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Constrained Cramér-Rao bounds for reconstruction problems formulated as
coupled canonical polyadic decompositions?

Clémence Prévost1,⇤, Konstantin Usevich1, Martin Haardt2,⇤⇤, Pierre Comon3,⇤⇤, David Brie1,⇤⇤

Abstract

We propose a theoretical performance analysis for a class of reconstruction problems, formulated as coupled

canonical polyadic decompositions of two low-resolution tensor observations. We study a particular case when

all the modes of the tensors are coupled. Unlike the case of a single coupling constraint, a fully-coupled model

requires nonlinear constraints in some estimation scenarios. Thus we introduce two probabilistic scenarios.

For each scenario, we derive the constrained Cramér-Rao bounds for the parameters and for the mean-squared

error of the reconstructed tensor. We show that with a carefully chosen initialization, the maximum likelihood

estimators reach the bounds, even in challenging cases (low signal-to-noise ratio or large tensor rank).

Keywords: multimodal data fusion, coupled tensor decompositions, Cramér-Rao bounds

1. Introduction1

In the data fusion community, it is now commonly accepted that a same phenomenon can be partially con-2

tained in observations from several measurement devices, with di↵erent resolutions and noise contaminations3

[1, 2, 3]. The observations are often complementary, meaning that given dataset-specific information can be4

enriched from information contained in other datasets, and vice-versa. Hence data fusion was proposed to5

exploit the complementarity of available measurements [4].6

In some engineering fields such as remote sensing or biomedical imaging, observed data often possess more7

than two dimensions, thus they can be represented as tensors. Several low-rank factorizations can be considered8

for approximating such data. A popular one is the canonical polyadic (CP) decomposition (CPD), due to its9

powerful uniqueness conditions. Tensor data fusion based on coupled CPD has since then proved its relevance10

in a wide range of applications [5, 6, 7].11
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e-mail: firstname.lastname@univ-lorraine.fr.
2
Communications Research Laboratory, Ilmenau University of Technology, Ilmenau, Germany. e-mail:

firstname.lastname@tu-ilmenau.de.
3
CNRS, GIPSA-Lab, Univ. Grenoble Alpes, F-38000 Grenoble, France. e-mail: firstname.lastname@gipsa-lab.grenoble-inp.fr.

Preprint submitted to Signal Processing April 26, 2022



In this paper, we consider a specific class of reconstruction problems, which aim at recovering a high-12

resolution tensor from tensor observations with some lower resolutions. Such problems can be found in hyper-13

spectral super-resolution [8], biomedical imaging [9, 10], chemistry [11], or learning over graphs [12].14

The work of [8], motivated by hyperspectral super-resolution, addresses the problem of reconstructing a15

tensor from two degraded versions. While one is degraded in two (spatial) modes, the second is degraded16

in the third (spectral) mode. Two scenarios were considered: fully-coupled and blind (partially coupled).17

Algorithms based on alternating least squares (ALS) were proposed for both scenarios and showed competitive18

reconstruction performance. This approach gave rise to numerous tensor-based reconstruction methods [13, 14].19

Cramér-Rao bounds (CRB) are a classic tool to assess the performance of the estimators [15, 16, 17].20

For coupled models, where the model parameters are subject (in part or totally) to deterministic constraints,21

the constrained Cramér-Rao bound (CCRB) can be used, whose versatility was shown by numerous works22

[18, 19, 20, 21, 22, 23]. Cramér-Rao bounds for tensor CP models have been studied in a general context. In23

[24, 25, 26], performance bounds for uncoupled CP models have been provided. In [27], a Bayesian framework24

was proposed for flexible coupling models and hybrid CRB were derived. Constrained Cramér-Rao bounds25

for partially coupled complex tensors admitting a CPD and a single coupling constraint were explored in [28].26

The expression of the bound was based on [29], which considers a specific case where the Fisher information27

matrix (FIM) for the parameters is invertible. A single equality constraint between two shared CP factors was28

considered. In the reconstruction problems however, all the modes are coupled and the analysis of [28] is not29

applicable. Extending [28], a preliminary work of the authors [30] treated a special case of the degradation30

matrices. Another extension in the case of a single random parameter was considered in [31].31

In this paper, we extend the results of [30] to the general reconstruction problem with general degradation32

matrices. Unlike the case of a single coupling constraint, a fully-coupled model requires nonlinear constraints33

in some estimation scenarios. We derive the CCRB both for the model parameters and for the mean-squared34

error of the reconstructed tensor, for two probabilistic scenarios; in particular, our results do not require35

identifiability of the individual tensors. We show that the maximum likelihood estimators reach the bounds,36

but their initialization should be carefully chosen since conventional initializations might lead to poor results.37

We propose an algorithm that gradually changes the regularization (balance) parameter between the tensors.38

This paper is structured as follows. In Section 2, we recall preliminaries of tensor decompositions, their39

uniqueness properties, and formulate the reconstruction problem that we consider in the paper. Section 340

contains background on Cramér-Rao bounds. In particular, it provides a link between noiseless identifiability41

and the rank of the Fisher information matrix. Section 4 introduces the two di↵erent parameterizations and42

estimation scenarios that we consider in the paper. Next, in Section 5 we derive the bounds for the two43

scenarios. Finally, Section 6 contains our numerical results.44
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Contributions. In Section 3.1, we provide a clear link between generic uniqueness of the CPD, local45

identifiability in the noiseless case, and invertibility of the FIM. We introduce a general framework for the46

calculation of bounds for coupled CP models of the form (6)–(7). We introduce two estimation scenarios. The47

first one (see Section 4.3) evaluates the performance of the fullly coupled model for tensor reconstruction. The48

second one (see Section 4.4) compares the theoretical performance of the uncoupled, partially coupled and49

fully coupled models. In a supplementary material, we provide closed-form expressions for the CCRB in both50

scenarios. We assess the relative e�ciency of two state-of-the-art estimators. Our numerical results show that51

these algorithms reach the bounds, even in challenging cases (see Section 6.4 and Section 6.6).52

Notation. We follow the notations of [32, 33]. We use lower (a) or uppercase (A) plain font for scalars,53

boldface lowercase (a) for vectors, boldface uppercase (A) for matrices and calligraphic (A) for tensors. The54

elements of vectors, matrices, and tensors are denoted to as ai, Ai,j and Ai1,...,iN , respectively. The transpose55

of a matrix A is denoted by AT. The matrix IN is the N ⇥N identity matrix and 0L⇥K is the L⇥K matrix56

of zeros. The symbols ⇥, � and ⌦ denote the Kronecker, Khatri-Rao and outer products. We use vec{·} for57

the standard column-major vectorization of a matrix or a tensor. The operator diag{a} produces a diagonal58

matrix whose entries are the elements of a. The operation Diag{A,B} produces a block-diagonal matrix59

whose blocks are A and B.60

2. Background on tensor algebra61

2.1. Preliminaries62

A third-order tensor X 2 RI⇥J⇥K is a three-dimensional array indexed by the elements Xi,j,k, for i 263

{1, . . . , I}, j 2 {1, . . . , J} and k 2 {1, . . . ,K}. Each dimension of a tensor is called a mode. A mode-p fiber of64

X is a vector obtained by fixing all but the p-th dimension. Similarly, a mode-p slab of X is a matrix obtained65

by fixing only the p-th dimension.66

Definition 2.1. Tensor unfoldings – The mode-p unfolding of a tensor X , denoted by X(p)
, is the matrix67

whose rows are the p-mode fibers of X , ordered according to the vectorization order. For a third-order tensor68

X 2 RI⇥J⇥K
, we have X(1) 2 RJK⇥I

, X(2) 2 RIK⇥J
and X(3) 2 RIJ⇥K

.69

Definition 2.2. Matrix mode product – The matrix p-mode product between a tensor X and a matrix M is70

denoted by X •p M and is constructed such that each mode-p fiber of X is multiplied by M , e.g., the elements71

of the mode-1 product between X 2 RI⇥J⇥K
and M 2 RL⇥I

are accessed as (X •1 M)`,j,k =
P
i
Xi,j,kM i,`,72

` 2 {1, . . . , L}. Moreover, we have Y = X •k M , Y (k) = X(k)MT.73

Definition 2.3. Outer product – The outer product between three vectors a 2 RI
, b 2 RJ

, c 2 RK
is a74

rank-one tensor X = a⌦ b⌦ c 2 RI⇥J⇥K
whose elements are accessed as Xi,j,k = aibjck.75
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2.2. Canonical polyadic decomposition76

Definition 2.4. Canonical polyadic decomposition – A third-order tensor admits a CPD as X =

[[A,B,C]], where A 2 RI⇥R
, B 2 RJ⇥R

, C 2 RK⇥R
are the latent CP factors of the decomposition. When

minimal, the integer R denotes the tensor rank of X . Each entry of X can be expressed equivalently as

Xi,j,k =
RX

r=1

Ai,rBj,rCk,r. (1)

The CP factors A, B, C are essentially unique up to scaling and permutation ambiguities, if the rank

R is not too large [32, 33]. Permutation ambiguity means that the columns of the latent CP factors can be

reordered arbitrarily by any permutation matrix ⇧ 2 RR⇥R as

X = [[A,B,C]] = [[A⇧,B⇧,C⇧]].

The scaling ambiguity means that the the individual factors can be scaled as

Xi,j,k =
RX

r=1

(↵nAi,r)(�nBj,r)(�nCk,r), (2)

with ↵r�r�r = 1 for r 2 {1, . . . , R}. When deriving Cramér-Rao bounds, permutation ambiguities can be77

neglected while a proper factor normalization is required to fix the scaling ambiguities. Throughout the paper,78

we correct this ambiguity by setting the first rows of the A and B factors to ones4. This corresponds to79

rescaling (2) with ↵r = 1
A1,r

, �r = 1
B1,r

and �r = 1
↵r�r

.80

2.3. Uniqueness of the CPD81

Definition 2.5. Kruskal rank – The Kruskal rank of a matrix M , denoted (M), is defined as the maximum82

value k such that any k columns of M are linearly independent [34, 35].83

One of the most general and well-known su�cient conditions on uniqueness of the CPD is due to Kruskal

[34, 36] and reads as follows:

(A) + (B) + (C) � 2R+ 2.

Stronger results are available for generic uniqueness. We say that the CPD X = [[A,B,C]] of rank R is

generically unique if, for random matrices A, B, C distributed according to an absolutely continuous proba-

bility distribution the CPD is unique. Equivalently, the set of A, B, C not leading to unique decomposition

4
The entries in the first rows of A and B are null with probability zero, hence we can impose ones with probability one.
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has measure zero. In this case, the Kruskal condition implies:

min(I, R) + min(J,R) + min(K,R) � 2R+ 2. (3)

In [37], another su�cient condition was provided:

R  2blog2(J)c+blog2(K)c�2. (4)

However, it should be mentioned that (3) and (4) are only su�cient conditions ensuring generic uniqueness.84

The best known bounds guaranteeing generic uniqueness are given in [38, Theorem 1]. In particular, it is85

shown that generic uniqueness takes place for all R such R < d IJK
I+J+K�2e (i.e. all ranks smaller than the86

generic rank) except few special cases and so-called unbalanced tensors, see [38] for more details.87

2.4. Observation model for the reconstruction problem88

We consider two tensors Y1 2 RId⇥Jd⇥K and Y2 2 RI⇥J⇥Kd . As in [30], it is assumed5 that Y1 has high

resolution in the third mode (K > Kd), while Y2 possesses high resolutions in the first and second modes

(I > Id, J > Jd). Under the same acquisition conditions, Y1 and Y2 usually represent the same target, hence

they are viewed as two degraded versions of a single tensor X 2 RI⇥J⇥K , that is of high resolution in all three

modes. We adopt the following degradation model that can be compactly written as

8
>><

>>:

Y1 = X •1 P •2 Q+ E1,

Y2 = X •3 R+ E2,

(5)

where P 2 RId⇥I , Q 2 RJd⇥J , and R 2 RKd⇥K have full row rank. We assume (for simplicity) that the89

degradation in the first and second modes is separable. The entries of the noise terms E1 ⇠ N (0,⌃1),90

E2 ⇠ N (0,⌃2) are independent and identically distributed (i.i.d.) real Gaussian tensors with zero mean and91

variances ⌃1 = �2
1I and ⌃2 = �2

2I. Model (5) represents an ill-posed inverse problem, whose aim is to recover92

the tensor X from the observations Y1 and Y2.93

Model (5) was used to tackle several reconstruction problems. For instance, in hyperspectral super-94

resolution [8], the matrices P and Q are blurring and downsampling matrices, while R contains the spectral95

response functions of the sensor used to acquiring Y2. In medical imaging [10], the degradation matrices select96

sub-Nyquist samples (either fiber or slabs) of the target tensor in a given mode.97

5
The subscripts d in the dimensions stand for “degraded”.
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2.5. Reformulation as a coupled CP decomposition98

Following [8], we assume that X admits a CPD with rank R. The degradation model (5) becomes

8
>><

>>:

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,

(6)

where A1 = PA2,B1 = QB2,C2 = RC1, (7)

and A1 2 RId⇥R, B1 2 RJd⇥R, C1 2 RK⇥R, A2 2 RI⇥R, B2 2 RJ⇥R, C2 2 RKd⇥R are the factor matrices

of the CPD. With this notation, the target tensor admits a CPD

X = [[A2,B2,C1]]. (8)

While (6) only is an uncoupled model, the addition of the constraints in (7) make the model fully-coupled

(i.e., with couplings in the three modes of the tensors). In some applications, the degradation matrices P and

Q are unknown, and we refer to this partially coupled case as blind. We define the blind CP model as follows:

8
>><

>>:

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,

(9)

where C2 = RC1. (10)

2.6. Estimation99

In the uncoupled case, estimation of the CP factors can be performed by applying the uncoupled ALS

algorithm [39] to Y1 and Y2. The identifiability of both CPDs is required. For instance, for Y1, ALS

minimizes the following cost function:

min
A1,B1,C1

1

�2
1

kY1 � [[A1,B1,C1]]k2F ,

which corresponds to the Maximum Likelihood (ML) Estimator (MLE) for A1,B1,C1. The fully-coupled

problem (6)–(7) can be solved by the algorithm STEREO proposed in [8]. It is a coupled ALS algorithm

minimizing the criterion

min
A2,B2,C1

kY1 � [[PA2,QB2,C1]]k2F + �kY2 � [[A2,B2,RC1]]k2F . (11)
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Assuming independent Gaussian noise and balance parameter � = �2
1

�2
2
, STEREO corresponds to the MLE for

coupled Y1 and Y2. In [8, Theorem 3], a su�cient condition for noiseless generic uniqueness of the CPD (8)

recovered by STEREO was provided:

R  min
⇣
2blog2(JKd)c�2, IdJd

⌘
. (12)

In the proof of [8, Theorem 3], it is specified that identifiability of Y1 (i.e., generic uniqueness of its CPD) is100

not needed to establish uniqueness of the recovered target. The link between identifiability and uniqueness of101

the coupled CP model will be provided in Section 3.1.102

In the partially coupled case (9)–(10), the matrices P and Q are unknown. In order to estimate the CP

factors, we use Blind-STEREO, which is a coupled ALS algorithm that only accounts for the matrix R. The

criterion minimized by Blind-STEREO is

min
A1,B1

A2,B2,C1

kY1 � [[A1,B1,C1]]k2F + �kY2 � [[A2,B2,RC1]]k2F , (13)

which is the ML criterion for the partially-coupled problem if the balance parameter is � = �2
1

�2
2
. According to103

[8, Theorem 4], identifiability of Y1 and Y2 are required to ensure unique recovery of X by Blind-STEREO104

in the noiseless case.105

3. Cramér-Rao lower bounds for coupled models106

3.1. Link between uniqueness and identifiability107

First, we explain how uniqueness of the coupled CP model (6)–(7) in the noiseless case is related to the108

calculation of the CRB. In estimation theory, the notion of identifiability lacks a unified definition. In the109

literature, it is also called “observability” [40, 41]. In this paper, we propose to define it as the uniqueness of110

the proposed model.111

Let us consider the probability density function (PDF) fY;! of the random real dataset Y 2 Rn parameter-112

ized by the unknown real deterministic parameter ! 2 ⌦ ✓ Rm. We assume that Y is a random real Gaussian113

dataset parameterized by its mean, that is, Y ⇠N (µ(!),⌃) with ⌃ a known, non-singular covariance matrix.114

We say that the statistical model F = {fY;! : ! 2 ⌦} is identifiable if the mapping ! 7! fY;! is injective

[42], i.e., any distribution fY;! corresponds to a single parameter !. For the case of our Gaussian dataset, the

following holds true:

fY;!1 = fY;!2 , µ(!1) = µ(!2). (14)
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Thus, identifiability of the distributions is equivalent to identifiability of the means, i.e., identifiability in the115

noiseless case.116

Definition 3.1. Identifiability at a point – The noiseless model Y = µ(!) is identifiable at the point !0

if

(! 6= !0)) (µ(!) 6= µ(!0)) 8! 2 Rm. (15)

Definition 3.2. Local identifiability – The noiseless model Y = µ(!) is locally identifiable at !0 if there

exists an open subset ⌦0 ✓ Rm
containing !0 such that

(! 6= !0)) (µ(!) 6= µ(!0)) 8! 2 ⌦0. (16)

In our model, the Fisher information matrix (FIM) for ! is obtained via the Slepian-Bangs formula [43]:

F(!) =


@µ(!)
@!T

�T
⌃�1


@µ(!)
@!T

�
2 Rm⇥m, (17)

where @µ(!)
@!T is the Jacobian of µ(!). If the FIM in (17) is non-singular, then µ(!) is locally identifiable in117

the noiseless case [40, Theorem 5].118

Conversely, a question that arises from the previous paragraph is whether local identifiability implies non-

singularity of the FIM. For the case of tensor decompositions, the answer is positive. Let us consider that Y

is a vectorized tensor of subgeneric rank admitting a CPD as in (1), and that ! = [vec{A}; vec{B}; vec{C}],

µ(!) = vec{[[A,B,C]]}. Generic uniqueness of the CPD of Y implies that the rank of the Jacobian of µ(!)

in the generic case is equal to

rank

✓
@µ(!)

@!T

◆
= (I + J +K � 2)R

generically6 (i.e., except for a set of parameters ! of measure zero), see [45, Sec. 3.2], [46], and [47, Def.119

3.5]. Correcting the scaling ambiguities in (2) reduces the number of entries to estimate in !, thus making120

the Jacobian full rank ; see Section 4.2 for more details on scaling ambiguities for coupled cases. Finally, from121

(17) it follows that full rank in the Jacobian implies that the FIM is invertible (and thus the CPD is locally122

identifiable in the noiseless case). In a nutshell, it means that correcting the scaling ambiguities allows for the123

FIM to be full rank. The link between uniqueness, identifiability and invertibility is summarized in Figure 1.124

6
This results is well-known for complex tensors, but it is also valid for real tensors, see [44].
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Figure 1: Link between generic uniqueness, local identifiability in the noiseless case and computing the bounds.

3.2. Coupled model with constraints125

Let fY1;! and fY2;! be the PDFs of the random real datasets Y1 2 Rn1 and Y2 2 Rn2 , parameterized

by the unknown deterministic real parameter vector ! 2 ⌦. A general coupled model with constraints is

expressed as: 8
>><

>>:

Y1 ⇠ fY1;! and Y2 ⇠ fY2;!,

g(!) = 0,

(18)

with g a non-redundant deterministic vector function di↵erentiable 8! 2 ⌦. Non-redundancy means that126

the system of equations gi(!) = 0 is not reducible [28]. We assume that i) the PDFs fY1;! and fY2;! are127

non-redundant functions di↵erentiable w.r.t. !, and that their supports do not depend on !; and that ii) the128

variables Y1 and Y2 are statistically independent.129

In some cases, the model parameter ! 2 ⌦ corresponds to the stacking of two parameters  2  ✓ Rm1

and ⇠ 2 ⌅ ✓ Rm2 (m = m1 +m2) such that

!T =


 T ⇠T

�
,

where ⇠ can be expressed as a function of  , i.e., ⇠ = h( ). The function h is a non-redundant, di↵erentiable

function 8 2  . This results in the constraint

g(!) = ⇠ � h( ) 2 Rm2 , (19)

which can also be directly inserted in !, leading to the following reparameterization

!( )T =


 T h( )T

�
. (20)

The model (18) can thus be reformulated as the following unconstrained coupled model

⇢
Y1 ⇠ fY1; and Y2 ⇠ fY2; . (21)

9



Here, the PDFs are solely parameterized by the unknown deterministic real parameter vector  2  , under130

the same assumptions (i) and (ii) on the PDFs as in model (18).131

3.3. Uncoupled CRB132

We consider that Y1 and Y2 are random real Gaussian distributed datasets parameterized by their mean,

i.e., Y1 ⇠ N (µ1(!),⌃1) and Y2 ⇠ N (µ2(!),⌃2) where ⌃1 and ⌃2 are known covariance matrices. The

parameter ! is unknown real and assumed to be deterministic. The uncoupled FIM for ! is obtained by using

the Slepian-Bangs formula [43]:

F (!) =

2

64
@µ1(!)
@!T

@µ2(!)
@!T

3

75

T

Diag{⌃1,⌃2}�1

2

64
@µ1(!)
@!T

@µ2(!)
@!T

3

75 . (22)

If the FIM is non-singular, then the uncoupled CRB for ! (namely CRB(!)) is obtained as CRB(!) =133

F�1(!). From Section 3.1, we see that invertibility7 of the FIM implies local identifiability of the whole134

parameter !. For uncoupled estimation, the constraint g(!) = 0 is ignored.135

3.4. Expression for CCRB136

Numerous works have addressed performance bounds on ! under the constraint g(!) = 0, leading to the

definition of the constrained FIM and the CCRB. In the seminal paper [29], the CCRB for ! is expressed as

CCRB(!) = F�1 � F�1GT
h
GF�1GT

i�1
GF�1 ⌫ 0, (23)

where F
def
= F (!) and G =

h
@g(!)
@!T

i
2 Rm2⇥m is a full row-rank matrix, which is equivalent to requiring that137

the constraints are non-redundant. It is easy to see from (23) that the CCRB is lower than the CRB. However,138

this formulation explicitly requires the FIM to be non-singular, and inversion of the FIM can be costly.139

In [22, 20], an alternative expression for the CCRB is

CCRB(!) = U
h
UTFU

i�1
UT, (24)

where U
def
= U(!) 2 Rm⇥m1 is a basis of ker(G). The matrix UTFU is called the constrained FIM.140

Contrary to (23), (24) does not require invertibility of F . The above expression does not depend on the141

choice of U either [22]. It is also noticeable that if F is invertible, then the expressions in Equation (23) and142

Equation (24) are equivalent [20, Corollary 1]. Here, we choose to compute (24) when we mention the CCRB.143

7
In some cases, however, the FIM can be singular (and thus, non-invertible): common practice is to resort to the Moore-Penrose

pseudo-inverse of the FIM for the computation of the CRB [16, 19]. In such cases, any estimator of ! must have infinite variance

[19]: in this paper, we choose not to compute the CRB when the FIM is singular.
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3.5. Reparameterized CRB144

Let us now consider a reparameterization of the PDFs fY1;! and fY2;! for the unknown parameter  2145

 ✓ Rm1 where ! = !( ). We consider the particular case where  is a subset of parameters in !; then,146

arbitrarily we can rearrange the components of ! as in (20).147

In [42, p.125], an expression for the reparameterized FIM for  (namely Fc( )) is given:

Fc( ) =


@!( )

@ T

�T
F (!( ))


@!( )

@ T

�
. (25)

Contrary to the uncoupled case, we notice that uniqueness (20) only requires identifiability of the sub-parameter

 . Additionally, we can express the reparameterized CRB for the parameter ⇠ (namely rCRB(⇠)) as

rCRB(⇠) =


@h( )

@ T

�T
Fc

�1( )


@h( )

@ T

�
.

In [22], it is shown that for the parameter  , (24) and the constrained FIM in (25) lead to the same bound8.148

4. Di↵erent parameterizations and estimation scenarios149

To derive appropriate performance bounds, it is necessary to embed the problem in an appropriate proba-150

bilistic framework requiring to properly define the probabilistic model, the parameters of interest and possible151

associated constraints, and to fix the ambiguities resulting from the coupled CP model.152

4.1. Model parameters153

Following the notations of [30], we separate the CP factors into distinct parameters ✓1 2 RKR, ✓2 2 RKdR,

�1 2 R(Id+Jd)R and �2 2 R(I+J)R as

✓T1 = vec{C1}T, �T
1 =


vec{A1}T vec{B1}T

�
, ✓T2 = vec{C2}T, �T

2 =


vec{A2}T vec{B2}T

�
. (26)

These vectors are stacked into one global parameter ! 2 Rm (m = (I + J +K + Id + Jd +Kd)R) defined by

!T =


�T

1 ✓T1 �T
2 ✓T2

�T
.

From (7), we can see that the model parameters can be linked through non-redundant functions as154

g1(✓1,✓2) = 0 and g2(�1,�2) = 0, where g1 and g2 are di↵erentiable 8(✓1, ✓2) (resp. (�1, �2)).155

8
As a result, invertibility of the constrained FIM in (24) also implies that  is identifiable.
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4.2. General framework for the fusion problem156

For the fully-coupled model (6)–(7), we wish to estimate the parameters �2 and ✓1, i.e., the factor matrices157

of X . In order to illustrate the advantage of data fusion over uncoupled estimation, we are also interested in the158

performance of the uncoupled and partially-coupled models: these cases require the calculation of performance159

bounds for the parameters �1 and ✓2 as well.160

As a result, we can distinguish two probabilistic scenarios, depending on whether i) we are only interested in161

performance bounds and an analysis for the fully-coupled problem, or ii) we want to compare the performance162

of the coupled CP approach to that of the uncoupled and partially-coupled approaches. Case i) allows for163

a bound calculation for the fully-coupled problem only and will be referred to as scenario 1, while ii) can164

encompass uncoupled and partially-coupled problems and will be referred to as scenario 2.165

We consider that the observations Y1 2 RId⇥Jd⇥K and Y2 2 RI⇥J⇥Kd are random real Gaussian datasets.

For all models and scenarios, Y1 and Y2 are distributed as in (18). Here, from the relationships between the

model parameters, we can express (19) as

g(!) =


g1(✓1,✓2) g2(�1,�2)

�
. (27)

For each scenario and model (uncoupled, partially-coupled or fully-coupled), the expression of g1(✓1,✓2)166

and g2(�1,�2) might change, resulting in di↵erent sets of constraints between the parameters. As in Section 3,167

the PDFs might only be parameterized by a subset of !; in the following subsections, the expressions of these168

PDFs will be provided for each scenario.169

Calculation of CRBs often requires inversion of a FIM, as explained in Section 3. For the FIM to be full170

rank, scaling ambiguities in the CPDs need to be solved [24] regarding the parameters we wish to estimate:171

indeed the manifold of rank-R tensors in RI⇥J⇥K has dimension (I + J +K � 2)R. For each aforementioned172

scenario, we will provide di↵erent options for solving the scaling ambiguities, ensuring that the considered FIM173

is invertible. They will result in di↵erent sets of constraints, allowing for the calculation of the performance174

bounds. We will also introduce di↵erent parameterizations and distributions for the observed datasets.175

4.3. Scenario 1 – Performance bounds for fully-coupled CP model176

In this first scenario, we are only interested in the performance analysis for the fully-coupled CP model.

This case boils down to a performance analysis for �2 and ✓1 only. Thus, in this scenario, we only need

uniqueness of the CPD of the target tensor X to calculate the bounds. As discussed in Section 2, we set

(A2)1,: = (B2)1,: = 1 to fix the correct the scaling ambiguities in �2 (note that generically, this does not

restrict the generality since entries have a probability 1 to be nonzero). This scaling option guarantees that

12



the FIM w.r.t. �2 and ✓1 is full-rank. As a result, we define the parameter e�2 2 R(I+J�2)R as

e�2
T =


vec{(A2)2:I,:}T vec{(B2)2:J,:}T

�
.

that is only composed of the unknown entries of �2. The full and reduced parameters can be linked through

the relationship e�2 = M2�2. The matrix M2 2 R(I+J�2)R⇥(I+J)R is constructed from I(I+J)R by removing

the 2R rows corresponding to known entries of �2. We can recast the fully-coupled CP model in

8
>><

>>:

Y1 = [[PA2,QB2,C1]] + E1,

Y2 = [[A2,B2,RC1]] + E2,

(28)

that directly includes the constraints between the factor matrices. Since the entries of the noise terms E1 and

E2 are i.i.d., Y1 and Y2 are distributed according to

8
>><

>>:

fY1;e�2,✓1
=

�
2⇡�2

1

��IdJdK
2 exp

⇣
� 1

2�2
1
kY1 � [[PA2,QB2,C1]]k2F

⌘
,

fY2;e�2,✓1
=

�
2⇡�2

2

��IJKd
2 exp

⇣
� 1

2�2
2
kY2 � [[A2,B2,RC1]]k2F

⌘
,

(29)

In model (28), the constraints between the factor matrices are such that A1 = PA2, B1 = QB2 and

C2 = RC1. These equalities translate in terms of model parameters as

8
>>>>>><

>>>>>>:

g1(✓1,✓2) = ✓2 � (IR ⇥R)✓1,

g2(�1, e�2) = �1 �

2

664
IR ⇥P 0

0 IR ⇥Q

3

775MT
2
e�2.

(30)

From (30), we can see that the functions g1 and g2 are linear and thus, in this scenario, we will refer to the177

relationship between the model parameters as linear constraints.178

4.4. Scenario 2 – Comparing performance bounds179

Specific scaling option. In this second scenario, we want to compare performance bounds for the fully coupled

problem to those in the uncoupled and partially-coupled case. This case requires the calculation of the bounds

for the parameters �2 and ✓1, as well as for �1 and ✓2 for partially-coupled and uncoupled models. Contrary

to scenario 1, inversion of the FIM in the partially-coupled and uncoupled case require both CPDs to be

13



generically unique. As a result, we also define the reduced parameter e! 2 Rm�4R as

e! =


e�1

T ✓T1 e�2
T ✓T2

�T
.

We solve scaling ambiguities in �1 by setting the first rows of A1 and B1 to ones. Thus, we also define the

reduced parameter vector e�1 2 R(Id+Jd�2)R as

e�1
T =


vec{(A1)2:Id,:}T vec{(B1)2:Id,:}T

�

that is only composed of the unknown entries of �1. As in the previous subsection, we can express the reduced

parameter vector through the relationship e�1 = M1�1, with M1 2 R(Id+Jd�2)R⇥(Id+Jd)R constructed as

M2. Given (7), solving the scaling ambiguities for the coupled CP factors of Y1 imposes that (PA2)1,: =

(QB2)1,: = 1. However, it is unlikely that the degradation matrices P and Q make the above equality valid,

even if (A2)1,: = (B2)1,: = 1, as it would require that (P )1,: =
⇥
1 01⇥(I�1)

⇤
and (Q)1,: =

⇥
1 01⇥(J�1)

⇤
.

The performance analysis for this case was addressed in [30]. Here, to circumvent this limitation and address

a more general case, we introduce the scaling diagonal factors

D↵ = diag{(PA2)1,:} and D� = diag{(QB2)1,:} (31)

such that (A1 · D�1
↵ )1,: = (B1 · D�1

� )1,: = 1. This specific option (31) allows for the scaling ambiguities

to be corrected, even after degradation by the general matrices P and Q. We also need to rescale C2 as

C2 = RC1 · (D↵D�)�1 so that Y1 and Y2 are degraded versions of the same tensor

X = [[A2,B2,C1(D↵D�)
�1]].

Model and parameterization for the fully-coupled model. The particular scaling option (31) leads to the fol-

lowing model with additive constraints between the CP factors:

8
>><

>>:

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,

(32)

subject to A1 = PA2 ·D�1
↵ ,B1 = QB2 ·D�1

� ,C2 = RC1 · (D↵D�)
�1

14



for the fully coupled case. The datasets are thus distributed according to

8
>><

>>:

fY1;e�2,✓1
=

�
2⇡�2

1

��IdJdK
2 exp

⇣
� 1

2�2
1
kY1 � [[PA2 ·D�1

↵ ,QB2 ·D�1
� ,C1]]k2F

⌘
,

fY2;e�2,✓1
=

�
2⇡�2

2

��IJKd
2 exp

⇣
� 1

2�2
2
kY2 � [[A2,B2,RC1 · (D↵D�)�1]]k2F

⌘
,

(33)

which is a parameterization di↵erent from (29). The only case where the PDFs in (29) and (33) are equivalent180

is the specific case where D↵ = D� = IR, addressed in [30].181

In (32), we can see that the relationships linking the CP factors involve the scaling factors D↵ and D� .

Rewriting these relationships in terms of the model parameters gives:

8
>>>>>><

>>>>>>:

g1(✓1,✓2) = ✓2 �
�
(D↵D�)�1 ⇥R

�
✓1,

g2(e�1, e�2) = e�1 �M1

2

664
D�1

↵ ⇥P 0

0 D�1
� ⇥Q

3

775MT
2
e�2.

(34)

Due to the definition of D↵ and D� in (31), (34) are non-linear constraints on the model parameters.182

Parameterizations for uncoupled and partially-coupled models. In the uncoupled case, the datasets are dis-

tributed according to

8
>><

>>:

fY1;e�1,✓1
=

�
2⇡�2

1

��IdJdK
2 exp

⇣
� 1

2�2
1
kY1 � [[A1,B1,C1]]k2F

⌘
,

fY2;e�2,✓2
=

�
2⇡�2

2

��IJKd
2 exp

⇣
� 1

2�2
2
kY2 � [[A2,B2,C2]]k2F

⌘
,

(35)

and follow model (6). For the partially-coupled problem, we have the following model:

8
>><

>>:

Y1 = [[A1,B1,C1]] + E1,

Y2 = [[A2,B2,C2]] + E2,

(36)

subject to C2 = RC1 · (D↵D�)
�1.

The datasets are distributed according to

8
>><

>>:

fY1;e�1,✓1
=

�
2⇡�2

1

��IdJdK
2 exp

⇣
� 1

2�2
1
kY1 � [[A1,B1,C1 · (D↵D�)�1]]k2F

⌘
,

fY2;e�2,✓1
=

�
2⇡�2

2

��IJKd
2 exp

⇣
� 1

2�2
2
kY2 � [[A2,B2,RC1 · (D↵D�)�1]]k2F

⌘
.

(37)

Here, we only consider the constraint g1(✓1,✓2) = ✓2 �
�
(D↵D�)�1 ⇥R

�
✓1 instead of (34).183
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4.5. Performance for target tensor approximation184

Additionally to the model parameters in (26), we also define x = vec{X} 2 R` (` = IJK), that represents

the vectorized low-rank approximation of X . Parameter x can be linked to the model parameters through the

relationship g3(x, e ) = 0. In order to get the bounds for x, we utilize relationships between tensor unfoldings

x = [(C1 �B2)⇥ II ]| {z }
S1

vec{A2} = ⇧(2,1) [(C1 �A2)⇥ IJ ]| {z }
S2

vec{B2} = ⇧(3,1) [(B2 �A2)⇥ IK ]| {z }
S3

vec{C1}, (38)

where ⇧(2,1) and ⇧(3,1) are permutation matrices that link the entries of vec{X(2)} (resp. vec{X(3)}) to those

of vec{X(1)}. As a result, the expression of g3(x, e ) is given by

g3(x, e ) = x�

S1 S2 S3

�
MT

3
e ,

where M3 = Diag{M2, IKR}.185

5. Calculation of performance bounds186

In this section, we derive performance bounds in the uncoupled, partially-coupled, and fully coupled cases.187

For the case of fully coupled datasets (i.e., all degradation matrices are known), we address both scenarios188

described above. The closed-form of the matrices to be inverted and their submatrices are all available in a189

supplementary material. The proposed framework for computing the bounds, depending on the estimation190

scenario and parameter constraints, is summarized below in Figure 2.

Figure 2: Pipeline of the proposed framework for CCRB derivation.

191

5.1. Uncoupled CRB192

In the uncoupled case, the CRB for the parameter e! is obtained by inverting the uncoupled FIM. To do so,193

scaling ambiguities in the CPDs of Y1 and Y2 need to be solved so that the FIM is full rank. In practice, the194

FIM for e! (namely F (e!)) is computed by applying (22) to the tensors Y1 and Y2. The expressions of µ1(e!)195
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and µ2(e!) are obtained from relationships between tensor unfoldings; please see [28] for a full derivation and196

closed-form expression of the FIM.197

As in previous related works [26, 28, 30], we consider a case where the scaling ambiguities on Y1 and Y2198

are solved, meaning that the FIM is non-singular. Thus, the CRB for e! can be obtained by inversion of the199

FIM: CRB(e!) = F�1(e!). The CRB for each sub-parameter can be obtained by applying the block inversion200

lemma [48] to F (e!). Please note that the uncoupled CRB can only be computed in scenario 2.201

5.2. Blind-CCRB202

We now compute the CCRB associated with the blind (partially-coupled) model (36). The Blind-CCRB

can only be computed in scenario 2 due to the scaling ambiguities on A1,B1. The Jacobian of constraints is

G =


@g1

@e�T
1

@g1

@✓T
1

@g1

@e�T
2

@g1

@✓T
2

�
, with

@g1

@e�
T

1

= 0,
@g1

@✓1
T
= �Z1,

@g1

@e�
T

2

= � [Z2 Z3]M
T
2 ,

@g1

@✓2
T
= IKdR.

The matrices Z1,Z2,Z3 are given in Appendix A. As a result, we have a basis U of ker(G) such that

U =

2

64
I(I+J+Id+Jd)R�4R

0 Z1 [Z2 Z3]M
T
2

�

3

75 . (39)

We thus obtain the Blind-CCRB (Blind-CCRB) by plugging (39) into (24).203

5.3. Performance bounds for fully-coupled model204

For the fully-coupled problem, we can compute the CCRB and reparameterized CRB in both scenarios.205

5.3.1. Scenario 1 – linear constraints206

In the first scenario, the most straightforward approach is to consider the reparameterization change for207

the CCRB, using model (6)–(7).208

We consider the random real Gaussian distributed dataset Y such that Y ⇠N (µ(e ),⌃), with

Y =


vec{Y1}T vec{Y2}T

�T
, ⌃ = Diag{⌃1,⌃2},

µ(e ) =

2

64
vec{[[PA2,QB2,C1]]}

vec{[[A2,B2,RC1]]}

3

75 =

2

64
IK ⇥Q⇥P

R⇥ IIJ

3

75

| {z }
eP

vec{[[A2,B2,C1]]}.

Since eP is constant, we only have to consider the derivatives of vec{[[A2,B2,C1]]} w.r.t. e from (38). As a
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result, we can compute the reparameterized FIM for e (namely Fc(e )) from the Slepian-Bangs formula as

Fc(e ) = M3


S1 S2 S3

�T
eP

T
⌃�1 eP


S1 S2 S3

�
MT

3 . (40)

The reparameterized CRB for e is obtained as rCRB(e ) = Fc
�1(e ). For x, the reparameterized CRB is

rCRB(x) =


@g3

@ e T

�
rCRB(e )


@g3

@ e T

�T
.

Equivalently, we can compute the CCRB using (24) with

G =

2

64
@g2

@�T
1

@g2

@✓T
1

@g2

@e�T
2

@g2

@✓T
1

@g1

@�T
1

@g1

@✓T
1

@g1

@e�T
2

@g1

@✓T
1

3

75 , with (41)

@g1

@✓T1
= �IR ⇥R,

@g1

@✓T2
= IKR,

@g2

@e�
T

2

= �

2

64
IR ⇥P 0

0 IR ⇥Q

3

75MT
2 ,

@g2

@�T
1

= I(Id+Jd)R,

and the other derivatives are zero.209

5.3.2. Scenario 2 – non-linear constraints210

In this subsection, the non-linear constraints in (32) yield to di↵erent bounds. In (41), we now have

@g1

@✓T1
= �Z1,

@g1

@✓T2
= IKR,

@g1

@e�
T

1

= 0,
@g1

@e�
T

2

= �M1 [Z2 Z3]M
T
2 ,

@g2

@e�
T

1

= I(Id+Jd�2)R,
@g2

@e�
T

2

= �M1 Diag{Z4,Z5}MT
2 .

The matrices Z4 and Z5 are given in Appendix A, and the CCRB for e! is computed using (24) as well.211

We can also consider the reparameterized CRB: we assume that Y ⇠N (µ(e ),⌃), with

Y =


vec{Y1}T vec{Y2}T

�T
, ⌃ = Diag{⌃1,⌃2}, µ(e ) =

2

64
vec{[[PA2D

�1
↵ ,QB2D

�1
� ,C1]]}

vec{[[A2,B2,RC1(D↵D�)�1]]}

3

75 .

The Jacobian of µ(e ) is the matrix

@µ

@ e T
= M1

2

64
X1 X2 X3

X5 X6 X4

3

75MT
2 .
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The matrices Xi (i 2 {1, . . . , 6}) are given in Appendix B. The reparameterized FIM is computed as

Fc(e ) = M3


@µ

@e T

�
⌃�1


@µ

@e T

�
MT

3 . (42)

6. Computer results212

All simulations were run on a MacBook Pro with 2.3 GHz Intel Core i5 and 16GB RAM. For basic tensor213

operations we used TensorLab 3.0 [49]. The code is implemented in MATLAB and is available online at214

https://github.com/cprevost4/CCRB_Software.215

6.1. Simulations setup216

The entries of the true CP factors A2, B2, C1 were generated once as i.i.d. real standard Gaussian217

variables, and the first rows of A2, B2 were set to ones. The true CP factors A1, B1, C2 were constructed218

according to the parameter constraints for each scenario. In all experiments, the degradation matrices P and219

Q are generated as blurring and downsampling matrices using a Gaussian filter of length q and a downsampling220

ratio d. For the sake of simplicity but without loss of generality, we also assume that P = Q. The degradation221

matrix R is a selection-and-averaging matrix that selects the common third-order slabs of X and Y2. We222

refer to the Appendix C for more details on the construction of these matrices.223

We simulate the performance of the coupled CP model under additive Gaussian noise. The SNR on the224

observed tensors in dB is defined as SNRi = 10 log10
�
kY ik2F /kEik2F

�
, (i = 1, 2). We fix SNR2 to 20dB while225

SNR1 varies from 5 to 60dB, unless otherwise specified. In the following figures, we will plot our results for226

various values of SNR1 while SNR2 remains constant.227

The model parameters are retrieved using MLE with at most 5000 iterations. For estimation in the228

uncoupled case, we use ALS [39] with random initialization for the factor matrices. For the fully-coupled229

case, STEREO, the algorithm proposed in [8] is used. For the blind case, we use Blind-STEREO [8]. To230

speed up the convergence of the coupled algorithms, the CP factors obtained by uncoupled ALS are used231

as initialization. For each realization, the best out of 10 initializations is picked. The scaling ambiguities232

are corrected during estimation so that the first rows of the bAi, bBi factors are composed of ones. Then,233

the permutation ambiguities are corrected in the estimated factors. The correct permutation is obtained by234

searching for the best column permutation of the estimated bC1 for a fixed reference C1. This is performed235

as follows. The columns of bC1 are processed in turn, by starting with the one closest to the reference. Once236

two columns are associated, they are removed from each matrix, and we keep going with a smaller number of237

columns. Note that this greedy approach is known to be sub-optimal, and one could proceed optimally using238

the Hungarian algorithm [50] or by replacing permutation by a bistochastic matrix [51]. This permutation239

19
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is also applied to bA1 and bB1, and likewise for bA2, bB2, bC2. For each noise realization, the squared error240

between the vectorized groundtruth and estimated factors is computed. Please note that the fixed entries of241

the factors are not taken into account. Finally, the MSE is obtained by averaging the squared errors over 500242

noise realizations.243

In our experiments, we consider as reference the uniform MSE (UMSE) and uniform CRB (UCRB) obtained

from the MSE and CRB matrix traces, as widely considered in, e.g., [52, 53, 54]. The expressions proposed in

this paper allow for calculation of the reparameterized UCRB, uniform CCRB (UCCRB) and uniform Blind-

CCRB (Blind-UCCRB) by taking the trace of these matrices. Thus in the following figures, we will assess

uniform e�ciency of the estimators9. We will plot our results for the parameters  and ⇠ such that

e T =


e�T
2 ✓T1

�
, e⇠T =


e�T
1 ✓T2

�
,

which correspond respectively to the CP factors of X , and the degraded factors.244

6.2. Numerical quivalence between CCRB and reparameterized CRB245

In this subsection, we illustrate the results of [22, 42] regarding the equivalence between the CCRB (3.4)246

and its reparameterization change (3.5). We first consider I = J = 18, Id = Jd = 6, K = 16 and Kd = 8,247

and R = 3. In Figure 3, we show on a semi-log scale the UCCRB and its reparameterization change for e! in248

the fully coupled case and scenario 1 (linear constraints). In Figure 4, we consider scenario 2 and additionally249

plot the uncoupled UCRB, UCCRB and reparameterization changes for e! in the partially-coupled case.250
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Figure 3: Scenario 1: UCCRB and its reparameterization

change for e! versus SNR1 for fixed SNR2 = 20 dB.
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Figure 4: Scenario 2: Uniform lower bounds (uncoupled,

partially-coupled, fully-coupled) for e! versus SNR1 for

fixed SNR2 = 20 dB.

For both fully-coupled and blind problems, the UCCRB and its reparameterization change are numerically251

equivalent. Moreover, the Blind-UCCRB is above the fully-coupled UCCRB.252

9
Please note that uniform e�ciency implies e�ciency for each entry of the parameters.
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6.3. Asymptotic values for constrained FIM253

We notice that the uniform bounds tend to a constant for SNR1 > SNR2. To explain why such an elbow

occurs, we seek for asymptotic values for the constrained FIM, i.e., for �2
1 ! 1. For scenario 1 (linear

constraints), we resort to (40) for the constrained FIM. Developing (40) yields the following matrix:

Fc(e ) = M3

2

66664

ST
1
ePS1 ST

1
ePS2 ST

1
ePS3

ST
2
ePS1 ST

2
ePS2 ST

2
ePS3

ST
3
ePS1 ST

3
ePS2 ST

3
ePS3

3

77775
MT

3 , (43)

where eP = 1
�2
1
(I ⇥QTQ⇥P TP ) + 1

�2
2
(RTR⇥ I). Thus for (i, j) 2 {1, . . . , 3},

lim
�2
1!1

ST
i
ePSj =

1

�2
2

(ST
i (R

TR⇥ I)Sj),) lim
�2
1!1

Fc
(i,j)(e ) = ST

i
ePSj , (44)

where Fc
(i,j)(e ) stands for the (i, j)-th block of Fc(e ).254

For scenario 2 with non-linear constraints, developing in (24) the term corresponding to the constrained

FIM UTFU yields

lim
�2
1!1

(UTFU) =
1

�2
2

(ST
ASA + ST

BSB +ZT
1S

T
CSCZ1 +ZT

2S
T
C [SA + SCZ2]

+ZT
3S

T
C [SB + SCZ3] + ST

ASCZ2 + ST
BSCZ3), (45)

where SA = (C2�B2)⇥ II , SB = ⇧(2,1)
2 ((C2�A2)⇥ IJ) and SC = ⇧(3,1)

2 ((B2�A2)⇥ IK), and ⇧(2,1)
2 and255

⇧(3,1)
2 are permutation matrices that link the entries of vec{Y (2)

2 } (resp. vec{Y (3)
2 }) to those of vec{Y (1)

2 }.256

The asymptotic values for rCRB(e ) (for scenario 1) and (UTFU)�1 (for scenario 2) when �2
1 ! 0 can257

be obtained by inversion of (44) and (45), respectively.258

In Figure 5, we illustrate those results by plotting Tr(UrCRB(e )) (for scenario 1) and Tr((UTFU)�1)259

(for scenario 2) for SNR2 2 {15, 30, 45} dB, as well as their asymptotic values.
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Figure 5: Tr(UrCRB(e )) (scenario 1, left); Tr((UTFU)
�1

) (scenario 2, right) and asymptotic values, versus SNR1 for fixed

SNR2.
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6.4. Assessing the e�ciency of the estimators261

In this subsection, we assess the e�ciency of the estimators introduced in Section 2.6 for the reconstruction262

of the target tensor. We keep the same dimensions as in Section 6.2, and compare the UMSE with corresponding263

uniform bounds. For scenario 1, we only compare the UMSE provided by STEREO to the UCCRB obtained264

as in Section 5.3.1. For scenario 2, we also compare the UMSE given by Blind-STEREO to the Blind-UCCRB.265

In Figures 6 and 7, we show on a semi-log scale the bounds and UMSE for x in scenarios 1 and 2, respectively.266
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Figure 6: Scenario 1: UCCRB and UMSE from STEREO

for x, versus SNR1 for fixed SNR2.
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Figure 7: Scenario 2: UCCRB and Blind-UCCRB, UMSE

from STEREO and Blind-STEREO for x, versus SNR1 for

fixed SNR2.

267

The UMSE obtained from STEREO follows the UCCRB in both scenarios. For the partially-coupled268

problem in scenario 2, the UMSE given by Blind-STEREO follows the Blind-UCCRB for SNR1 � 20dB.269

Thus, in both scenarios, the estimators asymptotically reach their corresponding bounds. This implies that270

they are asymptotically e�cient for each entry of the parameters.271

Next, we assess performance of STEREO with respect to the two estimation scenarios. For the first272

scenario, we generate the model according to (28) that corresponds to the first scenario. For scenario 2, we273

generate model (32) with non-linear constraints between the parameters. For each scenario, we run STEREO274

according to the model. We also compute the CCRB as in Section 5.3.1 and Section 5.3.2 for the parameter275

x: thus in each scenario we consider the correct CCRB as well as the CCRB obtained from the wrong model.276

In Figure 8, we show on a semi-log scale the UCCRB bounds and UMSE for both scenarios.
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Figure 8: UMSE from STEREO and UCCRB for x, scenarios 1 (left) and 2 (right), versus SNR1 for fixed SNR2.
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277

In both cases, the UMSE follows the UCCRB computed from the right model. That is, for scenario 1,278

the UMSE reaches the UCCRB obtained with model (28), while it reaches the bound obtained with (32) in279

scenario 2. Thus STEREO is e�cient provided that the right model is employed.280

6.5. Impact of � on the performance and modified STEREO scheme281

In the following subsections, we study performance of STEREO in a case where generic uniqueness of Y1282

is not guaranteed, but the condition (3) for unique noiseless recovery of X by STEREO is still satisfied. Such283

a case can be obtained by considering large tensor ranks. Contrary to Section 6.4, where the Y1 and Y2 are284

generically unique, we expect to encounter cases where the algorithm does not converge to a global minimum285

due to the rank being larger than (some of) the dimensions of Y1 and Y2. Thus we consider a modified choice286

of the regularization parameter � to circumvent these di�culties.287

We first illustrate the influence of � on the performance of STEREO with a toy example. We generate the288

model as in Section 6.2 with fixed SNR2 = 40dB. We consider several values for the regularization parameter:289

� = 1 · 107, � = 1 and � = 1 · 10�4. They correspond to the “true” regularization parameters for SNR1 = 5dB,290

SNR1 = SNR2 and SNR1 = 60dB, respectively. In Figure 9, we plot on a semi-log scale the UCCRB for e!291

and UMSE obtained with di↵erent �.
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Figure 9: UCCRB for e! and UMSE for di↵erent �.
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Figure 10: UCCRB for e! and UMSE at di↵erent steps of

Algorithm 1.

292

For � = 1 · 107, we notice that the UMSE reaches the UCCRB for SNR1  SNR2 even if � is larger than293

the “true” �. For higher SNR, the UMSE tends to a constant. For � = 1, we can see that the UMSE is above294

the UCCRB for each noise level except when SNR1 and SNR2 have the same order. Finally, for � = 1 · 10�4,295

while the UMSE is above the UCCRB for SNR1  SNR2, it does reach the bound for higher SNR. Figure 9296

shows that small values of � lead to better performance for high SNR, which is exactly what we are aiming at.297

Thus we propose a modified procedure for STEREO. For each noise level, we successively run several298

iterations of STEREO with decreasing values of �. The balance parameter is initialized to � = 1
�2
2
. Indeed,299

the value �2
1 = 1 corresponds to SNR1 = 0dB; hence in our experiments, we always have �2

1 < 1, which300
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guarantees that the initial value of � is always higher than �2
1

�2
2
. We refer to this setup as “modified” and301

describe this new procedure in Algorithm 1.

Algorithm 1: Modified STEREO with decreasing �
Input: A2,0, B2,0, C1,0

Initialize � = 1
�2
2
;

repeat
1. (A2, B2, C1) STEREO with 1000 iterations;
2. � �

10 ;
3. (A2,0, B2,0, C1,0) (A2, B2, C1);

until � = �2
1

�2
2
;

Return A2, B2, C1.

302

Since identifiability of Y1 is not guaranteed, uncoupled ALS on Y1 is not guaranteed to converge. Thus

in this subsection, we initialize STEREO as in [8]:

8
>><

>>:

A2,0,B2,0,C2,0 = CPDR(Y2),

CT
1,0 = (QB2,0 � PA2,0)†Y

(3)
2 ,

(46)

where the operationCPDR returns estimated CP factors10 with rank R. In fact, (46) boils down to considering303

� =1. For this reason, we expect STEREO not to converge when �2
1

�2
2
is low, that is, SNR1 � SNR2. It should304

be mentioned that, for SNR1 < SNR2, Algorithm 1 might not needed, since the “true” lambda is very large.305

The initialization (46) with � =1 is expected to provide a good estimation of the parameter x in that case.306

To provide more intuition on how Algorithm 1 works, in Figure 10 we plot the UCCRB for e! and the307

UMSE obtained at di↵erent steps of Algorithm 1 with decreasing values of �. We chose fixed SNR2 = 20dB in308

our simulations. At the initialization step with � = 1
�2
2
, the UMSE reaches the bound only for SNR1  SNR2.309

After two steps, the UMSE reaches the UCCRB up until SNR1 = 25dB and the UMSE decreases for high310

SNR. After two more steps of Algorithm 1, the UMSE reaches the bound for all values of SNR1.311

6.6. Performance of STEREO without identifiability of Y1312

To study the interest of the procedure proposed in Algorithm 1, we take Id = Jd = 4, I = J = 16,313

Kd = 10 and K = 20, and d = 4, q = 3. We consider fixed SNR2 = 40dB while SNR1 varies between 5dB and314

60dB. For these dimensions, the generic uniqueness of Y1 is proved for N  9 [38, Theorem 1.1], while the315

Kruskal condition for Y1 is satisfied for N  6. In fact, the Kruskal condition the the CPD of Y1 provides a316

su�cient condition for unique recovery of the tensor. Condition (3) on unique recovery of X by STEREO in317

the noiseless case gives R  16. We address scenario 2 only, and tensor ranks R = 10, R = 12, and R = 14.318

10
In practice, this operation is performed using TensorLab 3.0.
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We run STEREO and Algorithm 1, and average the UMSE over 500 noise realizations. In Figures 11–13, we319

plot on a semi-log scale the UCCRB and UMSE for x and tensor ranks R = 10, R = 12, R = 14, respectively.320
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Figure 11: CCRB and MSE traces for

x and tensor rank R = 10.
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Figure 12: CCRB and MSE traces for

x and tensor rank R = 12.
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Figure 13: CCRB and MSE traces for

x and tensor rank R = 14.

321

First, in Figures 11–13, we can see that for SNR1 � SNR2, STEREO with � = �2
1

�2
2
does not converge322

indeed. Our guess is that the performance of the algorithm degrades when R is very large, especially when323

it becomes larger than (some of) the dimensions of the tensors. However, Algorithm 1 does not exhibit such324

behaviour: in all figures, the UMSE provided by STEREO reaches the UCCRB in this setting.325

7. Conclusion326

In this paper, we have provided a general framework for the calculation of the CCRB for coupled tensor327

models admitting CP decompositions. We have introduced two di↵erent estimation scenarios, allowing for a328

performance comparison of the uncoupled, partially-coupled, and fully-coupled problems. We have shown that329

the existing ML estimators STEREO and Blind-STEREO are e�cient in optimal estimation conditions (i.e.,330

when the rank reduction allows for good estimation). In some cases, however, the tensor rank does not allow331

for correct estimation of the parameters by STEREO: in such cases, we have proposed an algorithm reaching332

the CCRB for high SNRs, contrary to the traditional STEREO.333

STEREO reaches the CCRB for reconstruction of the tensor X . However, for scenario 2 with non-linear334

constraints, the CCRB is not a lower bound on constrained parameter estimation [55], and the Lehmann-335

unbiased CCRB (LU-CCRB) introduced in [55] is inferior to or equal to the standard CCRB. As a result,336

when interested in estimating the low-rank factors underlying X , it is sensible to seek for new constrained337

algorithms that reach the LU-CCRB. This matter, which is of great interest, will be explored in future works.338
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Appendix A. Derivatives for CCRB339

We give the expression of the matrices Zi (i 2 {1, 5}) for the CCRB in Sections 5.2 and 5.3:

Z1 = (D↵D�)
�1 ⇥R,

Z2 = �(D2
↵D�)

�1 ⇥R)(IR �C1)(IR ⇥P 1,:),

Z3 = �(D↵D
2
�)

�1 ⇥R)(IR �C1)(IR ⇥Q1,:),

Z4 = (D�1
↵ ⇥P )� (D�2

↵ ⇥P )(IR �A2)(IR ⇥P 1,:),

Z5 = (D�1
� ⇥Q)� (D�2

� ⇥Q)(IR �B2)(IR ⇥Q1,:).

Appendix B. Derivatives for reparameterized CRB340

We give the expression of the matrices Xi (i 2 {1, 6}) used for the reparameterized CRB in Section 5.3.

The permutation matrices ⇧(2,1)
i ,⇧(3,1)

i link the entries of vec{Y (2)
i } (resp. vec{Y (3)

i }) to those of vec{Y (1)
i }.

X1 =
h⇣

IR � (C1 �QB2D
�1
� )

⌘
D�1

↵ ⇥P
i ⇥

IIR � (D�1
↵ ⇥ II)(IR �A2)(IR ⇥P 1,:)

⇤
,

X2 = (IR ⇥⇧(2,1)
1 )

h�
IR � (C1 � PA2D

�1
↵ )

�
D�1

� ⇥Q
i h

IJR � (D�1
� ⇥ IJ)(IR �B2)(IR ⇥Q1,:)

i
,

X3 = (IR ⇥⇧(3,1)
1 )

h⇣
IR � (QB2D

�1
� � PA2D

�1
↵ )

⌘
⇥ IK

i
,

X4 = (IR ⇥⇧(3,1)
2 )

⇥
(IR � (B2 �A2)) (D↵D�)

�1 ⇥R
⇤
,

X5 =
h⇣

IR � (RC1D
�1
� �B2)

⌘
D�1

↵ ⇥ II

i ⇥
IIR � (D�1

↵ ⇥ II)(IR �A2)(IR ⇥P 1,:)
⇤
,

X6 = (IR ⇥⇧(2,1)
2 )

h�
IR � (RC1D

�1
↵ �A2)

�
D�1

� ⇥ IJ

i h
IJR � (D�1

� ⇥ IJ)(IR �B2)(IR ⇥Q1,:)
i
.

Appendix C. Degradation matrices341

As initially proposed in [56] and used in [8], P is constructed as P = S1T 1, where T 1 is a blurring

Toeplitz matrix and S1 is a downsampling matrix. The blurring matrix is constructed from a Gaussian

blurring kernel � 2 Rq⇥1 with a standard deviation � = q·
p
2 log 2
4 . For m 2 {1, . . . , q} and m0 = m�

⌃ q
2

⌥
, we

have �(m) = exp
⇣

�m02

2�2

⌘
. Thus, T 1 2 RI⇥I can be seen as

T 1 =

2

6666666664

�(d q
2e) ... �(q) 0 ... 0

...
. . .

. . .
. . .

...

�(1)
. . .

. . . 0

0
. . .

. . . �(q)

...
. . .

. . .
. . .

...
0 ... 0 �(1) ... �(d q

2e)

3

7777777775

.
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The matrix S1 2 RId⇥I , with downsampling ratio d, is made of Id independent rows such that for i 2342

{1, . . . , Id}, (S1)i,2+(i�1)d = 1 and the other coe�cients are zeros.343

The degradation matrix R 2 RKd⇥K is a selection-averaging matrix. Each row represents a band in Y2;

coe�cients are set to ones for common bands with X , and zeros elsewhere. The coe�cients are averaged

per-row. In our simulations, we average X bands two by two. Below is an example of a 3⇥ 6 matrix:

R =

2

66664

1
2

1
2 0 0 0 0

0 0 1
2

1
2 0 0

0 0 0 0 1
2

1
2

3

77775
.
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This document contains supplementary materials regarding the manuscript “Constrained Cramér-
Rao bounds for reconstruction problems formulated as coupled canonical polyadic decompositions”.
We first provide closed-form expressions for the matrices to be inverted to obtain the bounds. We
also provide additional simulations regarding the influence of the tensor rank on the performance
bounds on the reconstruction error of the target tensor.

1. Uncoupled CRB

We first recall the results of [1] regarding the uncoupled FIM. In practice, the FIM for e! (namely
F (e!)) is computed by applying the Slepian-Bangs formula to the tensors Y1 and Y2:

F (e!) =

"
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The expressions of the functions µ1 and µ2 are obtained using relationships between tensor unfold-
ings. For i = 1, 2, we have

µi(e!) = [(Ci �Bi)⇥ I]| {z }
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This yields @µ
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].

Developing (1) using the above formula yields
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In (3), F(e!) is a block-matrix of the form

F(e!) =

2

6664

F(e�1) F(e�1,✓1) 0 0

F(e�1,✓1)T F(✓1) 0 0

0 0 F(e�2) F(e�2,✓2)
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, (4)
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where for i 2 {1, 2}, we have

F(e�i) =
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In most performance analyses, we are only interested in the diagonal terms of the CRB, which
are directly related to the optimal MSE. For i 2 {1, 2}, denote CRB(e�i) and CRB(✓i) the diagonal
blocks of the matrix CRB(e!) = F(e!)�1. Then from (4),

CRB(e�i) =
⇣
F(e�i)� F(e�i,✓i)F(✓i)

�1F(e�i,✓i)
T
⌘�1

, (5)
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. (6)

2. Blind-CCRB for partially-coupled models

For the partially-coupled model, we have a matrix U such that

U =


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�
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Thus the matrix UTFU is a block matrix of the form
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Denote eD1,1, eD1,2, eD2,2, eD2,3, eD3,3 the blocks of (UTFU)�1 obtained by the block-inversion
lemma. Then the diagonal blocks of Blind-CCRB(e!) for the partially-coupled model are:
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3. Fully-coupled CCRB

3.1. Scenario 1 with linear constraints

3.1.1. Standard CCRB
For the fully-coupled model, the matrix UTFU in is a block matrix of the form

UTFU =


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DT
1,2 D2,2

�
,

2



which subblocks are such that

D1,1 = Diag{I ⇥P , I ⇥Q}TF(e�1)Diag{I ⇥P , I ⇥Q}+ F(e�2);

D1,2 = Diag{I ⇥P , I ⇥Q}TF(e�1,✓1) + F(e�2,✓2)(I ⇥R),

D2,2 = F(✓1) + (I ⇥R)TF(✓2)(I ⇥R).

Denote eD1,1, eD1,2, eD2,2 the blocks of (UTFU)�1 obtained by the block-inversion lemma as
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Then the diagonal blocks of CCRB(e!) for the fully-coupled model are:

CCRB(e�1) = Diag{I ⇥P , I ⇥Q} eD1,1Diag{I ⇥P , I ⇥Q}T,
CCRB(✓1) = eD2,2,

CCRB(e�2) = eD1,1,

CCRB(✓2) = (I ⇥R) eD2,2(I ⇥R)T.

3.1.2. Reparameterization change

In fact, the reparameterized FIM Fc(e�2,✓1) is a block-matrix of the form
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Denote CRBc(e�2) and CRBc(✓1) the diagonal blocks of the matrix Fc(e�2,✓1)�1. Then we
have
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3.2. Scenario 2 with non-linear constraints

3.2.1. Standard CCRB
In this scenario, the matrix UTFU is a block matrix of the form
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which subblocks are such that
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Then the diagonal blocks of CCRB(e!) for the fully-coupled model are:

CCRB(e�1) = Diag{Z4,Z5} eD1,1Diag{Z4,Z5}T,
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3.2.2. Reparameterization change

The reparameterized FIM Fc(e�2,✓1) is a block-matrix of the form
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Denote rCRB(e�2) and rCRB(✓1) the diagonal blocks of the matrix Fc(e�2,✓1)�1. Then we
have
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4. Choice of the rank

In this section, we investigate the influence of the tensor rank on the modelling error for x. We
assume that we want to recover a given tensor X admitting a CPD with rank Rth = 3. In real
applications, the observed tensors are unlikely to be low-rank tensors. Thus the proposed model
only performs a low-rank approximation of the target tensor, and the appropriate tensor rank is
not known a priori. Nevertheless, we expect the performance for the reconstruction of X to vary
along with the tensor rank R.

We generate the CP model with I = J = 18, Id = Jd = 6, K = 16 and Kd = 8, and ranks
R 2 {3, . . . , 16}. The first columns of A2, B2 are also set to ones. The factors A1, B1, C2 are
constructed according to linear constraints, that correspond to the first scenario. The low-resolution
tensors Y1 and Y2 are constructed from these augmented CP factors. For R 2 {3, . . . , 16}, the
CCRB for x is averaged over 100 realizations of the factors Ai, Bi, Ci (i 2 {1, 2}). This bound
can be seen as an error bound on the reconstruction of the true tensor X . In Figure 1, we plot the
averaged UCCRB as a function of SNR1 and R for fixed SNR2.

Figure 1: UCCRB(x) as a function of SNR1 (dB) and tensor rank R.

We can see that, for all R, the UCCRB decreases when SNR1 decreases. Moreover, for all
considered SNRs, the value of the CCRB increases with R; the best theoretical performance is
obtained for R = Rth = 3. This figure indicates that for low SNR, the performance for the
reconstruction of the target tensor is sensitive to an overestimation of the tensor rank.
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