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Maximum mean discrepancy (MMD) is a kernelbased distance measure between probability distributions. It relies on the concept of mean embedding of distributions in a Reproducing Kernel Hilbert Space (RKHS). In this work, we describe a new link between probability distributions and kernel methods. We build upon recent and elegant results on RKHSs over discrete domains which possess novel and appealing properties compared to their continuous counterparts. Based on the observation that discrete RKHSs can contain the Dirac masses, we propose a novel framework for representing and comparing probability distributions. We show how MMD and its fast approximation, Nyström MMD, can be retrieved from the discrete RKHS framework. Our results provide an explanation why MMD and Nyström MMD with a large class of kernels, including graph kernels, remains effective in practice. Our approach is empirically illustrated in the context of three-sample testing.

Introduction

Since they were firstly proposed to learn nonlinear decisions functions with Support Vector Machines [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF], kernel methods have enjoyed continuous scientific interest. These methods exploit training data through implicit definition of a similarity between data points that can be expressed as a dot product in a reproducing kernel Hilbert space (RKHS) and have become very popular in many fields [HSS08]. They are acknowledged to have a strong theoretical basis, to be powerful tools for generalizing linear statistical approaches to nonlinear settings, and to be effective in handling structured data [START_REF] Schölkopf | Learning with kernels : support vector machines, regularization, optimization, and beyond[END_REF][START_REF] Shawe | Kernel methods for pattern analysis[END_REF]. The notion of kernels as dot products in Hilbert spaces was first brought to machine learning by Aizerman et al. [START_REF] Mark A Aizerman | Theoretical foundations of the potential function method in pattern recognition learning[END_REF], while the theoretical foundation of reproducing kernels and their Hilbert spaces dates back to at least Aronszajn [START_REF] Aronszajn | Theory of reproducing kernels[END_REF]. A recent success in this field is kernel mean embedding of probability distributions, a framework for representing probabilities in RKHSs [MFSS17]. This makes it possible to use the power of kernel methods to deal with probabilistic modeling and statistical inference problems. Most of the literature to date involves continuous RKHSs, i.e., RKHSs over continuous domains. Jorgensen and Tian [JT15] recently introduced and studied discrete RKHSs, spaces that possess novel appealing properties compared to their continuous counterparts : they for example can contain Dirac measures while continuous RKHSs cannot. From this point of view, the main motivation of this work is to shed light on reproducing kernel Hilbert spaces over discrete sets and their role in machine learning.

The authors of [JT15] gave a characterization of RKHSs defined on a countable infinite discrete set V which contain the Dirac masses δ x for all points x ∈ V . This is a remarkable result, as it offers new alternatives for representing probability distributions in RKHSs. In this paper, we follow this approach and investigate the relation between probability distributions and kernel methods. Specifically, we make the following contributions :

• we provide a discrete RKHS-based framework for characterizing and comparing probability distributions,

• we show how the probability distance measure called maximum mean discrepancy (MMD) can be retrieved from this framework,

• we propose a well-founded fast approximation of MMD based on the Nyström method (Nyström MMD) that justifies the use of Nyström approxi-mation with MMD,

• we show the effectiveness of Nyström MMD in the context of three-sample testing.

Background

In this section we start by giving some background about kernel mean embedding of probability distributions and maximum mean discrepancy (MMD). We then review the basics of discrete RKHSs.

Kernel mean embedding and MMD

Kernel mean embedding provides an RKHS-based interface between kernel methods and probability distributions. For a textbook reference, we refer the reader to [MFSS17]. Let H be an RKHS of functions on a separable topological space X with a continuous and bounded kernel k, i.e. k : X × X → R and sup x∈X k(x, x) < ∞. The kernel mean embedding µ P of a distribution P is µ P := X k(x, •) dP(x), and given samples {x i } n i=1 from P, μP :=

1 n n i=1 k(x i , •
) is an empirical estimate of µ P . The kernel mean embedding helps define a metric for probability distributions, the maximum mean discrepancy [GBR + 12a], which, for two probability distributions P and Q, is the RKHS distance between their mean embeddings :

MMD k (P, Q) := ∥µ P -µ Q ∥ H .
A fundamental concept underlying kernel mean embedding is the notion of characteristic kernel. A kernel k is said to be characteristic if the map µ : P → µ P is injective. This is crucial because it ensures that MMD k (P, Q) = 0 if and only if P = Q. Given i.i.d. samples {x i } n i=1 and {y i } m i=1 from P and Q, respectively, an empirical estimate of MMD k (P, Q) can be obtained as MMD k ( P, Q) = ∥μ P -μQ ∥ H , where P and Q are the empirical distributions corresponding to P and Q, respectively. Using the kernel trick [START_REF] Mark A Aizerman | Theoretical foundations of the potential function method in pattern recognition learning[END_REF], it is easy to see that

MMD 2 k ( P, Q) = 1 n 2 n i,j=1 k(x i , x j ) - 2 nm n,m i,j=1 k(x i , y j ) + 1 m 2 m i,j=1
k(y i , y j ).

A major drawback of the MMD is its computational cost : the complexity of computing MMD k ( P, Q) scales at least as Θ (n + m) 2 d , where d is the dimension of the data and it is assumed that the computational cost of evaluating the kernel k is Θ(d), which reduces to Θ n 2 d , assuming n and m are of the same order. Methods to reduce this computational burden include linear MMD [GBR + 12a], block MMD [START_REF] Zaremba | B-tests : Low variance kernel two-sample tests[END_REF], and RFF MMD [START_REF] Zhao | Fastmmd : Ensemble of circular discrepancy for efficient two-sample test[END_REF]. In [GBR + 12a], a simple linear time approximation by computing the MMD on a randomly chosen subset of √ n data points is used to deal with the two-sample test problem, a statistical test to assess whether two random samples share the same probability distribution. The reduced computational cost of Θ (nd) comes at the price of poor approximation properties. An improvement to this method was proposed in [START_REF] Zaremba | B-tests : Low variance kernel two-sample tests[END_REF], where instead of considering a single subset of size √ n, the average of the MMD on several blocks, each of size s ≤ n, is computed. The number of blocks is usually equal to n/s and a commonly used heuristic for the block size is √ n, leading to a complexity of Θ(n 1.5 d). From a more general perspective, [START_REF] Zhao | Fastmmd : Ensemble of circular discrepancy for efficient two-sample test[END_REF] proposed the use of random Fourier Features (RFF) [RR07a] to approximate the (translation invariant) kernel function and then efficiently compute the MMD. The computational complexity is in this case reduced to Θ(nsd), where s ≪ n is the number of random features. It is worth noting that one major obstacles towards the use of kernel approximation techniques, such as Nyström [START_REF] Williams | Using the nyström method to speed up kernel machines[END_REF], is that the embedding defined by the approximate kernel representations can no longer be injective, whereas it is crucial for the use of kernel mean embeddings to be theoretically supported.

Discrete RKHS

We here recall the core of discrete RKHSs. For a complete description, see [JT15].

Definition 1. (Positive (semi-)definite kernel on a discrete domain) Let V be a countable and possibly infinite set, and F(V ) the set of all finite subsets of V. A function k : V × V → R is positive semi-definite (psd), if it is symmetric and for all F in F(V ) and all sets of real coefficients {c x ∈ R} x∈F :

(x,y)∈F ×F c x c y k(x, y) ≥ 0. ( 1 
)
If for all F ∈ F(V ) equality holds in (1) implies that all elements of {c x } x∈F are zero then k is said to be positive definite (pd). It is said to be λ-pd if the righthand side of (1) is replaced by λ∥c∥ 2 for some λ > 0.

Definition 2. (RKHS on a discrete domain) Let V be a countable and possibly infinite set. A Hilbert space H of functions from V to R is a reproducing kernel Hilbert space (RKHS) if there is a positive semidefinite kernel k : V × V → R such that :

(i) the function k x := k(•, x) : V → R belongs to H for all x ∈ V , (ii) for every φ ∈ H and x ∈ V , ⟨k x , φ⟩ = φ(x). (2) 
On account of (ii), the kernel k is called the reproducing kernel of H. There is a natural bijection between positive semi-definite kernels on a given set V , and RKHS of functions on that set [START_REF] Aronszajn | Theory of reproducing kernels[END_REF].

Definitions 1 and 2 are not new and it is wellknown that the theory of reproducing kernels is valid for discrete and continuous domains. Kernel methods have for instance already been applied with success to deal with structured data such as sequences, trees or graphs [Gar08]. What is new, however, is the following notion of discrete RKHSs, which characterizes RKHSs on discrete domains having the discrete mass property.

Definition 3. (Discrete mass property)

The RKHS H of functions defined on a countable infinite discrete set V is said to have the discrete mass property (and H is called a discrete RKHS), if δ x ∈ H, for all x ∈ V , where δ x is the Dirac mass at x, i.e.,

δ x (y) = 1 if x = y, 0 otherwise.
The next theorem gives a necessary and sufficient condition characterizing which point-masses from V are in H.

Theorem 1. (Necessary and sufficient condition for δ x ∈ H) Let k be a psd kernel defined on a countable and possibly infinite set V , and let H be the corresponding RKHS. Let x ∈ V be given, and F(V ) be the set of all finite subsets of V . Then δ x ∈ H if and only if

sup {F ∈F (V ):x∈F } (K -1 F ) x,x < ∞, (3) 
where

K F := (k(x, y)) (x,y)∈F 2 is the Gram matrix of k on F .
In this case, we have :

∥δ x ∥ 2 H = sup {F ∈F (V ):x∈F } (K -1 F ) x,x .
This is an important result, as it states that the Dirac mass δ x is in an RKHS when condition (3) is satisfied, which is required to fully leverage the advantages provided by reproducing kernels in the discrete case. Given this, it is possible to obtain an exact characterization of the orthogonal projection of the Dirac masses onto the span of the kernel functions.

Lemma 2. (Orthogonal projection of Dirac masses onto H F ) Let k, H be as above and

F in F(V ). Set H F := Span ({k x } x∈F ). Let P F : H → H F be the orthogo- nal projection onto H F . For x ∈ F such that δ x ∈ H, we have P F (δ x ) = y∈F (K -1 F ) x,y k y . (4) 
In the following, we only consider the case where the kernel k is λ-pd (Def. 1), which means that the spectrum of K F is in [λ, +∞), for any F ∈ F(V ). In this case, (K -1 F ) x,x ≤ λ -1 for all F and x. Thus, condition (3) is always satisfied and all the Dirac masses δ x belong to the RKHS associated to k. It is useful to point out that these assumptions are not restrictive. For example, for any positive semi-definite kernel k, pick λ > 0 a regularization parameter, then the kernel k defined by k(x, y) := k(x, y) + λδ x (y), ∀x, y ∈ V , satisfies these assumptions.

Comparing Probability Distributions in Discrete RKHS

Dirac masses being elements of an RKHS provides a natural way to deal with such distributions. Indeed, given a probability distribution P that is only accessible through discrete and finite samples X = {x i } n i=1 , the corresponding empirical distribution can be written as P = x∈X p x δ x , where δ x is the Dirac mass at point x and p x is the probability mass associated to the sample x. So, when the δ x 's are in an RKHS H, P also belongs to H and can be manipulated with the artillery of RKHSs to tackle probabilistic modeling problems (see Figure 1).

We now turn our attention to defining a kernelbased distance between empirical distributions. In the case where these are in the discrete RKHS H, we can build distances using the inner product of H. More formally, let V be a countable and possibly infinite set, X = {x i } n i=1 , Y = {y i } m i=1 and P = x∈X p x δ x and Q = y∈Y q y δ y two discrete probability distributions. When the Dirac masses are elements of the RKHS H, Figure 1 -Characterizing probability distributions in discrete RKHS. Given a probability distribution P that is only accessible through discrete and finite samples X = {x i } n i=1 , the corresponding empirical distribution can be written as P = i p i δ xi , where δ xi is the Dirac function at point x i and p i is the probability mass associated to the sample x i . In contrast to "standard" RKHS, a discrete RKHS H contains the Dirac masses δ xi . P is a linear combination of δ xi , and thus belongs to H. A kernel k > 0 (i.e., positive definite) is needed to ensure that δ xi ∈ H. so are the discrete probability distributions. We can then simply define the distance between P and Q as ∥ P -Q∥ H . If it is sound, it cannot be computed explicitly as it requires the evaluation of the dot products ⟨δ x , δ y ⟩ H which can not be evaluated through kernel computations. Indeed, the inner product between two functions in a RKHS is not known in general, however we can compute the inner product with the kernel function To remedy this problem, we introduce a linear operator O k that maps the Dirac masses into the span of the kernel functions Span ({k z } z∈V ) and define a distance between P and Q parameterized by O k . More formally, if for V , we let D V := Span ({δ z } z∈V ) be the span of the Dirac masses associated with the elements of V , we propose the following definition.

Definition 4. (Discrete RKHS distance between distributions)

Let H be a discrete RKHS of functions defined on a countable infinite discrete set V and k its reproducing kernel. Let O k : D V → Span ({k z } z∈V ) be a linear operator with Null(O k ) = {0}. We define the Discrete RKHS distance D O k between two discrete probability distributions P and Q by

D O k ( P, Q) := ∥ P -Q∥ O k = ∥O k ( P -Q)∥ H .
(5)

D O k is the distance induced by ⟨•, •⟩ O k := ⟨O k (•), O k (•)⟩ H defined on D V × D V ,
which is a dot product : it is a symmetric and a semi-definite positive bilinear form thanks to the linearity of O k ; it is also definite positive (⟨u, u⟩ O k ≥ 0, ∀u and ⟨u, u⟩ O k = 0 ⇒ u = 0) because the null space of O k is reduced to zero.

The set of linear operators with zero null-space thus defines a family of distances. A question arises : how can we choose O k ? In the following, we exhibit a family of operators O k that are based on orthogonal projections, which ensures that this distances can be computed using the kernel. Interestingly, the MMD distance is one particular instance in this family. We leave the study of other possible choices of O k for future work.

O k maps D V , which is a subset of the discrete RKHS H, to Span ({k z } z∈V ), just as orthogonal projections defined in Lemma 2. Using these projections is then a natural way to build O k . Here, we consider a weighted sum of the projections on each feature k z , P {z} (u), for all z in V , i.e.,

O k : D V → Span ({k z } z∈V ) (6) u → O k (u) := z∈V o z P {z} (u) , with o z ̸ = 0 ∀z.
Before going further, we show that O k in ( 6) is a well-defined linear operator on D V , i.e., that the infinite sums z∈V P {z} (u) are convergent. In fact, we compute the value of O k (u) :

Lemma 3. Let V , k and H be as above, we have To make sure that

(i) (y, z) ∈ V 2 : P {y} (δ y ) = 1 k(y,y) k y and if z ̸ = y , P {z} (δ y ) = 0. (ii) u := n i=1 α i δ yi ∈ D V ⇒ O k (u) = n i=1 αioy i k(yi,yi) k yi ∈ Span ({k z } z∈V ).
D O k is a metric in D V , it suffices to check that Null(O k ) = {0}. Given that ∥O k (u)∥ 2 H = i α i o yi k(y i , y i ) k yi 2 H = i,j α i o yi k(y i , y i ) α j o yj k(y j , y j ) k(y i , y j ) (7) 
and that we have assumed that k is positive definite, Theorem 4. Let V , k, H be as above and O k : u ∈ D v → z∈V k(z, z)P {z} (u). Let P := x∈X p x δ x and Q := y∈Y q y δ y be two discrete probability distributions. We have

O k (u) = 0 ⇒ α i o yi k(y i , y i ) = 0 ∀i,
D O k ( P, Q) = MMD k ( P, Q).
proof . Since for all k(z, z) ̸ = 0, O k defined above fits (6) and

D O k is a distance. It is also clear that O k ( P) = x∈X p x k x so O k maps a discrete distribu- tion P (in D V ⊂ H) to its mean embedding μP (in H) so that D O k ( P, Q) = ∥O k ( P -Q)∥ H = ∥μ P -μQ ∥ H = MMD k ( P, Q).
Theorem 4 shows how MMD is a particular instance of the proposed discrete RKHS distances defined in Def 4. From a different perspective, it is interesting to note that our formulation provides a new understanding to the RKHS characterization of probability distributions and gives theoretical justification for the use of MMD with a large class of kernels, as soon as they satisfy the positive definiteness assumption and condition (3). This also complements the literature of RKHS embedding of measures [START_REF] Simon | Kernel distribution embeddings : Universal kernels, characteristic kernels and kernel metrics on distributions[END_REF][START_REF] Bharath K Sriperumbudur | Universality, characteristic kernels and rkhs embedding of measures[END_REF]. In the following we propose a fast approximation of MMD based on the Nyström method and discrete RKHS.

A Nyström-based MMD Approximation

The Nyström method is among the most used techniques for approximating the kernel Gram matrix of a large data sample [START_REF] Williams | Using the nyström method to speed up kernel machines[END_REF], building an approximate Gram matrix based on a small subset of the training points, called landmarks.

Consider a training set F := {x i } n i=1 of n training samples.To approximate the kernel matrix K F ∈ R n×n , the Nyström method randomly samples s ≪ n examples S := {x i } s i=1 ⊂ F and forms the n × s matrix K F,S := (k(x, x ′ )) (x,x ′ )∈F ×S , and the (small) s × s kernel matrix K S := (k(x, x ′ )) (x,x ′ )∈S 2 . The Nyström approximation is obtained as follows

KF := K F,S K + S K ⊤ F,S ≈ K,
where K + S denotes the pseudo-inverse of K S . The feature representation associated to the Nyström method is given by : φ(x) := [k(x 1 , x), . . . , k(x s , x)] (K + S )

1 2 ⊤ ,
and the approximated kernel function is knys (x, x ′ ) := ⟨ φ(x), φ(x ′ )⟩. It is straightforward to verify that, for all x i , x j ∈ F , ⟨ φ(x i ), φ(x j )⟩ = ( KF ) ij .

To take advantage of the framework of discrete RKHS, we consider the kernel k defined on a countable and infinite set V and obtained by regularizing knys , i.e., ∀x, y ∈ V , k(x, y) = knys (x, y) + λδ x (y), where λ > 0 is a regularization parameter (see end of Section 2). The following lemma shows that the MMD distance using the kernel k instead of k also defines a metric between discrete probability distributions.

Lemma 5. Let V and k be as above. If k is a regularized version of a Nyström approximation of the kernel function k : k(x, y) = knys (x, y) + λδ x (y), for all x, y ∈ V and with λ > 0, then

MMD k(•, •) is a metric on D V .
proof . This is a direct application of Theorem 4.

This result justifies the use of Nyström approximation with MMD, which is an interesting result in its own right. We now show that this translates to a significant computational saving compared to the Θ(n 2 d) cost of exact MMD using the kernel k. Lemma 6. Let V and k be as above. Let F be a finite subset of V of size n, and k be a regularized Nyström approximation of k using s landmarks. For any two discrete probability distributions P := x∈F p x δ x and Q := y∈F q y δ y , the computational complexity of

MMD k( P, Q) is Θ(nsd). proof . MMD 2 k( P, Q) = x,y∈F (p x -q x ) k(x, y)(p y - q y ) = vK F,S K + S K ⊤ F,S v ⊤ + λrv ⊤ ,
with v the row vector v = (p x -q x ) x∈F . This computation requires Θ(ns) operations once the matrices K F,S and K + S are known. Building these matrices requires Θ(nsd) operations.

We now address the question : how far is MMD k from MMD k ? To answer this question, we make use of recent advances on the performance quality of sampling methods on kernel matrices [GM16]. In the case of uniform sampling, assumptions about the coherence properties of the kernel matrix are required. The coherence of the top r-dimensional eigenspace of a n × n kernel matrix K, denoted by µ r , is defined as : µ r := n r max i∈{1,...,n} ∥U i ∥ 2 , where U is the n × r matrix containing the top r-eigenvectors of K.

Lemma 7. Let V , k and µ r be as above. Let F be a finite subset of V of size n, and k be a regularized Nyström approximation of k using s landmarks sampled uniformly at random from F and a regularization parameter λ > 0. Fix a failure probability δ ∈ (0, 1) and an accuracy factor ε ∈ (0, 1). For any two discrete probability distributions P := x∈F p x δ x and Q := y∈F q y δ y , if s ≥ 2µε -2 r ln (r/δ), then it holds, with probability at least 1 -3δ, that

MMD 2 k ( P, Q) -MMD 2 k( P, Q) ≤ (2 + 2 δ 2 (1 -ε) )∥K -K r ∥ * + 2λ,
where K r is the best rank-r approximation of the kernel matrix K, and ∥ • ∥ * denotes the nuclear norm.

proof . Let v be the row vector (p x -q x ) x∈F .

MMD 2 k ( P, Q) -MMD 2 k( P, Q) = Tr(Kr ⊤ v) -Tr( Kv ⊤ v) ≤ Tr (K -K F,S K + S K ⊤ F,S )v ⊤ v + λ∥v∥ 2 (a) ≤ ∥K -K F,S K + S K ⊤ F,S ∥ * ∥v ⊤ v∥ ∞ + λ∥v∥ 2 (b) ≤ (1 + 1 δ 2 (1 -ε) )∥K -K r ∥ * ∥v∥ 2 + λ∥v∥ 2 ,
where inequality (a) follows from Hölder's inequality [START_REF] Bhatia | Matrix analysis[END_REF], and inequality (b) follows from [GM16, Lemma 8]. Since x∈F p x = y∈F q y = 1 and 0 ≤ p x , q x ≤ 1, we have ∥v∥ 2 ≤ 2, which completes the proof.

Note that the quality of the bound can be improved when better sampling strategies, such as leverage score sampling, are used [GM16].

Experiments

We now turn our attention to empirically evaluate the Nyström based MMD approximation. We conduct experiments on the three sample problem in a simulated setting and on real data. For reproducibility, our code will be made publicly available.

The three-sample problem consists in the following : given three samples

X = {x i } nx i=1 , Y = {y i } ny i=1 and Z = {z i } nz
i=1 such that X and Y are generated from two different distributions (P X and P Y ), identify whether Z is generated from the same distribution as X or Y [Gut89, RM13] -where it is assumed, of course, that Z is generated from one of these two distributions. This problem can be addressed using a suitable distance that measures the similarity between probability distributions. In other words, given a distance D,

Dataset

Size Type N (0, 1) and N (0, 2) 30 000 synthetic Fast food1 10 000 real-world MUTAG [DLdCD + 91] 188 real-world

Table 1 -Datasets.

we decide that Z is generated from P X if D(P Z , P X ) < D(P Z , P Y ). Otherwise, we decide that Z ∼ P Y . Compared to the two-sample problem [GBR + 12a], which aims at answering the question whether two samples are identically distributed, no threshold is needed to make the decision.

Experimental Setup

We consider two different structures of data : vectors and graphs, that we summarize in Table 1. For vector data, we used the classical RBF kernel with

parameter σ = 1 n xi,xj ∈X ∥x i -x j ∥ 2 2 -1
as proposed in [START_REF] Brefeld | Efficient co-regularised least squares regression[END_REF], while for graph data we used the ShortestPath kernel [START_REF] Borgwardt | Shortest-path kernels on graphs[END_REF]. We only consider the case where X, Y and Z have the same number of data, but our framework is still valid if they have different sizes.

We compare our Nyström based MMD approximation (Nyström MMD) with three other methods : the Random Fourier Features based MMD (RFF MMD) [AKM + 17], the block MMD [START_REF] Zaremba | B-tests : Low variance kernel two-sample tests[END_REF] and the linear approximation (linear MMD) [GBR + 12a]. When possible, we also compute the exact value of the MMD (exact MMD). Remember that the complexity of the computation is in Θ(n 2 d) for exact MMD, Θ(nd) for linear MMD, and Θ(nsd) with s the number of data sampled for Nyström MMD, s the number of Fourier vectors sampled for RFF MMD and s the size of the blocks for block MMD. To compare methods of equivalent complexity, we fix the value s to log(n) for all three methods.

We are interested in the error in solving the threesample problem computed as the fraction of test sampled misplaced : error = |{z∈Z:z∼P Y }| |Z| . We also compute the running time. To further evaluate the quality of the MMD approximations, we compute the distance of the approximated MMD to the true value :

∆ X,Y := |MMD k (X, Y ) -MMD k(X, Y )|,
where MMD k is computed using one of the approximation methods : block MMD, RFF MMD, linear MMD 

Experimental Results

We first consider a synthetic dataset, consisting in 5000 samples for X, Y and Z and with P X = P Z = N (0, 1) and P Y = N (0, 2). The experiment is run 10 times. The three-sample problem in this case is pretty simple and all methods achieve a null error. The interest here lies in confirming that the actual running time scales with the complexity, and that the MMD approximation are good approximation. As shown in Figure 2(b) exact MMD has an exploding running time while the RFF and Nyström MMD have the same running time, and are faster than block-MMD, but slower than linear MMD. This is in line with the expected behaviour of these methods. We plot in Figure 2(a) the distance of the approximated MMD to the true value, ∆ X,Y , as a function of number of data n (and its variance in lighter colors). This plot shows that the Nyström and the RFF method have a similar accuracy, and are more efficient at approximating the true value of MMD than block MMD and linear MMD.

We now consider the FastFood dataset which contains the localisation of some restaurants in America. The whole dataset contains initially 600 classes. Let now consider our last dataset, MU-TAG [DLdCD + 91], which is a graph dataset for binary classification. We take X and Z from the set of graphs that are labelled +1, and Y from the set of graphs that are labelled -1. We have about n = 60 graphs in each set X, Y and Z. A useful kernel in this case is the ShortestPath kernel [START_REF] Brefeld | Efficient co-regularised least squares regression[END_REF]. We make the same experiments as above, and plot the results in Figure 4 where the error and running time are shown as a function of n and with s = log(n) and are averaged over 1000 runs. The RFF MMD method is not suitable for graph kernels. Since the number of data is small, one can compute exact MMD. In terms of running time, Nyström MMD is faster than exact and block MMD. Linear MMD is faster than Nyström MMD but suffers from a much higher error rate. Nyström MMD achieves a good trade-off between effectiveness and efficiency.

Conclusion

We uncovered a new way to make the connection between probability distributions and kernel methods, using tools of discrete RKHSs. It allowed us to come up with a novel framework for representing and comparing probability distributions, and to show that the MMD distance can be retrieved from this framework. Pushing the envelope further, we proposes a new fast approximation to the MMD distance, based on the Nyström method. Our MMD approximation is theoretically jus-tified for a large class of kernels, including graph kernels.

We finally have empirically evaluated our Nyström MMD on both simulated and real world datasets. We have shown that our MMD approximation achieves a good trade-off between error and running time in solving the three-sample problem.

Future work would focus on further studying the versatility of our framework and see how other distances between distributions, such as Wasserstein distances, fall into its realm. method for approximating a gram matrix for improved kernel-based learning. journal of machine learning research, 6 (12) 
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  with the o y being nonzero, it yields α i = 0 ∀i i.e. u = 0. Thus Null(O k ) = {0}.This says any operator O k as in (6) defines a distance D O k on D V . A key observation is that maximum mean discrepancy (MMD) is an instance of D O k .
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 2 Figure 2 -Three sample problem on N (0, 1) and N (0, 2) data.
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 3 Figure 3 -Three sample problem on the the Fast food dataset.
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 4 Figure 4 -Three-sample problem on the MUTAG dataset.
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