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Résumé

Maximum mean discrepancy (MMD) is a kernel-
based distance measure between probability distribu-
tions. It relies on the concept of mean embedding of
distributions in a Reproducing Kernel Hilbert Space
(RKHS). In this work, we describe a new link between
probability distributions and kernel methods. We build
upon recent and elegant results on RKHSs over discrete
domains which possess novel and appealing properties
compared to their continuous counterparts. Based on
the observation that discrete RKHSs can contain the
Dirac masses, we propose a novel framework for repre-
senting and comparing probability distributions. We
show how MMD and its fast approximation, Nyström
MMD, can be retrieved from the discrete RKHS fra-
mework. Our results provide an explanation why MMD
and Nyström MMD with a large class of kernels, inclu-
ding graph kernels, remains effective in practice. Our
approach is empirically illustrated in the context of
three-sample testing.

Key words : MMD kernel mean embedding discrete
RKHS Nyström approximation.

1 Introduction

Since they were firstly proposed to learn nonli-
near decisions functions with Support Vector Ma-
chines [BGV92], kernel methods have enjoyed conti-
nuous scientific interest. These methods exploit trai-
ning data through implicit definition of a similarity
between data points that can be expressed as a dot
product in a reproducing kernel Hilbert space (RKHS)
and have become very popular in many fields [HSS08].
They are acknowledged to have a strong theoretical ba-
sis, to be powerful tools for generalizing linear statis-
tical approaches to nonlinear settings, and to be effec-
tive in handling structured data [SS02, STC04]. The

notion of kernels as dot products in Hilbert spaces
was first brought to machine learning by Aizerman
et al. [ABR64], while the theoretical foundation of re-
producing kernels and their Hilbert spaces dates back
to at least Aronszajn [Aro50]. A recent success in
this field is kernel mean embedding of probability dis-
tributions, a framework for representing probabilities
in RKHSs [MFSS17]. This makes it possible to use
the power of kernel methods to deal with probabilis-
tic modeling and statistical inference problems. Most
of the literature to date involves continuous RKHSs,
i.e., RKHSs over continuous domains. Jorgensen and
Tian [JT15] recently introduced and studied discrete
RKHSs, spaces that possess novel appealing properties
compared to their continuous counterparts : they for
example can contain Dirac measures while continuous
RKHSs cannot. From this point of view, the main mo-
tivation of this work is to shed light on reproducing
kernel Hilbert spaces over discrete sets and their role
in machine learning.

The authors of [JT15] gave a characterization of
RKHSs defined on a countable infinite discrete set V
which contain the Dirac masses δx for all points x ∈ V .
This is a remarkable result, as it offers new alternatives
for representing probability distributions in RKHSs. In
this paper, we follow this approach and investigate the
relation between probability distributions and kernel
methods. Specifically, we make the following contribu-
tions :

• we provide a discrete RKHS-based framework for
characterizing and comparing probability distribu-
tions,

• we show how the probability distance measure cal-
led maximum mean discrepancy (MMD) can be
retrieved from this framework,

• we propose a well-founded fast approximation of
MMD based on the Nyström method (Nyström
MMD) that justifies the use of Nyström approxi-

1



mation with MMD,

• we show the effectiveness of Nyström MMD in the
context of three-sample testing.

2 Background

In this section we start by giving some background
about kernel mean embedding of probability distribu-
tions and maximum mean discrepancy (MMD). We
then review the basics of discrete RKHSs.

2.1 Kernel mean embedding and MMD

Kernel mean embedding provides an RKHS-based
interface between kernel methods and probability dis-
tributions. For a textbook reference, we refer the rea-
der to [MFSS17]. Let H be an RKHS of functions
on a separable topological space X with a continuous
and bounded kernel k, i.e. k : X × X → R and
supx∈X k(x, x) < ∞. The kernel mean embedding µP
of a distribution P is µP :=

∫
X k(x, ·) dP(x), and gi-

ven samples {xi}ni=1 from P, µ̂P := 1
n

∑n
i=1 k(xi, ·) is

an empirical estimate of µP. The kernel mean embed-
ding helps define a metric for probability distributions,
themaximum mean discrepancy [GBR+12a], which, for
two probability distributions P and Q, is the RKHS
distance between their mean embeddings :

MMDk(P,Q) := ∥µP − µQ∥H.

A fundamental concept underlying kernel mean em-
bedding is the notion of characteristic kernel. A kernel
k is said to be characteristic if the map µ : P → µP
is injective. This is crucial because it ensures that
MMDk(P,Q) = 0 if and only if P = Q. Given i.i.d.
samples {xi}ni=1 and {yi}mi=1 from P and Q, respecti-
vely, an empirical estimate of MMDk(P,Q) can be ob-

tained as MMDk(P̂, Q̂) = ∥µ̂P − µ̂Q∥H, where P̂ and Q̂
are the empirical distributions corresponding to P and
Q, respectively. Using the kernel trick [ABR64], it is
easy to see that

MMD2
k(P̂, Q̂) =

1

n2

n∑
i,j=1

k(xi, xj)−
2

nm

n,m∑
i,j=1

k(xi, yj)

+
1

m2

m∑
i,j=1

k(yi, yj).

A major drawback of the MMD is its computational
cost : the complexity of computing MMDk(P̂, Q̂) scales
at least as Θ

(
(n+m)2d

)
, where d is the dimension

of the data and it is assumed that the computational

cost of evaluating the kernel k is Θ(d), which reduces
to Θ

(
n2d

)
, assuming n and m are of the same order.

Methods to reduce this computational burden include
linear MMD [GBR+12a], block MMD [ZGB13], and
RFFMMD [ZM15]. In [GBR+12a], a simple linear time
approximation by computing the MMD on a randomly
chosen subset of

√
n data points is used to deal with

the two-sample test problem, a statistical test to assess
whether two random samples share the same proba-
bility distribution. The reduced computational cost of
Θ (nd) comes at the price of poor approximation pro-
perties. An improvement to this method was proposed
in [ZGB13], where instead of considering a single sub-
set of size

√
n, the average of the MMD on several

blocks, each of size s ≤ n, is computed. The num-
ber of blocks is usually equal to n/s and a commonly
used heuristic for the block size is

√
n, leading to a

complexity of Θ(n1.5d). From a more general perspec-
tive, [ZM15] proposed the use of random Fourier Fea-
tures (RFF) [RR07a] to approximate the (translation
invariant) kernel function and then efficiently compute
the MMD. The computational complexity is in this
case reduced to Θ(nsd), where s ≪ n is the number
of random features. It is worth noting that one major
obstacles towards the use of kernel approximation tech-
niques, such as Nyström [WS00], is that the embedding
defined by the approximate kernel representations can
no longer be injective, whereas it is crucial for the use
of kernel mean embeddings to be theoretically suppor-
ted.

2.2 Discrete RKHS

We here recall the core of discrete RKHSs. For a
complete description, see [JT15].

Definition 1. (Positive (semi-)definite kernel on a
discrete domain)

Let V be a countable and possibly infinite set, and
F(V ) the set of all finite subsets of V. A function
k : V × V → R is positive semi-definite (psd), if it
is symmetric and for all F in F(V ) and all sets of real
coefficients {cx ∈ R}x∈F :∑∑

(x,y)∈F×F

cxcyk(x, y) ≥ 0. (1)

If for all F ∈ F(V ) equality holds in (1) implies that
all elements of {cx}x∈F are zero then k is said to be
positive definite (pd). It is said to be λ-pd if the right-
hand side of (1) is replaced by λ∥c∥2 for some λ > 0.
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Definition 2. (RKHS on a discrete domain)

Let V be a countable and possibly infinite set. A Hilbert
space H of functions from V to R is a reproducing
kernel Hilbert space (RKHS) if there is a positive semi-
definite kernel k : V × V → R such that :

(i) the function kx := k(·, x) : V → R belongs to H
for all x ∈ V ,

(ii) for every φ ∈ H and x ∈ V ,

⟨kx, φ⟩ = φ(x). (2)

On account of (ii), the kernel k is called the repro-
ducing kernel of H. There is a natural bijection bet-
ween positive semi-definite kernels on a given set V ,
and RKHS of functions on that set [Aro50].
Definitions 1 and 2 are not new and it is well-

known that the theory of reproducing kernels is valid
for discrete and continuous domains. Kernel methods
have for instance already been applied with success to
deal with structured data such as sequences, trees or
graphs [Gar08]. What is new, however, is the following
notion of discrete RKHSs, which characterizes RKHSs
on discrete domains having the discrete mass property.

Definition 3. (Discrete mass property)

The RKHS H of functions defined on a countable in-
finite discrete set V is said to have the discrete mass
property (and H is called a discrete RKHS), if δx ∈ H,
for all x ∈ V , where δx is the Dirac mass at x, i.e.,

δx(y) =

{
1 if x = y,
0 otherwise.

The next theorem gives a necessary and sufficient
condition characterizing which point-masses from V
are in H.

Theorem 1. (Necessary and sufficient condition for
δx ∈ H)

Let k be a psd kernel defined on a countable and pos-
sibly infinite set V , and let H be the corresponding
RKHS. Let x ∈ V be given, and F(V ) be the set of
all finite subsets of V . Then δx ∈ H if and only if

sup
{F∈F(V ):x∈F}

(K−1
F )x,x < ∞, (3)

where KF := (k(x, y))(x,y)∈F 2 is the Gram matrix of k
on F .

In this case, we have :

∥δx∥2H = sup
{F∈F(V ):x∈F}

(K−1
F )x,x.

This is an important result, as it states that the Di-
rac mass δx is in an RKHS when condition (3) is satis-
fied, which is required to fully leverage the advantages
provided by reproducing kernels in the discrete case.
Given this, it is possible to obtain an exact characteri-
zation of the orthogonal projection of the Dirac masses
onto the span of the kernel functions.

Lemma 2. (Orthogonal projection of Dirac masses
onto HF )

Let k, H be as above and F in F(V ). Set HF :=
Span ({kx}x∈F ). Let PF : H → HF be the orthogo-
nal projection onto HF . For x ∈ F such that δx ∈ H,
we have

PF (δx) =
∑
y∈F

(K−1
F )x,yky. (4)

In the following, we only consider the case where the
kernel k is λ-pd (Def. 1), which means that the spec-
trum of KF is in [λ,+∞), for any F ∈ F(V ). In this
case, (K−1

F )x,x ≤ λ−1 for all F and x. Thus, condi-
tion (3) is always satisfied and all the Dirac masses
δx belong to the RKHS associated to k. It is useful to
point out that these assumptions are not restrictive.
For example, for any positive semi-definite kernel k̃,
pick λ > 0 a regularization parameter, then the ker-
nel k defined by k(x, y) := k̃(x, y) + λδx(y),∀x, y ∈ V ,
satisfies these assumptions.

3 Comparing Probability Distri-
butions in Discrete RKHS

Dirac masses being elements of an RKHS provides
a natural way to deal with such distributions. Indeed,
given a probability distribution P that is only acces-
sible through discrete and finite samples X = {xi}ni=1,
the corresponding empirical distribution can be writ-
ten as P̂ =

∑
x∈X pxδx, where δx is the Dirac mass

at point x and px is the probability mass associated
to the sample x. So, when the δx’s are in an RKHS
H, P̂ also belongs to H and can be manipulated with
the artillery of RKHSs to tackle probabilistic modeling
problems (see Figure 1).

We now turn our attention to defining a kernel-
based distance between empirical distributions. In the
case where these are in the discrete RKHS H, we can
build distances using the inner product of H. More for-
mally, let V be a countable and possibly infinite set,
X = {xi}ni=1, Y = {yi}mi=1 and P̂ =

∑
x∈X pxδx and

Q̂ =
∑

y∈Y qyδy two discrete probability distributions.
When the Dirac masses are elements of the RKHS H,
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Figure 1 – Characterizing probability distributions in
discrete RKHS. Given a probability distribution P that
is only accessible through discrete and finite samples
X = {xi}ni=1, the corresponding empirical distribution

can be written as P̂ =
∑

i piδxi , where δxi is the Di-
rac function at point xi and pi is the probability mass
associated to the sample xi. In contrast to “standard”
RKHS, a discrete RKHS H contains the Dirac masses
δxi

. P̂ is a linear combination of δxi
, and thus belongs

to H. A kernel k > 0 (i.e., positive definite) is needed
to ensure that δxi ∈ H.

so are the discrete probability distributions. We can
then simply define the distance between P̂ and Q̂ as
∥P̂− Q̂∥H. If it is sound, it cannot be computed expli-
citly as it requires the evaluation of the dot products
⟨δx, δy⟩H which can not be evaluated through kernel
computations. Indeed, the inner product between two
functions in a RKHS is not known in general, howe-
ver we can compute the inner product with the kernel
function To remedy this problem, we introduce a li-
near operator Ok that maps the Dirac masses into the
span of the kernel functions Span ({kz}z∈V ) and de-

fine a distance between P̂ and Q̂ parameterized by Ok.
More formally, if for V , we let DV := Span ({δz}z∈V )
be the span of the Dirac masses associated with the
elements of V , we propose the following definition.

Definition 4. (Discrete RKHS distance between dis-
tributions)

Let H be a discrete RKHS of functions defined on a
countable infinite discrete set V and k its reproducing
kernel. Let Ok : DV → Span ({kz}z∈V ) be a linear
operator with Null(Ok) = {0}. We define the Discrete
RKHS distance DOk

between two discrete probability

distributions P̂ and Q̂ by

DOk
(P̂, Q̂) := ∥P̂− Q̂∥Ok

= ∥Ok(P̂− Q̂)∥H. (5)

DOk
is the distance induced by ⟨·, ·⟩Ok

:=
⟨Ok(·), Ok(·)⟩H defined on DV × DV , which is a dot
product : it is a symmetric and a semi-definite positive
bilinear form thanks to the linearity of Ok ; it is also
definite positive (⟨u, u⟩Ok

≥ 0,∀u and ⟨u, u⟩Ok
= 0 ⇒

u = 0) because the null space of Ok is reduced to zero.
The set of linear operators with zero null-space thus

defines a family of distances. A question arises : how

can we choose Ok ? In the following, we exhibit a family
of operators Ok that are based on orthogonal projec-
tions, which ensures that this distances can be compu-
ted using the kernel. Interestingly, the MMD distance
is one particular instance in this family. We leave the
study of other possible choices of Ok for future work.
Ok maps DV , which is a subset of the discrete RKHS

H, to Span ({kz}z∈V ), just as orthogonal projections
defined in Lemma 2. Using these projections is then a
natural way to build Ok. Here, we consider a weighted
sum of the projections on each feature kz, P{z}(u), for
all z in V , i.e.,

Ok : DV → Span ({kz}z∈V ) (6)

u 7→ Ok (u) :=
∑
z∈V

ozP{z} (u) ,with oz ̸= 0 ∀z.

Before going further, we show that Ok in (6) is a
well-defined linear operator on DV , i.e., that the in-
finite sums

∑
z∈V P{z}(u) are convergent. In fact, we

compute the value of Ok(u) :

Lemma 3. Let V , k and H be as above, we have

(i) (y, z) ∈ V 2 : P{y}(δy) = 1
k(y,y)ky and if z ̸= y ,

P{z}(δy) = 0.

(ii) u :=
∑n

i=1 αiδyi ∈ DV ⇒ Ok (u) =∑n
i=1

αioyi
k(yi,yi)

kyi
∈ Span ({kz}z∈V ).

proof . For (i) : P{z}(δy) =
⟨δy,kz⟩H
∥kz∥2

H
kz =

δy(z)
k(z,z)kz.

For (ii) : from (i), the infinite sum
∑

z∈V ozP{z} (δy)
reduces to one term and Ok (δy) = oyP{y} (δy) =

oy
k(y,y)ky for all y. Similarly for u =

∑n
i=1 αiδyi

,

Pz(u) =
αzoz
k(z,z)δz if z ∈ {yi}ni=1, and Pz(u) = 0 other-

wise. The infinite sum in Ok(u) reduces to n terms, it
is finite thus convergent, and the result holds.

To make sure that DOk
is a metric in DV , it suffices

to check that Null(Ok) = {0}. Given that

∥Ok(u)∥2H =

∥∥∥∥∥∑
i

αioyi

k(yi, yi)
kyi

∥∥∥∥∥
2

H

=
∑
i,j

αioyi

k(yi, yi)

αjoyj

k(yj , yj)
k(yi, yj)

(7)

and that we have assumed that k is positive definite,

Ok(u) = 0 ⇒ αioyi

k(yi, yi)
= 0 ∀i,

with the oy being nonzero, it yields αi = 0 ∀i i.e. u = 0.
Thus Null(Ok) = {0}.
This says any operator Ok as in (6) defines a distance

DOk
on DV . A key observation is that maximum mean

discrepancy (MMD) is an instance of DOk
.
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Theorem 4. Let V , k, H be as above and Ok : u ∈
Dv 7→

∑
z∈V k(z, z)P{z}(u). Let P̂ :=

∑
x∈X pxδx and

Q̂ :=
∑

y∈Y qyδy be two discrete probability distribu-
tions. We have

DOk
(P̂, Q̂) = MMDk(P̂, Q̂).

proof . Since for all k(z, z) ̸= 0, Ok defined above
fits (6) and DOk

is a distance. It is also clear that

Ok(P̂) =
∑

x∈X pxkx so Ok maps a discrete distribu-

tion P̂ (in DV ⊂ H) to its mean embedding µ̂P (in H)

so that DOk
(P̂, Q̂) = ∥Ok(P̂ − Q̂)∥H = ∥µ̂P − µ̂Q∥H =

MMDk(P̂, Q̂).

Theorem 4 shows how MMD is a particular instance
of the proposed discrete RKHS distances defined in
Def 4. From a different perspective, it is interesting
to note that our formulation provides a new unders-
tanding to the RKHS characterization of probability
distributions and gives theoretical justification for the
use of MMD with a large class of kernels, as soon as
they satisfy the positive definiteness assumption and
condition (3). This also complements the literature of
RKHS embedding of measures [SGS18, SFL11]. In the
following we propose a fast approximation of MMD ba-
sed on the Nyström method and discrete RKHS.

4 A Nyström-based MMD Ap-
proximation

The Nyström method is among the most used tech-
niques for approximating the kernel Gram matrix of
a large data sample [WS00], building an approximate
Gram matrix based on a small subset of the training
points, called landmarks.

Consider a training set F := {xi}ni=1 of n trai-
ning samples.To approximate the kernel matrix KF ∈
Rn×n, the Nyström method randomly samples s ≪ n
examples S := {x̂i}si=1 ⊂ F and forms the n × s ma-
trix KF,S := (k(x, x′))(x,x′)∈F×S , and the (small) s× s
kernel matrix KS := (k(x, x′))(x,x′)∈S2 . The Nyström
approximation is obtained as follows

K̂F := KF,SK
+
S K⊤

F,S ≈ K,

where K+
S denotes the pseudo-inverse of KS . The fea-

ture representation associated to the Nyström method
is given by :

ϕ̂(x) :=
(
[k(x̂1, x), . . . , k(x̂s, x)] (K

+
S )

1
2

)⊤
,

and the approximated kernel function is k̂nys(x, x
′) :=

⟨ϕ̂(x), ϕ̂(x′)⟩. It is straightforward to verify that, for all

xi, xj ∈ F , ⟨ϕ̂(xi), ϕ̂(xj)⟩ = (K̂F )ij .
To take advantage of the framework of discrete

RKHS, we consider the kernel k̂ defined on a countable
and infinite set V and obtained by regularizing k̂nys,

i.e., ∀x, y ∈ V , k̂(x, y) = k̂nys(x, y) + λδx(y), where
λ > 0 is a regularization parameter (see end of Sec-
tion 2). The following lemma shows that the MMD

distance using the kernel k̂ instead of k also defines a
metric between discrete probability distributions.

Lemma 5. Let V and k be as above. If k̂ is a regula-
rized version of a Nyström approximation of the ker-
nel function k : k̂(x, y) = k̂nys(x, y) + λδx(y), for all
x, y ∈ V and with λ > 0, then MMDk̂(·, ·) is a metric
on DV .

proof . This is a direct application of Theorem 4.

This result justifies the use of Nyström approxima-
tion with MMD, which is an interesting result in its
own right. We now show that this translates to a signi-
ficant computational saving compared to the Θ(n2d)
cost of exact MMD using the kernel k.

Lemma 6. Let V and k be as above. Let F be a finite
subset of V of size n, and k̂ be a regularized Nyström
approximation of k using s landmarks. For any two
discrete probability distributions P̂ :=

∑
x∈F pxδx and

Q̂ :=
∑

y∈F qyδy, the computational complexity of

MMDk̂(P̂, Q̂) is Θ(nsd).

proof . MMD2
k̂
(P̂, Q̂) =

∑
x,y∈F (px − qx)k̂(x, y)(py −

qy) = vKF,SK
+
S K⊤

F,Sv
⊤ + λrv⊤, with v the row vector

v = (px − qx)x∈F . This computation requires Θ(ns)
operations once the matrices KF,S and K+

S are known.
Building these matrices requires Θ(nsd) operations.

We now address the question : how far is MMDk̂
from MMDk ? To answer this question, we make use
of recent advances on the performance quality of sam-
pling methods on kernel matrices [GM16]. In the case
of uniform sampling, assumptions about the coherence
properties of the kernel matrix are required. The co-
herence of the top r-dimensional eigenspace of a n× n
kernel matrix K, denoted by µr, is defined as : µr :=
n
r maxi∈{1,...,n} ∥Ui∥2, where U is the n × r matrix
containing the top r-eigenvectors of K.

Lemma 7. Let V , k and µr be as above. Let F be
a finite subset of V of size n, and k̂ be a regularized
Nyström approximation of k using s landmarks sam-
pled uniformly at random from F and a regularization
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parameter λ > 0. Fix a failure probability δ ∈ (0, 1)
and an accuracy factor ε ∈ (0, 1). For any two dis-

crete probability distributions P̂ :=
∑

x∈F pxδx and

Q̂ :=
∑

y∈F qyδy, if s ≥ 2µε−2r ln (r/δ), then it holds,
with probability at least 1− 3δ, that∣∣∣MMD2

k(P̂, Q̂)−MMD2
k̂
(P̂, Q̂)

∣∣∣
≤ (2 +

2

δ2(1− ε)
)∥K −Kr∥∗ + 2λ,

where Kr is the best rank-r approximation of the kernel
matrix K, and ∥ · ∥∗ denotes the nuclear norm.

proof . Let v be the row vector (px − qx)x∈F .∣∣∣MMD2
k(P̂, Q̂)−MMD2

k̂
(P̂, Q̂)

∣∣∣
=

∣∣∣Tr(Kr⊤v)− Tr(K̂v⊤v)
∣∣∣

≤
∣∣Tr((K −KF,SK

+
S K⊤

F,S)v
⊤v

)∣∣+ λ∥v∥2

(a)

≤ ∥K −KF,SK
+
S K⊤

F,S∥∗∥v⊤v∥∞ + λ∥v∥2

(b)

≤ (1 +
1

δ2(1− ε)
)∥K −Kr∥∗∥v∥2 + λ∥v∥2,

where inequality (a) follows from Hölder’s inequa-
lity [Bha97], and inequality (b) follows from [GM16,
Lemma 8]. Since

∑
x∈F px =

∑
y∈F qy = 1 and 0 ≤

px, qx ≤ 1, we have ∥v∥2 ≤ 2, which completes the
proof.

Note that the quality of the bound can be improved
when better sampling strategies, such as leverage score
sampling, are used [GM16].

5 Experiments

We now turn our attention to empirically evaluate
the Nyström based MMD approximation. We conduct
experiments on the three sample problem in a simula-
ted setting and on real data. For reproducibility, our
code will be made publicly available.
The three-sample problem consists in the following :

given three samples X = {xi}nx
i=1, Y = {yi}

ny

i=1 and
Z = {zi}nz

i=1 such that X and Y are generated from
two different distributions (PX and PY ), identify whe-
ther Z is generated from the same distribution as X
or Y [Gut89, RM13] —where it is assumed, of course,
that Z is generated from one of these two distribu-
tions. This problem can be addressed using a suitable
distance that measures the similarity between probabi-
lity distributions. In other words, given a distance D,

Dataset Size Type
N (0, 1) and N (0, 2) 30 000 synthetic
Fast food 1 10 000 real-world
MUTAG [DLdCD+91] 188 real-world

Table 1 – Datasets.

we decide that Z is generated from PX if D(PZ ,PX) <
D(PZ ,PY ). Otherwise, we decide that Z ∼ PY . Com-
pared to the two-sample problem [GBR+12a], which
aims at answering the question whether two samples
are identically distributed, no threshold is needed to
make the decision.

5.1 Experimental Setup

We consider two different structures of data : vec-
tors and graphs, that we summarize in Table 1. For
vector data, we used the classical RBF kernel with

parameter σ =
(

1
n

∑
xi,xj∈X ∥xi − xj∥22

)−1

as propo-

sed in [BGSW06], while for graph data we used the
ShortestPath kernel [BK05]. We only consider the case
where X,Y and Z have the same number of data, but
our framework is still valid if they have different sizes.

We compare our Nyström based MMD approxi-
mation (Nyström MMD) with three other methods :
the Random Fourier Features based MMD (RFF
MMD) [AKM+17], the block MMD [ZGB13] and the
linear approximation (linear MMD) [GBR+12a]. When
possible, we also compute the exact value of the MMD
(exact MMD). Remember that the complexity of the
computation is in Θ(n2d) for exact MMD, Θ(nd) for
linear MMD, and Θ(nsd) with s the number of data
sampled for Nyström MMD, s the number of Fourier
vectors sampled for RFF MMD and s the size of the
blocks for block MMD. To compare methods of equi-
valent complexity, we fix the value s to log(n) for all
three methods.

We are interested in the error in solving the three-
sample problem computed as the fraction of test sam-

pled misplaced : error = |{z∈Z:z∼PY }|
|Z| . We also com-

pute the running time. To further evaluate the quality
of the MMD approximations, we compute the distance
of the approximated MMD to the true value :

∆X,Y := |MMDk(X,Y )−MMDk̂(X,Y )|,

where MMDk̂ is computed using one of the approxima-
tion methods : block MMD, RFF MMD, linear MMD

1. https ://www.kaggle.com/datasets/datafiniti/fast-food-
restaurants
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(a) distance to exact MMD (b) running time

Figure 2 – Three sample problem on N (0, 1) and
N (0, 2) data.

(a) error (b) running time

Figure 3 – Three sample problem on the the Fast food
dataset.

or Nyström MMD.
All experiments are run several times and the quan-

tities in the following results are averaged all the runs.

5.2 Experimental Results

We first consider a synthetic dataset, consisting in
5000 samples for X, Y and Z and with PX = PZ =
N (0, 1) and PY = N (0, 2). The experiment is run 10
times. The three-sample problem in this case is pretty
simple and all methods achieve a null error. The in-
terest here lies in confirming that the actual running
time scales with the complexity, and that the MMD
approximation are good approximation. As shown in
Figure 2(b) exact MMD has an exploding running time
while the RFF and Nyström MMD have the same run-
ning time, and are faster than block-MMD, but slower
than linear MMD. This is in line with the expected
behaviour of these methods. We plot in Figure 2(a)
the distance of the approximated MMD to the true
value, ∆X,Y , as a function of number of data n (and
its variance in lighter colors). This plot shows that the
Nyström and the RFF method have a similar accuracy,
and are more efficient at approximating the true value
of MMD than block MMD and linear MMD.
We now consider the FastFood dataset which

contains the localisation of some restaurants in Ame-
rica. The whole dataset contains initially 600 classes.

(a) error (b) running time

Figure 4 – Three-sample problem on the MUTAG
dataset.

For this experiemnts we group them into 2 classes of
roughly 5000 points each. The datasets X,Y and Z
then contains about 2500 points in each of the 100 runs.
We plot the results of these experiments in Figure 3.
The error in the three-sample problem Figure 3(a) and
the running time in Figure 3(b) confirm those found in
the previous experiments. We can see that the Nyström
MMD obtains a lower error rate compared to the other
MMD approximation methods.

Let now consider our last dataset, MU-
TAG [DLdCD+91], which is a graph dataset for
binary classification. We take X and Z from the set
of graphs that are labelled +1, and Y from the set of
graphs that are labelled −1. We have about n = 60
graphs in each set X, Y and Z. A useful kernel in
this case is the ShortestPath kernel [BGSW06]. We
make the same experiments as above, and plot the
results in Figure 4 where the error and running time
are shown as a function of n and with s = log(n) and
are averaged over 1000 runs. The RFF MMD method
is not suitable for graph kernels. Since the number
of data is small, one can compute exact MMD. In
terms of running time, Nyström MMD is faster than
exact and block MMD. Linear MMD is faster than
Nyström MMD but suffers from a much higher error
rate. Nyström MMD achieves a good trade-off between
effectiveness and efficiency.

6 Conclusion

We uncovered a new way to make the connection
between probability distributions and kernel methods,
using tools of discrete RKHSs. It allowed us to come up
with a novel framework for representing and comparing
probability distributions, and to show that the MMD
distance can be retrieved from this framework. Pushing
the envelope further, we proposes a new fast approxi-
mation to the MMD distance, based on the Nyström
method. Our MMD approximation is theoretically jus-

7



tified for a large class of kernels, including graph ker-
nels.
We finally have empirically evaluated our Nyström

MMD on both simulated and real world datasets. We
have shown that our MMD approximation achieves a
good trade-off between error and running time in sol-
ving the three-sample problem.
Future work would focus on further studying the ver-

satility of our framework and see how other distances
between distributions, such as Wasserstein distances,
fall into its realm.
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