extrapolation network (SENet) we proposed
in [12], in green color and red color respectively, from which
we can see that even the computational baseline extension can
give better performances than the 1.0X baseline in the axial
separability. The vertical peak in Figure 11 can be explained
by the non-linear characteristics of the disparity space. When
away from the zero disparity plane, the distance between the
distinguishable adjacent refocus planes increases, for the same
disparity value. A larger physical separation will lead to high
separability (smaller SSIM value), which yields the central
peak of SSIM curves. The left and right wings of the curves
are due to the fact that the entire specimen is out of focus, the
blurriness indeed leads to a high SSIM value. Finally, Figure
12 visually compares refocused images with 1.0X and 4.0X
baseline. The detail changes can hardly be recognized with
1.0X baseline original refocusing, e.g. , those areas pointed
by the green arrow. But, one can easily distinguish the sharp
focused plane of these details on the refocused images with
4.0X baseline. To extend the baseline to more than 4.0X ,
we suggest interested readers to use other state-of-art learning
based solutions, e.g. . the solutions in [27], [28].

C. Limitations

The proposed refocus precision analysis assumes a thin lens
model, and does not account for possible off-axis deformations
or distortions. The proposed Arp model is validated only
at discrete and limited axial positions. Although the LPC-
SI-based refocus sharpness metric does not need a known
reference like PSNR or SSIM, it is not a standard metric by
considering only the characteristics of the refocus difference.
Therefore, a potential better metric will be still helpful, espe-
cial as in presence of noise.
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Fig. 9. Experimental setup of refocus precision evaluation for the 1st generation Lytro camera at different axial positions.

Fig. 10. Quantitative evaluations of refocus precision of Lytro camera along axial direction. (a)-(c) show the quantitative focus measurements when changing
the spacing between the reference resolution board and the moving one. The red line corresponds to the case where refocusing is outside Arp, while the
refocusing inside Arp corresponds to the remaining lines. (d) By testing Arp on discrete and limited positions, we show a comparison between ideal and
measured Arp of Lytro camera within the range of 500mm-1000mm.



SIGNAL PROCESSING: IMAGE COMMUNICATION 2022 9

Fig. 11. SSIM between two adjacent refocus images with 1.0X, 2.0X, 4.0X baseline extension factors for two methods, the MPI-based method [26] and the
proposed one. Lower is the SSIM, more distinguishable (i.e. showing more structural differences) are the two adjacent refocus planes.

V. CONCLUSION

In this paper, we introduced a light field refocusing precision
model, which establishes the minimal resolvable or distin-
guishable spacing in the axial direction, given the fixed focal
length, baseline, sensor size and resolution, and object plane
distance. While the concept of DoF can be seen as a metric
based on focus and blur separation, the proposed geometrical
analysis is derived in the spatio-angular sampling space, and
measures the distance between adjacent distinguishable focus
planes. The model also reveals the relationship between the
refocusing precision and camera settings. The proposed model
can be used to optimize some configuration parameters of the
capturing settings, such as the distance to the object plane, the
aperture size or the baseline. It can benefit potential light field
applications with specific axial refocusing precision demands,
e.g. microscopy, particle velocimetry etc.
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VI. APPENDIX

Let P0 be the width of the conjugate virtual sensor in
the object focal plane ω0. Figure 13 shows the proportional
relation between P0 and the sensor size s. Therefore, e can
be derived under the pin-hole camera model assumption. We

Fig. 13. The relation between P0, s and the theoretical shifting limit e of a
pin-hole camera with a fixed image plane. Please note that the image plane
distance V is a constant. Otherwise, the FoV will vary with different focal
lengths f , so that P0 can not be derived using Equation12 below.

start the derivation from the simple geometry in Figure 13,

P0

d
=

s

V
(10)

As mentioned in Section III C, we assume that the image plane
distance V is a constant and that the FoV is fixed. Then V

can be simply inferred from the thin lens equation (Equation
5) as

V =
(d− f)

fd
. (11)

By replacing V in Equation 10 by its expression in Equation
11, P0 can be calculated as

P0 =
sd

V
=
s(d− f)

f
(12)

Then we can obtain e as

e =
P0√

rx2 + ry2
=

s(d− f)

f
√
rx2 + ry2

(13)

Further, the relation between d(α+) and d + d(α+) can be
found by solving triangles in Figure 4, i.e.,

e

(b/2)
=

d(α+)

d+ d(α+)
(14)

When using a magnifying lens, from image side to object side,
the limit e will be multiplied by M ′ (the reciprocal of lateral
magnification factor M ), as

M ′e

(b/2)
=

d(α+)

d+ d(α+)
(15)

One can easily derive d(α+) from Equation 14 as

d(α+) =
dM ′e

b/2− (M ′e)
(16)

In a similar way, d(α−) can be derived as

d(α−) =
dM ′e

b/2 + (M ′e)
(17)

Finally, the Arp model can be expressed as

Arp(LF0,Ω0) = φ(d, f, b, s)

= [d− d(α−), d+ d(α+)]

= [d(1− M ′e

b/2 +M ′e
), d(1 +

M ′e

b/2−M ′e
)]

(18)

which is the same as in Equation 6 in Section III C.


