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Abstract

We model dwell times for trains subject to a possibly dense timetable based on a rich data
set containing both railway operations variables and passenger flows variables, which is rare in the
literature. Another distinguishing feature of our modeling consists of building a single statistical
model for actual dwell times at all stations and in all contexts, not just in constrained situations
like late arrivals or not just for some minimum dwell time. These models are fully data-driven
and stem from either linear regressions with multiplicative effects or machine-learning methods
like random forests, both carefully tuned on training data sets. While railway operations variables
remain key for the modeling of dwell time, we are able to characterize the added value of passenger
flows variables. Overall, they lead to an average reduction of the global modeling error by about
0.5 s, with up to 5 s – 10 s average improvements in challenging situations consisting, e.g., of late
arrivals or associated with high passenger affluence. We also study which are the most influential
variables among the available operations and passenger flows variables, and we do so globally and
by regime of punctuality: for instance, passenger flows variables, and in particular, the passenger
affluence at the critical door, are the most influential variables for trains suffering a late arrival,
while the scheduled dwell time and the deviation to the scheduled arrival time are the most impor-
tant variables for early trains.

Keywords: dwell time; timetables; modeling; passenger flows; machine-learning methods (linear
regression, random forests, gradient boosting with trees)

1. Introduction and literature review

We model dwell times for trains subject to a possibly dense timetable (up to 24 trains per hour during
peak hours) in the greater Paris area (SNCF operator). We do so based on two sets of variables: railway
operations and timetable (scheduled dwell time, deviation to scheduled arrival time, train length, etc.),
on the one hand; passenger flows (numbers of alighting and boarding passengers, occupancy rate),
on the other hand. We consider two railway lines, one significantly more dense than the other, but
with a common point: the vast majority of their trains is equipped with automatic passenger counting
(APC) device at each door. We may therefore use the breakdown of alighting and boarding numbers
by door, with a particular interest on the critical door.

Only few earlier references could use such a combination of variables based on railway operations
and on passenger flows. Among these, Cornet et al. [2019] rely on similar data (same greater Paris area,
same SNCF operator) and model some excess dwell time with respect to some minimum dwell time
(see below), solely based on passenger flows and not using the available railway operations variables.
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Also, Palmqvist et al. [2020] model dwell times in a setting with a more flexible and less precise
timetable (main line trains in Sweden), relying on passenger flows (alighting, boarding, and crowding
factor) and on the deviation to scheduled arrival time; their contribution, however, cannot leverage a
variable like the scheduled dwell time ytheo, as the latter equals a single value of 42 s for all stations
and trains. Thus, the quality of railway operations data prevents a direct comparison of their results
to ours; in particular, they had not exhibited any effect of the deviation to scheduled arrival time on
dwell time, which is, on the contrary, one of the main determinants of our models for dwell time.

Our approach is to build a single statistical model for dwell times at all stations and in all contexts,
which the literature does not often offer. A key variable to be considered to that end is the regime of
punctuality of a train at a given station (early arrival, i.e., arrival before the theoretical arrival time;
late arrival, i.e., arrival after the theoretical departure time; arrival on time, i.e., arrival between the
theoretical arrival and departure times). An important note at this stage is that we directly tackle
the dwell time (the difference between the departure and the arrival times), and not some notion of
“minimum” dwell time (given, e.g., by the alighting and boarding time, or by restricting the attention
to the dwell time in constrained situations like late arrival).

We process the variables described above using linear regressions with or without interactions,
as well as standard machine-learning methods (random forests, gradient boosting with trees, neural
networks), as in Kecman and Goverde [2015]. Models inspired by the latter will form our benchmark,
as they tackle dwell times in all situations, including early arrivals—which most references do not
offer. As in Kecman and Goverde [2015], these benchmark models will be built solely on operations
variables: with our data set we will then be able to characterize the added value of passenger flows
variables to model dwell time in a railway context. In particular, we want to determine when and how
much passenger flows impact railway operations.

We now detail several streams of the literature alluded at in the overall view provided above.

Dwell time modeling solely based on railway operations and timetable constraints. On
a data set of railway circulation between the Hague and Rotterdam with scheduled stops, Hansen
et al. [2010] exhibited a piece-wise linear relationship between dwell time and arrival delay: trains
that are early or on time experience average dwell times that decrease with the earliness factor ∆a,
while the average dwell times of trains out of schedule are independent of how late these trains are.
Of course, an explanation is that train drivers must wait the theoretical departure time even if the
alighting and boarding process is over. We obtain a similar relationship on our data set, see Figure 3.
Kecman and Goverde [2015] also consider data collected on trains circulating between the Hague and
Rotterdam: their scheduled dwell times ytheo, deviations ∆a to scheduled arrival time, and train types.
These variables are also available on our data set and we formally define them in Section 2. They
process these variables using linear regression-type methods or random forests and note that the thus
constructed models for dwell times should still be improved.

Of interest is also the literature that rather aims to forecast dwell times, e.g., in some auto-
regressive manner by considering past dwell times as features (at the same station for earlier trains or
at earlier stations for the same train). We may cite Pritchard et al. [2021] for a UK railway network,
though they only discuss delayed trains. (See also Li et al. [2016], for a Dutch railway network without
a strict theoretical departure time at all stops.)

Modeling of (lower bounds on) dwell time based on passenger flows. The impact of pas-
senger flows on dwell time was first and mostly studied for transportation means without a strict
theoretical departure time, like bus, metro or light railway (as these passengers flows are then the only
source of information to model dwell time). The seminal work of Levinson [1983] for buses exhibited
an affine relationship between dwell time at the bus scale and passenger affluence, i.e., the sum A+B
of the numbers A of alighting and B of boarding passengers. Lin and Wilson [1992] for light railway
in Boston and Puong [2000] for metro also in Boston (MBTA Red line) studied a multiple linear re-
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Figure 1: Decomposition of the total dwell time in railway context.

gression modeling with variables A and B considered separately and together with a crowding factor
C. All these references were based on small-scale data obtained by human observations.

For the mass transit modes described in the previous paragraph, the dwell time equals the time for
alighting and boarding (also known as the passenger exchange time—depicted in orange in Figure 1),
i.e., the time between the first passenger exchange and the last passenger exchange, plus a technical
time around the latter (e.g., to open and close the doors and to arrive or leave the stop—in grey
in Figure 1). In a railway context with strict theoretical departure time, the dwell time contains a
third component: a buffer time (in green in Figure 1), corresponding to some additional waiting time
(till the strict theoretical departure time) when the train is early. This buffer exists by design, as
some operational margin is usually added when timetables are conceived, for the sake of robustness.
The literature thus rather focused on some lower bounds on the dwell time, or on the dwell time in
constrained situations like late arrivals when there is no buffer time.

Among them, Buchmüller et al. [2008] studied the alighting/boarding time only for train stops
without theoretical departure time constraints. Pedersen et al. [2018] and Medeossi and Nash [2020]
reduced their attention to delayed trains (for which it is essentially assumed that their dwell times
equal the alighting/boarding time plus a technical time, as in the case of buses and metros). The
intuition behind the descriptive study by Pedersen et al. [2018] was indeed that passenger flows
variables should be useful in these situations. Finally, Cornet et al. [2019] introduce some concept
of empirically minimal dwell time, which they then model (essentially in some affine way). Their
concept stems from running a PCA on the dwell time based on the numbers A and B of alighting and
boarding passengers and the load L of the train; it turns out that the scatterplot of dwell time on the
first principal component of this PCA reveals an affine lower bound.

We will propose a complete modeling of dwell time (i.e., for all stations and all trains) using
passenger flows variables on top of railway operations variables. In the presence of a strict theoretical
departure time, passenger flows variables provide useful additional information for dwell time modeling
on top of railway operations variables (which remain the most critical variables to be used).

A specific discussion of passenger flows by door. It is intuitively clear (and was later demon-
strated) that the alighting/boarding time discussed above depends on the passenger affluences Ai+Bi

by door i and not only on the total passenger affluence A + B. However, these passenger affluences
Ai+Bi are not uniform at all and strongly depend, for each station, on the closeness to the entry/exit
of the platform (see the studies by Wirasinghe and Szplett [1984] and Wiggenraad [2001]). Yet, most
data sets with passenger flows measure them only at the train scale and not at the door scale; their
treatment then has to rely on an unrealistic assumption of uniform distribution of passenger affluence
by door, i.e., Ai+Bi = (A+B)/I, where I is the number of doors. For recent examples, see Palmqvist
et al. [2020] and Medeossi and Nash [2020]. (We note that Wirasinghe and Szplett [1984] proposed a
theoretical model based on Gumbel’s distribution for boarding numbers by door based on the location
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of exit/entry platforms and the number of doors.)

On the contrary, our data set is richer than the one of Cornet et al. [2019] as it also contains
door-by-door measures Ai and Bi of alighting and boarding numbers. We may then define the critical
passenger affluence M , which is the maximum of the Ai+Bi over the doors i, and see its added value
on the modeling. If there is some (which is what we will show), then, somehow, it is proven that the
assumption of uniform distribution of passenger affluence by door is unrealistic. However, as discussed
in Section 5 based on the survey by Kuipers et al. [2021], there is room for further exploration of ways
for defining critical passenger flows.

We cannot define a meaningful notion of crowding factor at door scale as the trains considered have
corridor connections between coaches. We note that in a different context with no timetable (Beijing
subway Line 13) and thus for a modeling solely based on passenger flows, Chu et al. [2015] already
modeled the dwell time (equal to alighting/boarding time plus a fixed technical time in this context)
based on boarding numbers per door Bi, together with global alighting numbers A and crowding
factor C (which they turn into per-door quantities by diving by the number I of doors, i.e., using
the unrealistic assumption of uniform distribution). Their data set was however of small scale (it was
obtained by human observations).

Outline of the article

We describe the available data set and the railway context in Section 2: as discussed above, unlike
most previous studies in the literature, it offers both railway operations variables and passenger flows
variables. We then explain in Section 3 which machine-learning methods we consider to build, in a
data-driven way, models for dwell time that can be used for all stations, all working days, all hours,
and all trains. The modeling performance obtained by these models is discussed in Section 4, both at
a global and at a “local” level. We summarize our conclusions in Section 5.

2. Methodology: description of the data set

We consider a suburban railway network located in the Greater Paris area, and operated by Tran-
silien SNCF. More precisely, we are interested in two different branches of lines H and L, featuring
respectively 13 stations (11 without origin/terminus) and 11 stations (9 without origin/terminus);
see Figure 2. We picked them because they are completely or almost completely run with Z50000-
type rolling stocks equipped both with on-train monitoring recorder (OTMR) systems, which measure
speed, arrival and departure times more precisely than track circuits, and with an automatic passenger
counting (APC) system, which measures, for each door of the rolling stocks, the numbers of passengers
boarding and alighting at each stop. Z50000-type rolling stocks on lines H and L are composed of 8
and 7 communicating coaches, respectively. For both lines, the mean seating and total capacities by
coach equal respectively 59 seats and 119 passengers. The doors width is 1.96 m. We are primarily
interested in line L and provide a study of line H in Appendix C.2; we explain in depth at the end of
this section why we do so.

The data set spans 18 months, from March 15, 2018 to September 16, 2019. Each daily train ride
comes with a unique ID, which we will refer to as the train ID. Three primary keys will therefore
be used to refer to individual data points: the train number k, station s and day d; see Table 1.
We merge the two data sources (OTMR data and APC data) by matching the triplets (k, s, d). We
keep all triplets present in both data sources and delete the other ones. We do not impose further
restrictions, like the availability of all triplets (k, s′, d) for a given day d and a given train ride k when
s′ spans the set of stations. The further pre-processing steps carried out are described below.

Description of the variables. The variables initially available for each triplet (k, s, d) are summa-
rized in Table 2. Table 3 lists the variables created based on the ones of Table 2.
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Table 1: Primary-key variables.

Variable Notation

Train number k

Station s

Day d

Table 2: Railway operations variables (top and middle parts of the table, lower case) and passenger
flow variables (bottom part of the table, upper case).

Variable Domain and units Notation

Variable of interest

– Observed dwell time {0 s, 2 s, . . . , 180 s} yobsk,s,d = dobsk,s,d − aobsk,s,d

Railway operations [Timetable data]

– Theoretical (scheduled) arrival time 10 s steps atheok,s,d

– Theoretical (scheduled) departure time 10 s steps dtheok,s,d

– Theoretical (scheduled) dwell time {0 s, 10 s, . . . , 180 s} ytheok,s,d = dtheok,s,d − atheok,s,d

Railway operations [OTMR data]

– Observed arrival time 2 s steps aobsk,s,d

– Observed departure time 2 s steps dobsk,s,d

– Capacity (maximal passenger load) {720; 922; 1,520; 1,844} ck,d

– Type {single, double} tk,d

Passenger flows [APC data]

– Alighting (number of passengers alighting) {0, 1, 2, 3, 4, . . . } Ak,s,d

– Boarding (number of passengers boarding) {0, 1, 2, 3, 4, . . . } Bk,s,d

– Load of the train after departure {0, 1, 2, 3, 4, . . . } Lk,s,d

Table 3: Processed variables (with the same breakdown as in Table 2).

Variable Domain and units Notation

Railway operations

– Way {0,1} wk

wk = 1 if train k goes from Paris to suburbs, = 0 from suburbs to Paris

– Deviation to scheduled arrival time [−600 s, 600 s] ∆ak,s,d = aobsk,s,d − atheok,s,d

– Regime of punctuality {1, 2, 3} zk,s,d

= 1 if train is early, aobsk,s,d < atheok,s,d;

= 2 if on time, atheok,s,d ⩽ aobsk,s,d ⩽ dtheok,s,d;

= 3 if late, dtheok,s,d < aobsk,s,d

Passenger flows

– Crowding factor [0, 2] Ck,s,d = Lk,s,d/ck,s,d

– Passenger affluence at the critical door {0, 1, 2, 3, 4, . . . } Mk,s,d

Coulaud, Keribin and Stoltz 5
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Figure 2: Branches of interest of lines H and L of the suburban railway network of the Greater Paris.

The railway operations variables of Table 2 consist first of actual (observed) and scheduled (theoret-
ical) arrival times aobs and atheo, and actual (observed) and scheduled (theoretical) departure times dobs

and dtheo. Dwell times (observed and theoretical ones) are defined as the differences yobs = dobs−aobs

and ytheo = dtheo − atheo. The variable of interest is the observed dwell time yobs. All these variables
are indexed by triplets (k, s, d). Two final variables are only indexed by (k, d) as they only depend
on the train rides, not on the specific stations: the capacity c of the rolling stocks (the maximal
passenger load allowed) and their types t. The type is “single” for single-unit trains and “double”
for double-unit trains. The latter are mostly used during rush hours to increase capacity. Scheduled
times were obtained from the timetables while other railway operations variables were picked in the
OTMR data set.

Based on the variables just described, we may compute three other railway operations variables
described in Table 3. The way w (that only depends on the train number k, i.e., on the ride) indicates
whether the train goes from Paris to its suburbs, or from a suburban area to Paris1. The deviation to
the scheduled arrival time ∆a is the difference aobs − atheo between the actual arrival time aobs and
the scheduled one atheo. Three situations may actually arise in terms of punctuality, and this leads to
a final, categorical, variable called “Regime of punctuality” and denoted by z. Early trains, i.e., trains
for which aobs < atheo, will be tagged with z = 1. Late arrivals are tagged with z = 3 and will refer to
trains arriving after the scheduled departure time, i.e., for which aobs > dtheo. (By definition, trains
with a late arrival are not tied anymore by the constraint of not leaving before the scheduled departure
time.) The third category z = 2 corresponds to trains on time, for which atheo ⩽ aobs ⩽ dtheo.

We only use some of the passenger flows variables available. Indeed, the APC data set reports the
numbers of passengers alighting and boarding for each train at each station, globally (variables A and
B) and for each door i (variables Ai and Bi). All these variables are indexed by triplets (k, s, d). The
values available in the APC data set are not raw data but were obtained after some pre-processing

1This is an important variable in the Greater Paris area: at morning peak hours, trains from the suburbs to Paris are
crowded and suffer more frequently from delays, while trains from Paris to the suburbs circulate in a smoother fashion.
In the afternoon peak hours, the situation is the opposite one.
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ensuring consistency (e.g., total numbers A and B are the sums of the by-door quantities Ai and Bi;
the sums of the boarding numbers along the ride equal the sums of the alighting numbers). Such a
pre-processing is required because of the measurement noise due to the infra-red sensor.

To avoid considering too many variables, we only use the total numbers A and B of alighting and
boarding passengers (Table 2), as well as the passenger affluence at the critical door, defined as the
maximal number, over the I doors, of alighting and boarding passengers at a given door i:

M = max
{
Ai +Bi : i = 1, . . . , I

}
. (1)

The passenger affluence at the critical door M is thus a processed variable (Table 3). A second
processed variable is the crowding factor C = L/c, defined as the ratio between the load L and the
maximal capacity c. We observe some values of C larger than 1 in the data set.

All in all, our data set is a unique combination of railway operations variables (typically accessible)
with rich passenger flows variables (seldom available). The closest data set in the literature is the one
of Cornet et al. [2019], which however does not contain by-door measures of passenger affluence.

Modeling vs. prediction. The focus of the present article is only on modeling dwell time based
on the explanatory variables described above. The passenger flows variables are available in real time
(i.e., right after the train leaves a station) while the railway operations variables are only known with
some delay (they are not transmitted in real time). To move from modeling to prediction we would
need to predict passenger flows variables for the next station and know the railway operations variables
in real time (e.g., know the deviation ∆a to scheduled arrival when the train stops and the passenger
exchange starts taking place). It turns out that the APC data set actually contains some railway
operations variables, measured in real time, but they are less reliable than the OTMR measurements.
In any case, we would need predictions for passengers flows. This is why the focus of the present
article is only on modeling (i.e., explaining the determinants of dwell time) and not on forecasting.

Further pre-processing of the data / Data volume. On top of the pre-processing described
above, which consisted of keeping only observations and variables relative to triplets (k, s, d) present
in both data sources (OTMR and APC), we performed some data cleaning. First, we deleted triplets
(k, s, d) corresponding to anomalous situations: when the observed dwell time yobsk,s,d is longer than 180
seconds (as Cornet et al. [2019], Dueker et al. [2004] did) or when current cumulative delays on the
ride are larger than 10 minutes.

Doing so, we get more than 350,000 observations for line L and 416,000 for line H.

Railway contexts: line L is more important than line H. In this article we only report results
for line L but discuss line H in Appendix C.2. We explain here the several reasons why we favor line
L over line H in our study.

First, the passenger flows on line L are more varied than on line H. On line H, most of the passenger
flows take place at terminus, while on line L, there exist major intermediate stations (like La Défense
Grande Arche) also generating major passenger flows. The average passenger volumes vary from 1,300
to 37,000 passengers per day on the considered branch of line L.

Second, the railway operations are more challenging on line L than on line H. On the one hand,
the traffic on line L is more dense than the one of line H for stations distant from Paris, on peak
hours: typically, a train every 5 minutes on line L versus every 15 minutes on line H. (For stations
close to Paris, the density is similar, with about 22 to 24 trains per hour, that is, a train every 2 to 3
minutes.) On the other hand, lines L and H also differ in terms of punctuality, with a greater variety
of situations for line L: most of the train rides on line H end up being on time or late, while there is
also a significant fraction of early train rides on line L on top of on-time and late train rides.

Finally, boarding volumes on line L are sufficiently higher than on line H to result in larger crowding
factors, despite the higher density of trains.

Coulaud, Keribin and Stoltz 7
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Figure 3: Observed dwell times (y–axis, seconds) by deviations ∆a to scheduled arrival times (x–axis,
seconds); we also report average dwell times and standard errors thereof, based on some generalized
additive modeling. (The corresponding lines are extremely close to each other.) Three regimes are
considered: early trains, trains on time, late trains.

Figure 3 depicts the observed dwell times, as well as the averages thereof, on the considered
branch of line L, by deviations ∆a to scheduled arrival times. The averages and standard errors were
obtained by a generalized additive method modeling based on 10 cubic splines, see Wood [2006]. We
build confidence intervals around the averages of half-widths ±2 standard errors.

3. Methodology: regression models and machine-learning methods

We model the observed dwell times yobsk,s,d as a stochastic function of some of the variables described
in Tables 2 and 3, namely,

yobsk,s,d = f(s, wk, tk,d, y
theo
k,s,d, ∆ak,s,d, zk,s,d, Ak,s,d, Bk,s,d, Ck,s,d, Mk,s,d) + εk,s,d , (2)

where f is some deterministic function and the additive residual terms εk,s,d are random variables
(assumptions thereon will depend on each method used, see below). We justify in Section 3.1 below
the choice of the variables used in Equation (2).

We are interested in some statistical modeling and do not propose simulation or probabilistic
models (as did D’Acierno et al. [2017] or Cornet et al. [2019]). Also, we model directly yobsk,s,d, and not

yobs − ytheo, as we want to separate strictly the respective information provided by passenger flows
variables and railway operations variables. See Appendix C.1 for more details and a report of the
performance obtained by rather modeling yobs − ytheo.

3.1. Justification of the variables used

First, for each Transilien network branch, the combination of the station s and the way wk indicates on
which specific platform the train will stop. This is important in light of studies like the one by Daamen
et al. [2008], who confirmed the major impact of platform design (stepping gap, height difference, etc.)
on the alighting and boarding time.

8 Coulaud, Keribin and Stoltz
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Now, out of the many railway operations variables available, we only use ytheok,s,d, ∆ak,s,d, zk,s,d, tk,d.
We do so because we want to build a model that can be easily grasped. First, the scheduled dwell
time ytheo of course provides some benchmark on the expected dwell times; this piece of information is
typically used in modelings, in some direct or indirect way; see, among others, Kecman and Goverde
[2015] and Li et al. [2016]. We already explained that Hansen et al. [2010] showed how important the
deviation to scheduled arrival time ∆a is to explain the dwell times, and Figure 3 illustrated it. We
build regimes of punctuality z based on ∆a (see Table 3) to isolate unconstrained dwell times (for
late trains, z = 3) from dwell times constrained by the scheduled departure times. In particular, we
expect that early trains which do not face too high a passenger affluence need to wait till the scheduled
departure time and hence, have an observed dwell time equal to ytheo+ |∆a|, the scheduled dwell time
plus how early they were. On the contrary, we expect that drivers of late trains will try to shorten
dwell times as much as possible.

Finally, the type t of train is also important: it provides an indirect idea of the expected passenger
affluence, as double-unit trains are only used when necessary; this idea is inspired from Kecman and
Goverde [2015]. It may also help because double-unit trains and single-unit trains occupy different
shares of the platform, and we already mentioned how important the design of the platform is. How-
ever, we chose not to consider the other railway operations variables, that should either be irrelevant
(scheduled departure time, scheduled and observed arrival times should not convey any information
beyond what is already contained in ∆a and ytheo) or be future variables (the observed departure time
is basically what is to be modeled).

As far as passenger flows variables are considered, we consider them all except the load L of the
train, as the latter only has a meaning relative to the train capacity—hence the crowding factor C.

Remark: no auto-regressive modeling. Our aim is to model dwell times based on the current
context (state of railway operations, passenger affluence, etc.) and determine which elements of
this context have the most important influence on dwell time. Our aim is not to forecast dwell times.
Therefore, we do not consider auto-regressive-type models, i.e., we do not include variables like yobsk−1,s,d

or yobsk,s−1,d in the modeling of yobsk,s,d. See Li et al. [2016] and Pritchard et al. [2021] for such modelings.

Subsets of variables: RO, PF, M. As we want to determine which variables are most influential,
we group them in two groups and a half. We always use s and wk and cluster the rest of the variables
into

� Railway operations variables [short-hand notation “RO”]: ytheok,s,d, ∆ak,s,d, zk,s,d, tk,d;

� Passenger flows variables [short-hand notation “PF”], not taking into account the passenger
affluence at the critical door: Ak,s,d, Bk,s,d, Ck,s,d;

� Passenger affluence at the critical door [short-hand notation “M”]: Mk,s,d.

We will actually run our methods with s, wk and either just RO variables, or just PF variables, or
RO+PF variables, or RO+PF+M variables.

3.2. One model for all stations, all working days, all hours, and all trains

We restrict our attention to working days (i.e., Mondays to Fridays that are not public holidays nor
belong to school holidays). We do so because we want to assess the impact of passenger flows on dwell
time, and these flows are limited on non-working days. Our second aim is to build models suitable for
all stations, all working days, at all hours and for all trains simultaneously, using only variables s (the
station) and wk (the way of train k) to locally adapt the model.

We however do not try to provide a general model that would work for all train networks (as in
Harris and Anderson [2007] and Li et al. [2016]), but rather provide a general methodology to adjust
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specific dwell-time models for each (sub)network suitably equipped in terms of monitoring devices
(APC and OTMR ones).

Linear regression models (see, among others, Lam et al. [1998], Harris and Anderson [2007],
Palmqvist et al. [2020]) are a popular such general methodology, that leads to easily interpretable
models. Even with linear regression models, some non-linear modeling may be achieved by consid-
ering multiplicative effects, which we will do. Machine-learning models were later considered (see,
among others, Kecman and Goverde [2015]) to improve the accuracy of the modeling based on linear
regressions, at the cost of building black-box models which are highly non-linear per design.

We describe the linear regression models considered in Section 3.3, and then mention the machine-
learning methods considered: random forests and gradient boosting in Section 3.4, and neural networks
in Section 3.5. We provide concise descriptions of these machine-learning methods in Appendix A and
refer interested readers to Hastie et al. [2009] for deeper expositions. Finally, we explain in Section 3.6
how to tune these methods (on a train set) and evaluate them in a fair way (on a test set).

3.3. Linear regression models (with additive or multiplicative effects)

The simplest version of linear regression models uses an affine function f in Equation (2). In f , the
quantitative variables, namely, ytheok,s,d and ∆ak,s,d when RO variables are considered, Ak,s,d, Bk,s,d,
Ck,s,d when PF variables are considered, and Mk,s,d for the M variable, are each associated with slope
coefficients denoted by β(y), β(∆a), β(A), β(B), β(C), and β(M), respectively. As for the categorical
variables, namely, s and wk in all cases, and zk,s,d and tk,d when RO variables are considered, we
include them by considering K − 1 indicator variables, where K denotes the number of modalities
taken. For instance, we denote by S the number of stations and index them by 1, . . . , S; we take
the last station as a reference modality and the regression function f thus features S − 1 coefficients
βstation
s′ , where s′ ∈ {1, . . . , S− 1}. Similarly, for t and w, which both only take two values, we take the

modalities “single” and w = 0 (from suburbs to Paris) as reference values, and the regression function
f features the coefficient βtype and βway. Finally, for the variable z which take three modalities, we pick
z = 2 (trains on time) as a reference value and thus have two coefficients βearly and βlate for inclusion
in f . We denote the global intercept by β0. All in all, with the simultaneous consideration of the RO,
PF, and M variables, we use in Equation (2)

f(s, wk, tk,d, y
theo
k,s,d, ∆ak,s,d, zk,s,d, Ak,s,d, Bk,s,d, Ck,s,d, Mk,s,d) (3)

= β0 + βway1[wk=1] +
S−1∑

s′=1

βstation
s′ 1[s=s′]

}
in all cases

+ β(∆a)∆ak,s,d + β(y) ytheok,s,d + βtype1[tk,d=double] + βearly1[zk,s,d=1] + βlate1[zk,s,d=3]

}
RO variables

+ β(A)Ak,s,d + β(B)Bk,s,d + β(C)Ck,s,d + β(M)Mk,s,d

}
PF+M variables

If we only use some of these variables, we suppress some terms in the equation above (e.g., the second
line if we only use the PF+M variables; or the term β(M)Mk,s,d if we use the RO+PF variables).

Linear regression with additive effects. We call the model above the linear regression with
additive effects. It features S + 1 coefficients in all cases, plus 5 coefficients when RO variables are
included, 3 when PF variables are used, and 1 for the M variable, respectively. This leads to the
numbers of coefficient stated in the first line of Table 4.

Multiplicative effect of ∆a by z. To take into consideration the special relation between the dwell
time and the deviation to scheduled arrival time (see Figure 3), we provide a different affine modeling
in terms of ∆ak,s,d for each value of zk,s,d. Put differently, instead of a single slope coefficient β(∆a)
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Table 4: Numbers of coefficients of the various linear regressions considered, for line L (for which
there are S = 10 stations).

Variables used

PF RO RO+PF RO+PF+M

Additive effects 14 16 19 20

Multiplicative effect of ∆a by z 14 18 21 22

Multiplicative effects by (s, w, z) ⩾ 180 ⩾ 120 ⩾ 300 ⩾ 360

in front of ∆ak,s,d, we provide a breakdown by punctuality zk,s,d ∈ {1, 2, 3} and use three different

slope coefficients β
(∆a)
1 , β

(∆a)
2 , β

(∆a)
3 . We do this on top of setting different intercept levels through

the consideration of βearly and βlate. That is, with the simultaneous consideration of the RO, PF, and
M variables, we use in Equation (2)

f(s, wk, tk,d, y
theo
k,s,d, ∆ak,s,d, zk,s,d, Bk,s,d, Ak,s,d, Ck,s,d, Mk,s,d) (4)

= β0 + βway1[wk=1] +

S−1∑

s′=1

βstation
s′ 1[s=s′]

}
in all cases

+
∑

z∈{1,2,3}

1[zk,s,d=z] β
(∆a)
z ∆ak,s,d

}
RO variables, new part: interaction between ∆a and z

+ β(y) ytheok,s,d + βtype1[tk,d=double] + βearly1[zk,s,d=1] + βlate1[zk,s,d=3]

}
RO variables, no change

+ β(A)Ak,s,d + β(B)Bk,s,d + β(C)Ck,s,d + β(M)Mk,s,d

}
PF+M variables

We call the model above the linear regression with a multiplicative effect of ∆a by z. When RO
variables are considered, it contains two additional coefficients with respect to the model with additive
effects and does not differ from the latter when RO variables are omitted; see the second line of Table 4.

Additional multiplicative effects. We may have the slope coefficients, as well as the intercepts,
vary by pairs (s, z) or even, triplets (s, w, z) to locally tailor the model to the stations and to the
regime of punctuality; i.e., with PF variables, the regression function f would, for instance, feature
terms like

∑

s′∈{1,...,S}
w∈{0,1}
z∈{1,2,3}

1[ s=s′,
wk=w,
zk,s,d=z

] β(A)
s,w,z Ak,s,d +

∑

s′∈{1,...,S}
w∈{0,1}
z∈{1,2,3}

1[ s=s′,
wk=w,
zk,s,d=z

] β(B)
s,w,z Bk,s,d +

∑

s′∈{1,...,S}
w∈{0,1}
z∈{1,2,3}

1[ s=s′,
wk=w,
zk,s,d=z

] β(C)
s,w,z Ck,s,d

(5)
instead of β(A)Ak,s,d + β(B)Bk,s,d + β(C)Ck,s,d. For multiplicative effects by triplets, we end up with
models with at least 6S coefficients per quantitative variable considered (the total number of coefficient
depending on the specific dependencies considered for the intercepts); see the third line of Table 4.
We tried many formulations and all got a similar performance.

The linear models discussed in this section are reference models and are mostly of interest for
the sake of comparison with more complex, machine-learning, methods, which often exhibit a better
performance, at the cost of not leading to statistical models, i.e., closed-form relationships that may
be interpreted. We consider two methods based on regression trees, which we discuss now, and one
on neural networks, which we discuss later.
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3.4. Machine-learning methods based on regression trees:
random forests and gradient boosting

Machine-learning methods based on regression trees were already considered by the literature on
transportation systems: Kecman and Goverde [2015] used random forests to model dwell time for trains
circulating between the Hague and Rotterdam, based on similar railway operations (RO) variables as
we consider in this article; Ding et al. [2016] used gradient boosting and were interested in short-term
metro ridership forecasting (next 15 minutes) on three major Beijing stations. Zhang and Haghani
[2015] considered both methods to forecast car travel time on a motorway section in Maryland; in
their study, boosting methods slightly outperformed random forests. All three references present in
details random forests and gradient boosting (and do so by first introducing regression trees). We also
provide a description of our own in Appendix A, which introduces all quantities T , m, η, F , etc., used
below in the indications of how we implemented these methods.

Random forests. We implemented random forests using the R package ranger (see Wright and
Ziegler, 2017; it is better suited to large data sets than, e.g., the randomForest package). It uses two
parameters, ntree for the number of trees T and mtry for the number m of variables chosen at each
split. Both are tuned by cross validation, see Section 3.6. The bootstrapped data samples are of the
same size as the original data set.

Gradient boosting with regression trees. The specific method at hand is XGBoost by Chen and
Guestrin [2016]. We use the R package xgboost. The XGBoost method may be finely tuned through
a few dozens of parameters, including the choice of the tree set F ; we use the default values, except
for the number of iterations T and the step size η (which correspond to the parameters nrounds and
eta, respectively), which we tune by cross validation, see Section 3.6. It is a common choice (both
in machine-learning competitions and in the transportation literature, see Ding et al., 2016) to focus
mostly on these two parameters.

3.5. Feed-forward neural networks

Artificial neural networks (see Goodfellow et al., 2016) are a popular method for designing highly
non-linear predictors, in all fields of science and engineering, including transportation research. They
are considered in transportation research about public transports with relatively simple architectures,
typically based on at most one hidden layer. For instance, Yaghini et al. [2013] used such simple
neural networks to classify train delays for Iranian railways, while Amita et al. [2015] did so to predict
bus running times in Dehli based on GPS data. In traffic literature more complex architectures are
often considered, as did Li et al. [2018] for the forecasting of road traffic flows on two data sets
from California highways. They compare two methods, a dense feed-forward neural network with two
hidden layers of 256 nodes each and a more complex diffusion convolution recurrent neural network.
As we face a public-transport application, we do not consider the latter method and only proceed with
feed-forward neural networks.

The mentioned references all consider different architectures for their feed-forward neural networks:
to a great extent, the choice of the architecture of a neural network is subjective and relies on engi-
neering experience. However, in this work, we consider the number of hidden layers H and the number
N of nodes per layer as tuning parameters (to be chosen based on data through cross validation, see
Section 3.6).

The architecture considered for our feed-forward networks is depicted in Figure 4; it is composed of
an input layer, of H hidden dense layers (each with N nodes), and of an output layer. The translation
of this architecture into a specific modeling f(Xk,s,d) is provided, for the sake of completeness, in
Appendix A.
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Figure 4: Architecture of the feed-forward networks considered; the σ boxes correspond to the
application of the rectified linear unit (ReLU) activation function σ(x) = max{x, 0} depicted on the
right.

Table 5: Grids for picking the hyperparameters (a.k.a. tuning parameters) on the train set.

Method Hyperparameter #1 Hyperparameter #2

Random forests m ∈ {1, 2, . . . , 15} T ∈ {1, 10, 50, 100, 500, 1000, 5000}
Gradient boosting

with regression trees

η ∈ {0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.5}

T ∈ {1, 200, 600, 1000,
2000, 6000, 8000}

Feed-forward

neural networks
H ∈ {1, 2, 3, 4, 5, 6} N ∈ {32, 64, 128, 256, 512}

For our implementation, we use the R package keras to build the architecture and the R package
tensorflow to train the network. The model is trained with batch size 32 and mean absolute error as
the loss function (see Section 3.6). We use the classical Adam optimizer, which is based on stochastic
sampling, to compute gradients. We run 50 epochs, not more (to avoid over-fitting), not fewer (to
train sufficiently the parameters).

3.6. Fair assessment of the performance:
picking parameters on a train set, and evaluating performance on a test set

All methods above require some training on historical data. Fitting the coefficients of the linear
regression models on such historical data is straightforward. Machine-learning techniques (random
forests, gradient boosting with regression trees, and feed-forward neural networks) require a more
sophisticated use of historical data: they need to pick some hyperparameters—two per method, which
we recall in Table 5—and fit the model on data based on these hyperparameters.

A popular solution in statistics, already considered in transportation research by, among others,
Kecman and Goverde [2015], consists in separating the data set into two subsets: a train data set and a
test data set. For machine-learning methods, the train data set is used both to select hyperparameters
by (5-fold) cross-validation and fit the models accordingly. To do so, our procedure consists of two
passes on the train data set, a first to select the hyperparameters, based on cross-validation, and a
second to fit the corresponding model. A more detailed statement of this procedure may be found in
Appendix A.3.1. For linear regression models, we directly fit coefficients on the train data set. The
test data set is used to evaluate the performance of the thus constructed and fitted methods. Doing so,
we avoid favorable biases that would consist, for instance, of constructing and evaluating the methods
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Table 6: Tuning parameters selected based on the considered sets of variables.

Variables sets

Methods
Pairs of
parameters

PF RO
RO

PF

RO

PF+M

Random forests (T,m) = (10, 15) (100, 10) (500, 5) (5000, 7)

Gradient boosting

with regression trees
(T, η) = (6000, 0.0005) (8000, 0.0005) (6000, 0.005) (6000, 0.005)

Feed-forward

neural networks
(N,H) = (256, 5) (32, 4) (32, 4) (64, 2)

on the same data subset; in that case, we would be providing some in-sample error rather than an
out-of-sample error.

Breakdown used. We consider a fixed 60%–40% breakdown of the data set into a train data set
(data points from March 15, 2018 to March 15, 2019) and a test data set (data points from March 16,
2019 to September 15, 2019). We set the 60%–40% proportions in some arbitrary way.

A note on the hyperparameters considered. In the cross-validation procedure alluded at above,
hyperparameters are selected based on grids of possible values, provided in Table 5. These grids had
been determined ex ante and were constructed based on previous choices of these hyperparameters in
the literature. For random forests, we built the grids around the default parameters of the ranger

package (see Wright and Ziegler, 2017), which equal m = ⌊√p⌋ for mtry (where p is the number of
input variables considered) and T = 500 for ntree; given the values of p (see Table 4), this leads
to m = 4 or m = 5. For gradient boosting with regression trees, we take the exact same grids as
considered by Zhang and Haghani [2015, Section 3.2]. For the feed-forward neural networks, we built
a reasonable grid based on the default values N = 256 units and H = 2 hidden layers chosen by Li
et al. [2018, Annex E].

The hyperparameters selected by the (5-fold) cross-validation procedure are reported in Table 6.
These are the hyperparameters we use in the rest of the article.

It turns out that on the data set considered, the performance of the machine learning methods
is not too sensitive to the pairs of hyperparameters considered. More details are to be found in
Appendix A.3.2, where the performance of the methods are tabulated on the grids of Table 5 and where
we observe that whenever these hyperparameters are large enough, a close-to-optimal performance is
reached.

4. Main results

The previous section described machine-learning methods to build data-driven models for dwell time
valid for all stations, all working days, all hours, and all trains. In this section, we quantify their
modeling performance, i.e., report the modeling errors described in Section 4.1, namely, the mean
absolute modeling errors and the root mean squared modeling errors. We do so both at a global level
(Section 4.2) and at a local level (Section 4.3), possibly also by considering an addition breakdown of
the modeling performance by regimes of punctuality or passenger affluence (Section 4.4). By “global”
results, we mean errors obtained by global averages over all stations, all working days, all hours, and
all trains. By “local” results, we mean conditional averages of the form “average error suffered when
some explanatory variable equals a given value”. We of course define first more formally the concept
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of “local” performance Section 4.3. We conclude by a ranking of the explanatory variables depending
on their modeling influence (Section 4.5).

Additional results about local performance by the observed dwell times may be found in Ap-
pendix B.

4.1. Metrics for the assessment of performance

With the notation of Section 3, models f̂ are built on the train set and are evaluated on the test set
Test, whose cardinality is denoted by NTest. The mean absolute error (MAE) and root mean squared
error (RMSE) of such a model f̂ are respectively defined by

mae
(
f̂) =

1

NTest

∑

(k,s,d)∈Test

∣∣∣yobsk,s,d − f̂(Xk,s,d)
∣∣∣ (6)

and rmse
(
f̂) =

√√√√ 1

NTest

∑

(k,s,d)∈Test

(
yobsk,s,d − f̂(Xk,s,d)

)2
. (7)

No metric seems preferred in the transportation literature, and each has its own advantages: mae
summarizes best the global performance while rmse is sensitive to large errors.

4.2. Main table: global performance

Table 7 reports the global performance for the modeling of dwell time, i.e., the MAE and the RMSE
achieved on the entire test data set, of the six methods presented in Sections 3.3–3.5 run on the four
possible subsets of variables described in Section 3.1.

We first comment how the modeling performance depends on the subsets of variables. Using
passenger flows [PF] variables only is suboptimal, and railway operations [RO] variables seem key to
achieve the best performance. We also observe that overall, using RO variables only is not as good as
using RO and PF variables simultaneously, which is itself slightly outperformed by using RO and PF
variables together with the M variable consisting of the passenger affluence at the critical door. The
observations made above are consistent with previous observations in the literature, which deemed
RO variables more important than PF variables for commuter trains (Hansen et al., 2010, Kecman
and Goverde, 2015). We detail in subsequent subsections how PF variables, including the M variable,
are valuable to consider on top of RO variables. This will, in particular, show the genuine interest of
the PF and M variables, which, for now, seems modest on Table 7—while one could have expected a
more dramatic effect based on the study by Wirasinghe and Szplett [1984].

We now comment the influence of the method. We first observe that the more complex the
linear regression models, the better the performance. But linear regression models, which provide
explainable relationships, exhibit suboptimal performance compared to the machine-learning methods
(random forests, gradient boosting with regression trees, feed-forward neural networks), which do
not offer explicit relationships and only provide black-box (highly non-linear) modelings. Among
these machine-learning methods, gradient boosting with regression trees performs slightly better than
random forests and feed-forward neural networks. All in all, the linear regression with a multiplicative
effect of ∆a by z probably offers the best trade-off, among all six methods considered, between
simplicity, explainability and performance.

4.3. “Local” performance, depending on the level of explanatory variables

We now provide a more “local” study of performance: instead of reporting global measures of perfor-
mance, we rather explain how performance varies as a given explanatory variable (passenger affluence,
deviation to scheduled arrival time, etc.) varies. For the sake of concision, we will only consider one
machine-learning method; to allow comparison to earlier results, we select random forests: Kecman
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Table 7: Modeling performance for each method and each set of variables, in MAE (left part of the
table) and RMSE (right part of the table). Columns indicate which variables are used (see Section 3.1):
only passenger flows [PF] variables, only railway operations [RO] variables, both RO and PF variables,
and all variables (RO, PF, and M, the passenger affluence at the critical door). Each line corresponds
to a method to process data: linear regressions (Section 3.3), random forests and gradient boosting
(Section 3.4), feed-forward neural networks (Section 3.5). Standard errors are smaller than 0.03
seconds.

MAE RMSE

Methods PF RO
RO

PF

RO

PF+M
PF RO

RO

PF

RO

PF+M

1. Linear regression
with additive effects

13.7 10.5 10.2 10.1 18.4 14.8 14.5 14.3

2. Linear regression
with a multiplicative
effect of ∆a by z

13.7 9.1 8.9 8.8 18.4 13.6 13.2 13.1

3. Linear regression
with multiplicative
effects by triplets
(s, w, z)

13.3 8.8 8.3 8.3 18.0 13.2 12.6 12.5

4. Random forests 13.7 8.4 8.1 8.0 18.8 12.9 12.5 12.3

5. Gradient boosting
with regression trees

12.9 8.5 8.0 7.9 17.9 13.0 12.4 12.2

6. Feed-forward neural
networks

12.7 8.4 8.0 8.0 17.4 13.0 12.4 12.2

and Goverde [2015] ran random forests on RO variables, and we will be running them also on all vari-
ables (RO, PF, and M). We will refer to both instances of random forests by the short-hand notation
RF–RO and RF–All.

Our main aim in this section is to highlight the added value of considering PF and M variables on
top of RO variables: while the fourth line of Table 7 shows an extremely similar global performance of
RF–RO and RF–All, we will demonstrate improvements in the “local” performance thereof. We first
explain how we define and compute the latter.

Concept of local performance. We merely describe here how Figures 5–8 were obtained and how
they measure local performance. We comment below on the gain in efficiency brought by RF–All with
respect to RF–RO, in a dedicated series of paragraph.

Figures 5–8 aim to illustrate the impact of passenger affluence A + B (the sum of the numbers
of passengers alighting plus the ones boarding), which is to be found in x–axis, on performance for
the modeling of dwell time, which is to be found in y–axis. This performance may be measured in an
absolute manner (for RF–RO or for RF–All, as in the left graph of Figure 6) or in a relative manner
(improvement of RF–All over RF–RO, as in the right graph of Figure 6).
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Figure 5: Left graph: scatterplot of the absolute errors on the test set for dwell time modeling by RF–
All plotted against passenger affluence, together with an estimation of the associated average absolute
errors (solid line), and standard errors thereof (dotted lines). Right graph: left graph without the
underlying scatterplot.

Figure 6: Left graph: average absolute error for the modeling of dwell time (y–axis) by passenger
affluence (x–axis) for RF–RO (black) and RF–All (blue). Right graph: difference of these average
absolute errors, between RF–RO and RF–All. The horizontal arrows indicate the data ranges where
significant improvements are achieved on average by RF–All over RF–RO; the percentages below the
arrows are the corresponding data shares.
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We explain first how local performance is measured in an absolute manner. We fix a given method,
say, RF–All. The scatterplot underlying the left graph of Figure 5 consists of the pairs

(
Ak,s,d +Bk,s,d,

∣∣∣yobsk,s,d − f̂(Xk,s,d)
∣∣∣
)

(8)

as (k, s, d) varies in the test set Test. We apply the same smoothing as in Figure 3. Doing so, we
obtain a curve representing the average absolute error in the modeling of dwell time by the level of
passenger affluence (solid line); this average is associated with a ±2 times standard deviation (dotted
lines). The right graph of Figure 5 is simply a cleaned version of the left one, where we erased the
underlying scatterplot.

Now, the representation just described may be performed for RF–RO and for RF–All: see the
left graph of Figure 6, where we also added a ±1 s tube starting from the dotted lines. This tube
measures the significant improvements: as dwell time is measured with 2 s steps (see Table 2), we
are only interested in average improvements larger than 1 s. We may read on the left graph the
range where RF–All improves significantly over RF–RO: the range where the lower part of the tube
around RF–RO is higher than the upper dotted line for RF–All. This range accounts for 5.8% of the
observations, as we write on the blue arrow under the curves.

We represent this comparison in an equivalent manner on the right graph of Figure 6: the average
difference by passenger affluence is the difference of the average absolute errors by passenger affluence
between RF–RO and RF–All, and the associated standard deviations are the sums of the standard
deviations associated with the average errors of RF–RO and RF–All. The same ±1 s tube is depicted,
around the value 0.

We may proceed similarly with square errors for the modeling of dwell time. The left graph of
Figure 7 depicts the scatterplot of

(
Ak,s,d +Bk,s,d,

(
yobsk,s,d − f̂(Xk,s,d)

)2)
(9)

as (k, s, d) varies in the test set Test. Average squared errors by passenger affluence and their associated
±2 standard deviations may then be computed, exactly as in the left graph of Figure 5. The right graph
of Figure 7 depicts the roots of the curves computed in the left graph of Figure 7; these root curves
depict root mean square errors by the passenger affluence, associated with measures of deviations.
The left graph of Figure 8 provides such root curves for RF–RO (together with a ±1 s tube) and
RF–All, while the right graph of Figure 8 is the difference between these curves, in the RF–RO minus
RF–All direction.

Comments on local performance by passenger affluence (Figures 5–8). These figures gener-
ally show that the improvement in the dwell time modeling from RF–RO to RF–All, i.e., when taking
PF and M variables into account, lies in situations with a high passenger affluence. These account
for a limited share of the situations considered: around 5 to 7% of them. Yet, these are exactly the
situations where the modeling of dwell time is challenging, as can be seen from the relatively large av-
erage errors made by the reference model RF–RO. In particular, the left graph of Figure 8 shows that
RF–All enjoys a more steady performance, while the one of RF–RO worsens as passenger affluence
increases.

Comments on local performance by deviation to scheduled arrival time (Figure 9). Fig-
ure 9 depicts how modeling errors vary with the deviation ∆a to scheduled arrival time. Errors for
both RF–RO and RF–All methods follow U-shaped curves with a minimum reached at ∆a = 0, i.e.,
when trains are perfectly on time. On the first part of the U-shaped curves, i.e., for early trains, the
performance of RF–RO and RF–All is virtually indistinguishable. This is certainly explained by the
fact that early trains wait longer than needed in a station; therefore, passenger flows do not constrain
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Figure 7: Left graph: scatterplot of the squared errors on the test set for dwell time modeling by
RF–All plotted against passenger affluence, together with an estimation of the associated average
squared errors (solid line), and standard errors thereof (dotted lines). Right graph: root of the curves
obtained in the left graph, corresponding to root mean square errors by passenger affluence.

Figure 8: Left graph: root mean square errors for the modeling of dwell time (y–axis) by passenger
affluence (x–axis) for RF–RO (black) and RF–All (blue). Right graph: difference of these root mean
square errors, between RF–RO and RF–All. The horizontal arrows indicate the data ranges where
significant improvements are achieved on average by RF–All over RF–RO; the percentages below the
arrows are the corresponding data shares.
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Table 8: Breakdown of the data set for line L by regimes of punctuality or passenger affluence.

Punctuality Early: 54,697 On time: 34,388 Late: 28,242

Passenger affluence Low: 58,813 High: 58,514

dwell times. On the contrary, on the second part of the U-shaped curves, i.e., for late trains, RF–All
consistently outperforms RF–RO, in a statistically significant manner as soon as ∆a is larger than
something of the order of 70 s, which accounts for 14% of the total observations in MAE (and 7%
in RMSE). The improvement in performance is of order 2 – 3 s, for errors of the order of 10 – 15 s.
These observations thus show that for delayed trains, passenger flows are a key determinant of dwell
time, as intuition commands: trains attempt to leave a station as fast as possible when they are late
on schedule.

4.4. Breakdown of the performance by regimes of punctuality or passenger afflu-
ence

The local performance study above highlights the situations where taking passenger flows into consid-
eration helps (i.e., where RF–All is superior to RF–RO): in case of large delays to scheduled arrival
time or high passenger affluence. We now clarify further these determinants by looking at their joint
influence: we break down the performance by regimes of punctuality or passenger affluence.

The regimes of punctuality considered were already explained in Table 3: trains may be early,
on time, or late. We define two regimes of passenger affluence, high and low, setting as threshold a
quasi-median of the passenger affluences Ak,s,d + Bk,s,d observed on the test data set: we use 51–52
as thresholds (low passenger affluence is passenger affluence ⩽ 51 and high passenger affluence is
passenger affluence ⩾ 52). All in all, the 117,327 triplets (k, s, d) of the test data set may be broken
down as indicated in Table 8.

In this section, we follow somewhat the structure of the previous analysis and first report global
numerical results factored by regimes of punctuality or regimes of passenger affluence (a table), and
second, provide a more local, graphical, idea of the improvement in performance of RF–All over
RF–RO factored by regimes of punctuality or passenger affluence.

Global performance by regimes of punctuality or regimes of passenger affluence. Table 9
deepens the results of the fourth line of Table 7, which was devoted to random forests: the first line
of Table 9 is a mere copy of the fourth line of Table 7. We then break down the performance achieved
on the test data set by regimes of punctuality, i.e., compute the errors only over early trains, trains
on time, or late trains. The first line of Table 9 is therefore a weighted average of its second, third,
and fourth lines. We finally break down the global performance by regimes of passenger affluence.

We first comment the influence of the regime of punctuality on performance. The smallest errors
are always observed for trains on time, then for early trains, while the largest errors are suffered
for late trains. The influence of the subsets of variables considered is similar to what was observed
already in Table 7: RO variables in isolation are more useful that PF variables in isolation, while
the simultaneous consideration of RO and PF variables is even better, with the consideration of the
critical door data (subset M) not changing substantially the global performance.

For regimes of passenger affluence, similar observations may be issued concerning the subsets of
variables, noting however that the added value of PF variables on top of RO variables is larger in the
case of a high passenger affluence than for a low passenger affluence. Generally speaking, dwell time
is more difficult to predict in situations of high passenger affluence, as intuition commands.

Local performance by passenger affluence factored by regimes of punctuality (Figure 10).
In Figure 10, we break down by regimes of punctuality the differences in modeling errors between
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Figure 9: Root mean square errors (left graph) and absolute errors (right graph) for the modeling of
dwell time (y–axis) by deviation ∆a to scheduled arrival time (x–axis) for RF–RO (black) and RF–All
(blue). The horizontal arrows indicate the data ranges where significant improvements are achieved on
average by RF–All over RF–RO; the percentages below the arrows are the corresponding data shares.

Table 9: Modeling performance for random forests by regimes of punctuality or regimes of passenger
affluence (lines) and for each subset of variables (rows); see the legend of Table 7), in MAE (left part
of the table) and RMSE (right part of the table). Standard errors are smaller than 0.03 seconds.

MAE RMSE

Random forests PF RO
RO

PF

RO

PF+M
PF RO

RO

PF

RO

PF+M

All trains 13.7 8.4 8.1 8.0 18.8 12.9 12.5 12.3

Early trains 15.4 7.9 8.0 7.9 21.0 12.5 12.6 12.4

Trains on time 11.8 8.3 7.8 7.8 16.2 12.4 11.9 11.7

Late trains 12.7 9.7 8.5 8.5 17.2 14.2 12.9 12.7

Low passenger affluence 12.4 7.6 7.5 7.5 16.9 11.4 11.3 11.4

High passenger affluence 15.0 9.2 8.7 8.5 20.5 14.3 13.5 13.1
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RF–RO and RF–ALL as functions of the passenger affluence, i.e., the graphs of Figure 10 are the
counterparts of the right graphs of Figures 6 and 8. Therein, we had noticed a significant reduction
of the errors in 5% to 7.5% of the cases. We observe that all these cases correspond to late trains or
trains on time. (In particular, a significant reduction of the error is observed for none of the early
trains.) Also, the obtained improvements are larger for late trains than for trains on time and/or take
place for lower values of passenger affluence.

Local performance by deviation to scheduled arrival time factored by regimes of passenger
affluence (Figure 11). We represent in Figure 11 the differences in modeling errors between RF–
RO and RF–ALL as a function of the deviations ∆a to scheduled arrival time, and break them down
by regimes of passenger affluence. This figure is the counterpart of Figure 9, where we observed
modest improvements of RF–All over RF–RO for deviations larger than something of the order of
50 s. Figure 11 shows that these modest improvements are actually associated with high passenger
affluence.

4.5. Most influential variables

We recall a general methodology to determine which variables are the most influential in a random-
forest modeling, explain how we implemented it on our data set, and discuss the obtained results,
with a special focus on the identification of the most influential variables by regimes of punctuality.

General methodology. Two main families of methodologies exist to determine which explanatory
variables are the most influential for random forests on a given data set: mean decrease accuracy
[MDA] and mean decrease impurity [MDI]. Each of them may be implemented in several specific ways
despite a common spirit for each methodology proposed by Breiman [2001]. We discuss below the
specific implementations provided by the R package ranger already mentioned in Section 3.4 (see
Wright and Ziegler, 2017), corresponding to the options permutation [MDA] and impurity [MDI].
The most popular criterion is probably MDA but we provide here the results obtained for both criteria.

We recall that random forests exploit instances Xk,s,d of vectors of variables X = (X1, . . . , Xp).

The spirit of MDA is the following: for each variable j, an index mdaj is computed as follows. We
first bootstrap data with replacement into T data sets (where T is the number of trees of Table 6)
compute a random forest based on each of these T bootstrapped data sets, and evaluate an average
difference of performance on the remainder observations of each of these data sets (the so-called
out-of-bag observations): the average squared error on modified out-of-bag observations, obtained by
randomly permuting the values of the variable of interest, minus the average squared error on original
out-of-bag observations. The larger this average difference mdaj , the more crucial the variable under
scrutiny.

As for MDI, we recall (see Appendix A.1) that each tree f (t) of a forest is grown through refinements

decided based on maximal reductions of in-sample errors; MDI exploits this construction: mdi
(t)
j is

simply the weighted sum of the reductions associated with the same variable j, over all refinements
leading to tree f (t), where the weights are the proportion of observations falling in the region to be

refined. The final index mdij is then obtained by averaging out the mdi
(t)
j over the T trees of the

forest.

In both cases, we obtain non-negative families of indices (mdaj)1⩽j⩽p and (mdij)1⩽j⩽p and we
depict on Figure 12 the normalized vectors

mdaj
p∑

i=1

mdai

and
mdij
p∑

i=1

mdii

, where j = 1, . . . , p . (10)
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Figure 10: Differences in mean square errors (left graph) and absolute errors (right graph) between
RF–RO and RF–All for the modeling of dwell time (y–axis) by passenger affluence (x–axis), factored
by regimes of punctuality. Positive numbers correspond to the superiority of RF–All over RF–RO. The
horizontal arrows indicate the data ranges where significant improvements are achieved on average by
RF–All over RF–RO; the percentages below the arrows are the corresponding data shares.
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Figure 11: Differences in mean square errors (left graph) and absolute errors (right graph) for the
modeling of dwell time (y–axis) by deviation ∆a to scheduled arrival time (x–axis), factored by regimes
of passenger affluence. Positive numbers correspond to the superiority of RF–All over RF–RO. The
horizontal arrows indicate the data ranges where significant improvements are achieved on average by
RF–All over RF–RO; the percentages below the arrows are the corresponding data shares.
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Specific application. The first line of Figure 12 provides the normalized mda and mdi indices for
RF–All run on the entire data set; the 21 variables it relies on (see last column of Table 10) are ranked
according to their normalized indices.

We also implement RF–All (still tuned with the hyperparameters of the last column of Table 6) on
each of the three subsets defined by regimes of punctuality; when we do so, we only feed RF–All with
18 variables, omitting the three binary categorial variables stemming from the regime of punctuality
z (given that they would be constant anyway on each of the subsets). The bottom three lines of
Figure 12 provide the normalized mda and mdi indices computed for each regime of punctuality.

Results: at a global level. Be it for MDA or MDI indices, the top three influential variables
are, globally, the scheduled dwell time ytheo, the passenger affluence at the critical door M , and the
deviation to scheduled arrival time ∆a. Then come the numbers A and B of alighting and boarding
passengers, as well as the crowding factor C and the fact that the train is early, i.e., z = 1. The
importance of M may seem surprising given the modest differences in modeling performance read in
Tables 7 and 9: we comment this issue in detail below.

Results: early trains. This picture for early trains is somewhat similar to the picture at the global
level, except that ytheo and ∆a have an importance much superior to other variables: they gather
about 60% of the total importance. This is likely to be due to the fact that early trains are supposed
to depart at the scheduled time, i.e., as mentioned earlier in Section 3.1, after a dwell time equal to
ytheo −∆a. (We recall that ∆a < 0 for early trains.) Thus, we expect that the observed dwell time
yobs is close to ytheo − ∆a. Machine-learning techniques like random forests spot this kind of rules
in some automatic way, which explains why ytheo and ∆a are the most two influential variables for
early trains. We remind, however, that they do so while providing a single model for all stations, all
working days, all hours, and all trains (as was the title of Section 3.2).

Results: trains on time and late trains. For trains on time and late trains, the MDA procedure
rather points to the critical passenger affluence M as the main driving factor, with alighting number
A and scheduled dwell time ytheo as the next most important variables. As mentioned above, this
may seem surprising given the numerical results, where modest overall improvements of about 0.1 s to
0.2 s are achieved with the addition of the M variable. These modest overall improvements however
hide (again) significant local improvements in critical situations, most of them related to trains on
time and late trains: we noted, when producing the various graphs of Sections 4.3 and 4.4, that they
reported fewer significant improvements in terms of shares of data points concerned when the variable
M was omitted, i.e., when RF–[RO+PF], instead of RF–All, was compared to RF–RO. We do not
provide further details for the sake of conciseness but wanted to mention this fact, as it explains the
“qualitative” importance of M , which the MDA procedure confirms.

Results: stations. In all cases, stations are among the least influential variables, except maybe for
La Défense and Saint-Cloud.

5. Conclusions and research perspectives

This article considers a particularly rich data set containing both railway operations variables and
door-by-door passenger flows variables.

Conclusions. The main findings of our study are the following ones; they hold for the considered
data set of line L and are globally robust with respect to variations on the methodology or of the
considered railway line (see Appendix C).
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(b) All trains – mdi indices
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(c) Early trains – mda indices
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(d) Early trains – mdi indices
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(e) Trains on time – mda indices
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(f) Trains on time – mdi indices
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(g) Late trains – mda indices
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Figure 12: The most influential variables using normalized mda indices (left) and normalized mdi
indices (right) for RF–All on the entire data set (first line) or RF–All run on sub-data sets correspond-
ing to the regimes of punctuality (last three lines).
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1. Railway operations variables are key for low modeling errors. This being said, on average and
at a global level, the consideration of passenger flows variables on top of railway operations
variables (only) decreases by about 0.5 s the modeling error on the observed dwell time based
on mere railway operations variables.

2. However, the consideration of these passenger flows variables locally improves this modeling
error in critical situations (while never deteriorating performance in non-critical situations) by
sometimes up to 5 – 10 s on average: most notably, for late arrivals or for dense situations (when
passenger affluence is large).

3. More generally, on this data set, railway operations variables are the most influential variables
for early trains (which are constrained by the scheduled departure time and must wait possibly
for an extended amount of time) while passenger flows variables are the most influential variables
for late trains (which leave the station right after the passenger exchange time), and also, for
trains on time. These phenomena were expected, of course, but are confirmed on data.

4. Method-wise, we discussed fully automated model-building techniques (in particular, thanks to
setting their hyperparameters on data). Among them, we favored random forests but note that
a closed-form linear regression model with multiplicative effects (by stations, ways and regimes
of punctuality—trains that are early, on time, or late), that is also fully data driven, obtains a
global modeling performance that is only slightly worse.

Discussion: alternative summaries of passenger flows variables. While we could prove the
existence of an added value for passenger flows variables, there is still some room for study to determine
the most efficient (effective and concise) formulation for these variables. Our rich data set includes
the door-by-door numbers Ai and Bi of passengers alighting and boarding, where i ranges between
1 and I. We chose not to use all these 2I variables but summarized them into the total numbers A
and B of passengers alighting and boarding the train (i.e., we summed up the Ai and Bi over the
doors i) and also considered the maximum of their sums, M = max{Ai + Bi : i = 1, . . . , I}. That
is, we summarized the 2I original variables into three variables A, B, and M only. We did so for the
sake of interpretability of the models built.

However, the choices made to rely on three variables only were somewhat arbitrary: to the least,
the impact of these choices should be explored. The main concern (mentioned by an anonymous
reviewer) is how the critical door is taken into account. It seems intuitive that the impact of passenger
flows is determined by the passenger exchanges at the critical door. Now, the survey by Kuipers et al.
[2021] points out that, for a given door i, identical values of the sum Ai + Bi will lead to different
passenger exchange times. Typically, an entirely one-directional passenger flow is fastest; then come
equally balanced flows, while uneven flows tends to be more turbulent and thus lead to longer exchange
times. It is therefore even unclear how to define the critical door i⋆, and when this is achieved, it
would probably be wiser not to only consider the sum Ai⋆ +Bi⋆ but the individual variables Ai⋆ and
Bi⋆ instead, hoping that the machine-learning methods would combine Ai⋆ and Bi⋆ in some nonlinear
fashion if this is relevant. We leave this issue for follow-up studies.

Other research perspectives. A main research perspective is to now provide forecasts of the dwell
time. The models studied in this article rely on information (passenger exchange numbers, deviation
to scheduled arrival time) that are unknown in advance but could be predicted, possibly in simple
ways: the deviation to the scheduled arrival time expected at future stations equals the deviation to
the scheduled departure time suffered at the present station, for instance, while passenger exchange
numbers could be predicted by some average values. Doing so, and using one of the models built on
historical data, we would obtain real-time predictions of the dwell time at future stations, that would
get updated each time the considered train leaves a station.
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Other research perspectives lies in drawing conclusions on the models built in terms of designs:
design of the timetables or design of the platforms of the stations. More precisely, the model could be
fed with observed (joint) distributions of deviations to scheduled arrival time and passenger flows to
simulate distributions of dwell times and better design the timetables through setting a careful but
possibly shorter buffer time (see Figure 1), or studying the effect of adding trains during peak hours.
Also, the role and importance of the critical door on dwell time could be better understood, so as to
draw conclusions in terms of physical design of the platforms, if needed.

All in all, we provided methods to output modelings of the dwell time, but these models should
be extended to predictive models, or should be used for simulation and design purposes.
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Supplementary material for

Modeling dwell time in a data-rich railway environment:
with operations and passenger flows data

Rémi Coulaud – Christine Keribin – Gilles Stoltz

Outline. This supplementary material covers the following elements.

Appendix A describes in a mathematical way the machine-learning methods used in the main
body of the article, namely,

� in Appendix A.1, it does so for tree methods: random forests and gradient boosting with
regression trees;

� Appendix A.2 covers feed-forward neural netwoks;

� Appendix A.3 details the influence and choice of the hyperparameters (a.k.a. tuning pa-
rameters) of the stated machine-learning methods.

Appendix B provides additional local results for line L, where performance is studied by observed
dwell times.

Appendix C performs two series of robustness checks for the methodology discussed in the main
body of the article, namely,

� in Appendix C.1, the (lack of) impact of modeling rather the differences yobs − ytheo to the
scheduled dwell time ytheo than the observed dwell time yobs itself;

� in Appendix C.2, the application of our methodology to the second data set: on line H (see
Figure 2).
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A. Reminder on machine-learning methods
and details on their implementations

This appendix covers material omitted in Section 3, namely, it provides a mathematical description
of random forests and gradient boosting with regression trees (alluded at in Section 3.4 and formally
described below in Appendix A.1), and does so as well (in Appendix A.2) for the feed-forward neural
network of Figure 4 of Section 3.5. Finally, the end of this appendix explains (Appendix A.3) how
the train data set may used both to select hyperparameters by (5-fold) cross-validation and fit the
models accordingly; it does so through a fully automated procedure (in Appendix A.3.1) while noting
next (in Appendix A.3.2) that these hyperparameters have anyway a somewhat marginal influence on
performance.

A.1. Tree-based methods:
random forests and gradient boosting with regression trees

The two machine-learning methods described in this section both rely on the concept of a regression
tree, which we review first.

Concept of a regression tree. We denote byXk,s,d the feature vectors, i.e., the vectors of variables
available for each triplet (k, s, d). These variables were described in Section 3.1, except that we replace
the non-binary categorical variables s and z, which have S and 3 modalities, by S and 3 binary
variables, respectively2. Table 10 indicates the size of Xk,s,d depending on the subset of variables
used, by distinguishing components that are quantitative variables and the ones that are given by
binary categorical variables.

A regression tree relies on a (hierarchically organized) partition of the feature space into finitely
many regions R1, . . . ,RR defined by thresholds on the components of feature vectors X. Indeed, the
partition stems from a binary tree, where the two children of each node are defined by a threshold
level on a quantitative variable, or the values 0 and 1 of a binary variable.

Example. A toy illustration (arbitrarily picked) with a two-level hierarchy and its associated partition
is provided in Figure 13: the threshold at the root node is based on the number A of passengers alighting
and uses the value 150, and there is a second level for the left child, which is based on the number B
of passengers boarding and uses the threshold value 200.

A regression tree is built on train data Xk,s,d in a greedy manner through successive refinements
of the current binary regression tree until the refinement stops, i.e., when a node is declared a leaf.
The variable and associated threshold at each node are determined by considering all possible choices
thereof and by picking the pair that leads to the smallest in-sample square error for the corresponding
augmented regression tree. We will consider two stopping rules, both aiming to avoid over-fitting the
data. The first rule is that if one of the created children node contains fewer than 5 observations, the
refinement actually does not occur, and the node at hand is declared a leaf. The second rule is to
construct complete binary trees of a fixed depth (where the depth of a tree is defined by the number
of nodes along the longest path from the root node down to the farthest leaf), i.e., stop refining when
a certain depth is reached. This concludes the description of the construction of a regression tree; we
recall that it may be identified with a hierarchical partition R1, . . . ,RR of the feature vectors X.

2Doing so, we only consider additive effects, as in (3). We also tested—but do not discuss in this article—partially
multiplicative effects, for instance, replacing the component ∆ak,s,d of Xk,s,d by the three variables ∆ak,s,d 1[zk,s,d=z],
for z ∈ {1, 2, 3}, that were used in (4). We did not observe significant gains in performance and were not surprised:
regression-tree-based methods are per se able to deal with complex interactions between features and output (dwell
time).
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Table 10: Size of the feature vectors Xk,s,d for line L (for which there are S = 10 stations), depending
on the subsets of variables considered.

Variables used

Size of X PF RO RO+PF RO+PF+M

Quantitative components 3 2 5 6

Binary components 11 15 15 15

Total number 14 17 20 21

Figure 13: Toy example (arbitrarily picked) of a regression tree: the partition with 3 elements in
terms of values of the variables A and B (left) and the associated binary tree (right).

Then, when a new feature vector X is to be handled, the method first identifies in which region
R(X) of the partition R1, . . . ,RR this feature vector lies. The modeled dwell time f(X) for this new
feature vector X finally equals the empirical average of the values yobsk,s,d of those feature vectors Xk,s,d

that lie in the same region R(X), if there is at most one such vector (otherwise, an arbitrary value is
output):

f(X) =
1∑

k,s,d

1[Xk,s,d∈R(X)]

∑

k,s,d

yobsk,s,d 1[Xk,s,d∈R(X)] . (11)

The response function f is piecewise constant (it is constant over each member Rr of the partition).
One major problem of regression trees comes from their instability, which is due to their hierarchical

construction: small variations in data may affect the choices made in the higher nodes and result in
drastically different final results. To overcome this issue, two methods were proposed by the machine-
learning literature: random forests and gradient boosting with regression trees. Both are ensemble
methods using many trees of small depth to avoid over-fitting and to reduce the variances of regression
trees.

Random forests. Random forests were introduced by Breiman [2001], they consist of generating
(partially at random) T regression trees f (1), . . . , f (T ) as described above with the first stopping rule,
and by resorting to the response function given by the average of these trees:

f(X) =
1

T

T∑

t=1

f (t)(X) . (12)

The number T of random trees is large, and the rationale behind the average is that model errors
are therefore expected to compensate each others. Kecman and Goverde [2015] was the first to use
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random forests for dwell time estimation, using RO variables. We explain now how the random trees
f (t) are generated.

Two sources of randomness are introduced to construct each given tree f (t): first, the data sample
used to build f (t) is obtained by bootstrapping (i.e., by sampling with replacement into the original
data), and second, to grow the tree from this bootstrapped sample, only m variables (picked at
random) out of the p variables are used. These artificial sources of randomness are useful to create
independence between the trees f (1), . . . , f (T ).

Gradient boosting with regression trees. While random forests rely on a compensation of
individual errors through bagging, gradient boosting (Friedman, 2001) iteratively builds weighted
sums of regression trees by focusing on the observations with the highest model errors. The regression
trees successively picked for the weighted sums are thus not independent from each other.

More precisely, the basic idea of gradient tree boosting is to consider a set F of possible binary
trees and start with an arbitrary tree f (1) ∈ F ; in the chosen implementation, F is the set of all
complete binary trees of depth 6. At each iteration t ⩾ 2, we then construct a weighted sum f (t) of
regression trees by first considering the modeling errors

e
(t−1)
k,s,d = yobsk,s,d − f (t−1)(Xk,s,d) (13)

associated with the weighted sum f (t−1) of the previous step, by picking the best tree g(t) ∈ F to
model these errors, i.e.,

g(t) ∈ argmin
f∈F

∑

k,s,d

(
e
(t−1)
k,s,d − f(Xk,s,d)

)2
, (14)

by picking the best step size α(t) ∈ R to model these errors given g(t), i.e.,

α(t) ∈ argmin
α∈R

∑

k,s,d

(
e
(t−1)
k,s,d − αg(t)(Xk,s,d)

)2
, (15)

and by finally outputting

f (t) = f (t−1) + η α(t)g(t) , (16)

where we consider a shrinkage parameter η. The optimizations on f ∈ F and α ∈ R are performed
successively and not simultaneously because of computational issues. The procedure stops after T
rounds and the final modeling f equals

f = f (T ) = f (1) + η

T∑

t=2

α(t)g(t) . (17)

Both η and T are parameters to be set by the user.

As indicated above, these are only the high-level ideas behind the specific method used, namely,
XGBoost by Chen and Guestrin [2016], which relies on two decades of advances in boosting and tree
methods.

In Section 3.4, we mentioned that our implementation (and most implementations both in machine-
learning competitions and in the transportation literature, see Ding et al., 2016) focus the parameters
T and η and uses default parameters of the R package xgboost otherwise. This is because T and η
hand in hand. On the one hand, large values of T and η lead to over-fitting (i.e., building a model
too close to historical data with poor generalization guarantees); on the other hand, for XGBoost to
“converge”—i.e., be such that f (t) does not change much as t approaches T—the shrinkage parameter
η and T need to be small enough. All in all, a good balance between T and η should be achieved.
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A.2. Feed-forward neural networks

The architecture considered for our feed-forward networks was depicted in Figure 4. It is composed of
an input layer, of H hidden dense layers (each with N nodes), and of an output layer. It corresponds
to inductively constructing the modeling f(Xk,s,d) as follows. The output function f (1) of the first
layer h = 1 takes a p–dimensional vector X = (X1, . . . , Xp) as argument, where p is provided by
Table 10, and outputs a vector of length N , based on real weights θj,n,0, on intercepts bn,0, and on the
so-called rectified linear unit (ReLU) activation3 function σ(x) = max{x, 0}:

f (1)(X) =

(
σ

(
bn,0 +

p∑

j=1

θj,n,0Xj

))

n∈{1,...,N}

. (18)

The hidden layers h ∈ {2, . . . ,H} are then each associated with a function f (h) based on the compo-

nents f
(h−1)
n′ of f (h−1), on real weights θn′,n,h of the arc connecting node n′ of hidden layer h− 1 and

node n of hidden layer h, on intercepts bn,h, and on the ReLU activation function σ:

f (h)(X) =

(
σ

(
bn,h +

N∑

n′=1

θn′,n,h f
(h−1)
n′

))

n∈{1,...,N}

. (19)

The final function fθ is then based on f (H) and on a final series of real weights θn,H+1 and on a final
intercept bH+1 :

fθ = bH+1 +
N∑

n=1

θn,H+1 f
(H)
n ; (20)

here, we collected all parameters (weights and intercepts, of all layers) into a vector denoted by θ.
The final function f is obtained by fitting θ on data:

f = fθ̂ , where θ̂ ∈ argmin
θ

∑

k,s,d

(
yobsk,s,d − fθ(Xk,s,d)

)2
. (21)

Efficient gradient-descent techniques (the so-called gradient back-propagation algorithm) exist to per-
form the optimization leading to the value of θ̂ (which is called “training the network”) and they are
included in the R package tensorflow used in our implementation.

A.3. Details on hyperparameters (a.k.a. tuning parameters) of these machine-
learning methods

Section 3.6 briefly explains that machine-learning methods need to pick some hyperparameters on the
train data set—two per method, which we indicated in Table 5—and fit a model on the same train
data set based on these hyperparameters. In this appendix, we describe in detail the cross-validation
methodology we used to perform this selection (Section A.3.1). We then illustrate through a sensitivity
analysis (Section A.3.2) that the selection of these hyperparameters is not crucial for the specific data
set used.

A.3.1. Automatic selection of tuning parameters through 5-fold cross-validation

Even if the performance is not (much) sensitive to the choice of tuning parameters as we will see in
the next section, we alleviate the burden of users by providing a fully automated procedure to select

3Li et al. [2018] also use the ReLU activation function while Yaghini et al. [2013] and Amita et al. [2015] use instead a
sigmoid activation function x 7→ 1/(1 + e−x). We picked the ReLU activation function mostly because of its popularity,
as asserted by Goodfellow et al. [2016].
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these parameters. This procedure uses two passes on the train data set: in the first pass (Steps 1
and 2 of Figure 14), it selects the tuning parameters through a 5-fold cross-validation estimation
of performance in generalization (more detail are provided below). In the second pass (Step 3 of
Figure 14), it fits the model on the entire train data set based on the selected tuning parameters.
We do so to avoid over-fitting issues on the train data set: selecting the best tuning parameters on
the train data set by comparing the performance of models fit on the entire train data set is prone
to biases; indeed, with such a procedure, we would be comparing some in-sample errors rather than
out-of-sample errors, which is what we need. Put differently, this simpler procedure would evaluate
the respective performance of tuning parameters in too optimistic a way.

The first pass is a 5-fold cross-validation estimation of performance which consists of separating
the train data set in a random partition with 5 folds (i.e., in 5 random non-overlapping subsets),
fitting the model on 4 of them and evaluating the obtained performance on the 5th fold. This 5th fold
varies, and we average out the five measures of performance obtained to determine the best tuning
parameters.

The tuning parameters selected by this two-pass procedure were provided in Table 6. There is an
important variability in the specific values selected for the pairs of tuning parameters by the subsets
of variables considered. However, the performance of a pair of a given cell of Table 6 (i.e., for a given
pair of a method plus subset of variables) is not even 0.1 s apart from the performance obtained by the
pair of another cell in the same line of the table (i.e., for the same method but for a different subset
of variables). The seemingly instability of the values of the tuning parameters hides a remarkable
stability in the underlying performance, which will be exhibited in the sensitivity analysis that comes
next.

A.3.2. Sensitivity analysis

We illustrate in Figures 15–17 how tuning parameters affect performance, both in RMSE and MAE,
when taking all variables (RO, PF and M ones) into account; similar conclusions are reached for
subsets of variables. On these figures, we report the performance obtained on the test data set by
fitting models on the train data set based on each pair of tuning parameters of Table 5. The overall
conclusion is that many pairs of tuning parameters lead to an approximately equal performance, and
that these pairs consist of large enough parameters, while some parameters that are too small may
lead to suboptimal performance. We conclude that the selection of tuning parameters is not a crucial
issue for the specific data set used.

More precisely, the sensitivity of random forests is illustrated in Figure 15; for clarity, we represent
only a part of all possible pairs (m,T ) of tuning parameters. Pairs with numbers of variables m ⩾ 6
and numbers of trees T ⩾ 50 obtain basically the same performance. The stability of performance is
even more remarkable for feed-forward neural networks, as can be seen on Figure 17: all pairs exhibit
a performance that lies in a range of radius of order ±0.5 s. There is slightly more instability for
gradient boosting with regression trees, even though taking a large number of trees (several hundreds)
eventually equalizes all performance; see Figure 16.
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Training set

Full data

Test set

(1)

M(1)(h1)
...

M(1)(hG)

mae(1)(h1)
...

mae(1)(hG)

(2)

M(2)(h1)
...

M(2)(hG)

mae(2)(h1)
...

mae(2)(hG)

...

(5)

M(5)(h1)
...

M(5)(hG)

mae(5)(h1)
...

mae(5)(hG)

1

Training folds

Validation folds

Training set Test set

2 hg∗ = argmin
g∈{1,...,G}

1

5

5∑

i=1

mae(i)(hg)

3 M(hg∗) 4 mae(hg∗)

Figure 14: Principle of the automated selection procedure proposed, for a given machine-learning
method. The full dataset is split into a train set (in orange) and a test set (in grey). The train set is
itself split into a random partition consisting of 5 subsets called folds.
1 For each pair of hyperparameters hg, the model M(i)(hg) is fit on all train data but the one of

fold i and the performance mae(i)(hg) is computed for this model on fold i.

2 The performance in generalization of the method for hyperparameters hg is estimated by averaging

the five errors mae(i)(hg), for i ∈ {1, . . . , 5}. We then select the hyperparameters hg∗ minimizing
mae(hg).

3 Model M(hg∗) is fit on the entire train data set.

4 We compute and report the performance of mae(hg∗) of the model M(hg∗) on the test data set.
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Figure 15: Performance of random forests on the test data set for various values of the pair (m,T ) of
tuning parameters, where m is the number of variables chosen at each split and T is the number of
trees in the forest. The left picture measures performance in RMSE and the right picture does so in
MAE.
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Figure 16: Performance of gradient boosting with regression trees on the test data set for various
values of the pair (η, T ) of tuning parameters, where η is the shrinkage parameter and T is the number
of trees. The left picture measures performance in RMSE and the right picture does so in MAE.
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Figure 17: Performance of feed-forward neural networks on the test data set for various values of the
pair (H,N) of tuning parameters, where H is the number of hidden layers and N is the number of
nodes. The left picture measures performance in RMSE and the right picture does so in MAE.
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B. Additional local results for line L: by observed dwell time

We provide additional results for line L, about the local performance of random forests by observed
dwell time, with or without a breakdown by regimes of punctuality or passenger affluence.

With no breakdown (Figure 18). Figure 18 depicts how modeling errors vary with the observed
dwell time yobs. Errors for both RF–RO and RF–All methods follow U-shaped curves, with a low
plateau in the 40 s – 90 s range, and with linear increases outside of this range. The RF–All method
outperforms significantly the RF–RO method on average for extreme values of the observed dwell
time: short dwell times (inferior to 22 s) and long dwell times (larger than 110 s). These values only
account for 3 to 5% of all observations. No scheduled dwell time is shorter than 30 s, so, observed
dwell times shorter than 22 s must correspond to trains with a delay and low passenger affluence,
that attempt to leave the station as early as possible. This hints at the necessity of a study of local
performance by deviation to scheduled arrival time, which we provide next. We have no convincing
or consistent explanations for the improvements for longer dwell times.

By regimes of punctuality (Figure 19). Figure 19 is the counterpart of Figure 18, where we
broke down the differences in modeling errors as functions of the observed dwell times by regimes of
punctuality. In this case as well, RF–RO and RF–All obtain the same performance on early trains
(which are the only ones with observed dwell times larger than 100 s). Improvements in performance
are mostly due to late trains, for which between 20% and 30% of the data points are better modeled;
improvements due to trains on time are negligible. These improvements take place, as in Figure 18,
in a U-shaped fashion, for small and large values of the observed dwell times.

By regimes of passenger affluence (Figure 20). In Figure 20 we represent the differences in
modeling errors between RF–RO and RF–All as functions of the observed dwell time, with a breakdown
by regimes of passenger affluence. As in Figures 18 and 19 we observe improvements of RF–All over
RF–RO for short (inferior to 20 s) or long (larger than 90 s) dwell times. But interestingly, there is
a clear association of regimes: improvements for short dwell times only take place in the case of low
passenger affluence, while improvements for long dwell times happen only in the case of high passenger
affluence.

Figure 18: Root mean square errors (left graph) and absolute errors (right graph) for the modeling of
dwell time (y–axis) by observed dwell time (x–axis) for RF–RO (black) and RF–All (blue).
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Figure 19: Differences in mean square errors (left graph) and absolute errors (right graph) between
RF–RO and RF–All for the modeling of dwell time (y–axis) by observed dwell time (x–axis), factored
by regimes of punctuality. Positive numbers correspond to the superiority of RF–All over RF–RO.

Figure 20: Differences in mean square errors (left graph) and absolute errors (right graph) for the
modeling of dwell time (y–axis) by observed dwell time (x–axis), factored by regimes of passenger
affluence. Positive numbers correspond to the superiority of RF–All over RF–RO.
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C. Robustness checks

In this section, we discuss the robustness of our results: when the differences yobs − ytheo to the
scheduled dwell time are modeled in lieu of the observed dwell times yobs, still on line L (Section C.1);
and what happens for the other line considered, line H (Section C.2).

C.1. Modeling the differences yobs − ytheo to the scheduled dwell time

So far, we modeled directly the observed dwell time yobs. We now look instead into the modeling
of the deviations ∆y = yobs − ytheo to the scheduled dwell time ytheo, i.e., we run the methods
discussed in Section 3 to model ∆y (with newly optimized hyperparameters determined by following

the methodology described in Section 3.6 and Appendix A.3.1). We obtain modelings ∆̂y which we
turn into modelings ŷobs of the observed dwell time by adding ytheo.

We observe in Table 11 (absolute performance of this modeling of the deviations) and in Table 12
(difference in modeling performance between direct modeling of yobs and modeling of the deviations
∆y) that the two approaches yield extremely similar results, except when run on the PF variables in
isolation, where the modeling of deviations is significantly more efficient. About 1 s of reduction in
average modeling errors is gained. This was expected as modeling ∆y amounts to using the RO variable
ytheo, which we identified as a key determinant of the observed dwell time (see, e.g., Section 4.5).

In the main body of the article, we rather performed a direct modeling of yobs to be able to report
some “pure” performance for the PF variables.

C.2. Results for line H—in brief

The main body of this article considered a specific sub-branch of line L (see Figure 2), and we now
study what happens for the sub-branch of line H for which data is also available (see also Figure 2).
This sub-branch features 11 stations on top of the origin and terminus stations. The same time period
is considered as for line L and 145,609 triplets (k, s, d) are available. We may define similarly regimes
of punctuality and regimes of passenger affluence (based on thresholds ⩽ 53 and ⩾ 54 passengers),
and obtain the breakdown summarized in Table 13.

We (re-)optimized the hyperparameters of random forests on this new data set, following the
methodology described in Section 3.6 and Appendix A.3.1, and provide in Table 14 (the counterpart
of Table 9) the modeling performance of the dwell time for random forests, globally or by the regimes
of punctuality or passenger affluence.

Table 14 confirms that railway operations [RO] variables are more useful for the modeling than
passenger flow [PF] variables, with a difference in performance of about 2 s. This was expected. The
true confirmation expected was on the improvement of RO and PF variables considered simultaneously
(possibly together with the passenger affluence M at the critical door) over RO variables used in
isolation: we get a mixed picture of virtually no improvement in most situations, except for late trains
and in case of a high passenger affluence, where improvements of about 0.3 s are obtained. The
patterns observed are therefore similar to the ones of Table 9, but take place with a lower intensity.

Figures 22 and 23 further illustrate these (more moderate) improvements in the modeling perfor-
mance: no significant improvements are observed when observations are broken down by regimes of
passenger affluence (Figure 23) while significant improvements are observed only in the case of late
trains (Figure 22), with a significant worsening for a tiny fraction of the observations is simultane-
ously observed for early trains. All in all, the existence of improvements only for the most challenging
situation of late trains and their smaller intensity may be caused by the absence of peaks of passenger
affluence on line H (see Figure 21), while such peaks exist for line L.
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Table 11: Modeling performance for the observed dwell time yobs based on a modeling of the deviation
∆y = yobs − ytheo: results are formatted as in Tables 7 and 9, with standard errors still smaller than
0.03 seconds.

MAE RMSE

Methods PF RO
RO

PF

RO

PF+M
PF RO

RO

PF

RO

PF+M

1. Linear regression
with additive effects

12.4 10.5 10.2 10.1 16.9 14.8 14.5 14.3

2. Linear regression
with a multiplicative
effect of ∆a by z

12.4 9.1 8.9 8.8 16.9 13.6 13.2 13.1

3. Linear regression
with multiplicative
effects by triplets

12.2 8.8 8.3 8.3 16.7 13.2 12.6 12.5

4. Random forests 12.5 8.5 8.1 8.0 17.1 13.1 12.4 12.3

5. Gradient boosting
with regression trees

12.0 8.5 8.0 7.9 16.5 13.0 12.4 12.2

6. Feed-forward neural
networks

11.9 8.5 7.9 7.9 16.4 13.0 12.4 12.3

Random forests

Early trains 15.4 7.9 8.0 7.9 21.0 12.5 12.6 12.4

Trains on time 11.8 8.3 7.8 7.8 16.2 12.4 11.9 11.7

Late trains 12.7 9.7 8.5 8.5 17.2 14.2 12.9 12.7

Random forests

Low passenger affluence 12.4 7.6 7.5 7.5 16.9 11.4 11.3 11.4

High passenger
affluence

15.0 9.2 8.7 8.5 20.5 14.3 13.5 13.1
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Table 12: Differences in modeling performance between Table 11 (based on a modeling of the deviation
∆y = yobs−ytheo) and Tables 7 and 9 (based on a direct modeling of yobs). Negative numbers indicate
a more accurate modeling in Table 11.

MAE RMSE

Methods PF RO
RO

PF

RO

PF+M
PF RO

RO

PF

RO

PF+M

1. Linear regression
with additive effects

−1.3 0.0 0.0 0.0 −1.5 0.0 0.0 0.0

2. Linear regression
with a multiplicative
effect of ∆a by z

−1.3 0.0 0.0 0.0 −1.5 0.0 0.0 0.0

3. Linear regression
with multiplicative
effects by triplets

−1.1 0.0 0.0 0.0 −1.3 0.0 0.0 0.0

4. Random forests −1.2 0.1 0.0 0.0 −1.7 0.2 −0.1 0.0

5. Gradient boosting
with regression trees

−0.9 0.0 0.0 0.0 −1.4 0.0 0.0 0.0

6. Feed-forward neural
networks

−0.8 0.1 −0.1 −0.1 −1.0 0.0 0.0 0.1

Random forests

Early trains −1.8 0.0 −0.1 0.0 −2.3 0.2 −0.1 0.0

Trains on time −0.8 0.0 0.0 0.0 −1.0 0.1 0.0 0.0

Late trains −0.7 0.2 0.1 0.0 −0.9 0.3 0.1 0.0

Random forests

Low passenger affluence −1.1 0.1 −0.1 0.0 −1.5 0.2 0.0 0.0

High passenger
affluence

−1.4 0.1 0.0 0.0 −1.8 0.2 0.0 0.0
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Table 13: Breakdown of the data set for line H by regimes of punctuality or passenger affluence.

Punctuality Early: 33,448 On time: 58,755 Late: 53,406

Passenger affluence Low: 72,795 High: 72,814
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Figure 21: Histograms of passenger affluence (numbers of passengers alighting and boarding, for all
stations and all trains considered) for lines H and L.
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Figure 22: Differences in mean square errors (left graph) and absolute errors (right graph) between
RF–RO and RF–All for the modeling of dwell time (y–axis) by observed dwell time (x–axis), factored
by regimes of punctuality. Positive numbers correspond to the superiority of RF–All over RF–RO.
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Table 14: Modeling performance of the dwell time for random forests by regimes of punctuality or
regimes of passenger affluence (lines) and for each subset of variables (rows); see the legend of Table 7),
in MAE (left part of the table) and RMSE (right part of the table). Standard errors are smaller than
0.03 seconds.

MAE RMSE

Random forests PF RO
RO

PF

RO

PF+M
PF RO

RO

PF

RO

PF+M

All trains 10.6 8.0 7.9 7.8 15.1 11.9 11.7 11.6

Early trains 13.2 7.8 7.9 7.9 19.2 11.9 11.9 11.9

Trains on time 9.6 7.8 7.7 7.6 13.4 11.6 11.5 11.4

Late trains 10.1 8.4 8.1 8.0 13.8 12.3 12.0 11.8

Low passenger affluence 9.9 7.5 7.4 7.4 13.7 10.9 10.8 10.8

High passenger affluence 11.3 8.5 8.4 8.2 16.4 13.0 12.6 12.5
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Figure 23: Differences in mean square errors (left graph) and absolute errors (right graph) between
RF–RO and RF–All for the modeling of dwell time (y–axis) by deviation ∆a to scheduled arrival time
(x–axis), factored by regimes of passenger affluence. Positive numbers correspond to the superiority
of RF–All over RF–RO.
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