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Efficient fixed point and Newton–Krylov solvers for FFT-based

homogenization of elasticity at large deformations

Matthias Kabel · Thomas Böhlke · Matti Schneider

Abstract In recent years the FFT-based homogenization
method of Moulinec and Suquet has been established as a
fast, accurate and robust tool for obtaining effective prop-
erties in linear elasticity and conductivity problems. In this
work we discuss FFT-based homogenization for elastic prob-
lems at large deformations, with a focus on the following
improvements. Firstly, we exhibit the fixed point method
introduced by Moulinec and Suquet for small deformations as
a gradient descent method. Secondly, we propose a Newton–
Krylov method for large deformations. We give an exam-
ple for which this methods needs approximately 20 times
less iterations than Newton’s method using linear fixed point
solvers and roughly 100 times less iterations than the non-
linear fixed point method. However, the Newton–Krylov
method requires 4 times more storage than the nonlinear fixed
point scheme. Exploiting the special structure we introduce a
memory-efficient version with 40 % memory saving. Thirdly,
we give an analytical solution for the micromechanical solu-
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tion field of a two-phase isotropic St.Venant–Kirchhoff lami-
nate. We use this solution for comparison and validation, but
it is of independent interest. As an example for a microstruc-
ture relevant in engineering we discuss finally the application
of the FFT-based method to glass fiber reinforced polymer
structures.
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1 Introduction

The macroscopic constitutive behavior of applied materials is
governed by both the microstructure and the material behav-
ior of the phases. Prominent examples are polycrystalline
metals, fiber reinforced polymers and high-strength ceram-
ics. Modern experimental techniques, for example micro-
tomography or electron back-scattering diffraction, allow
for the determination of microstructures for all of these
materials.

Nonlinear continuum mechanical theories have the poten-
tial to describe the bulk behavior of the phases as well as
the response of the interfaces. The determination of micro-
or mesoscopic mechanical field quantities, e.g. stresses and
strains, for given macroscopic quantities is called local-
ization, the estimate of effective properties based on the
local continuum mechanical fields is called homogeniza-
tion [11,34]. Localization and homogenization techniques
are necessary in order to understand complex material behav-
ior based on virtual experiments and to optimize and to design
new materials and components [15,41,42].
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The application of simulation techniques in the context of
large deformations is necessary since almost no exact solu-
tions are available. Examples where geometrically nonlinear
deformation processes have to be considered are deformation
induced crystallographic textures in metals [21] and semi-
crystalline polymers [2]. The proper description of large
deformations requires a geometrically as well as a physically
nonlinear constitutive modeling.

The FFT-based homogenization method was proposed by
Moulinec and Suquet in the middle of the 1990s [30] for
problems of linearized elasticity based on the Lippmann–
Schwinger equation in elasticity [24,47]. Since no meshing
is required and the assembly of the linear system is avoided,
the memory needed for solving the problem is significantly
reduced compared with other methods.

Accelerated linear solvers have been proposed by Eyre
and Milton [14] based on an ingenious rewriting of the
Lippmann–Schwinger equation, by Michel, Moulinec and
Suquet [26] exploiting the augmented Lagrangian method
(see also [28]), and, most recently, by Zeman et al. [48] and
Brisard and Dormieux [8] making use of Krylov subspace
solvers. See [32] for a numerical comparison.

Moulinec and Suquet extended their fixed-point method
to nonlinear problems at small strains [31]. Similarly, Vino-
gradov and Milton [44] combined the Newton–Raphson
[35,36] with the Moulinec–Suquet method to tackle prob-
lems of nonlinear thermoelasticity (compare [29] for a direct
application of the Eyre–Milton method to nonlinear prob-
lems). Gélébart and Mondon–Cancel [17] introduced the
idea of applying Krylov solvers to the linear problems of
the Newton–Raphson procedure at small strains.

For large deformations Lahellec, Moulinec, and Suquet
[25] proposed to solve the nonlinear Lippmann–Schwinger
equation for finite strains by the Newton–Raphson method
and the linear Moulinec–Suquet fixed point solver. In con-
trast, Eisenlohr et al. [13] suggested using the Moulinec–
Suquet fixed point iteration on the nonlinear Lippmann–
Schwinger equation for finite strains directly.

The present work has three core themes. Firstly, we clar-
ify the origin of the linear and nonlinear fixed point solver
of Moulinec and Suquet. Quite naturally it arises as a gra-
dient descent method applied to the (hyper) elastic energy.
This geometric reinterpretation sheds new light on the con-
vergence behavior of the method, choice of parameters, and
limitations in convergence speed. For instance, restrictions
on the reference material directly correspond to stability con-
ditions for the gradient descent method. Secondly, we pro-
pose to carry over the ideas of Vinogradov and Milton [44]
and of Gélébart and Mondon–Cancel [17] of combining the
Newton–Raphson procedure with fast linear solvers to the
geometrically nonlinear case. Apparently elastic problems
with large deformations favour Krylov subspace solvers.
This is due to an instability phenomenon of the linear fixed

point solvers not present at small deformations. The Newton–
Krylov method is extremely fast, but requires excessive mem-
ory. For instance on a 5123 voxel image the basic fixed point
iteration of Moulinec and Suquet uses 9 GBs of memory,
the Newton–Eyre–Milton methods needs 18 GBs of mem-
ory, whereas the Newton–Krylov method requires 45 GBs of
memory. We propose a modification of the Newton–Krylov
method that exploits the special structure of the Krylov iter-
ates and Green’s operator, but fully preserves the conver-
gence speed, reducing the memory requirements by 40 %.
For the example above we only need 27 GBs of memory,
and we provide a numerical example where our method is
100 times faster than the nonlinear fixed point iteration. Fur-
thermore, we introduce a memory-efficient convergence cri-
terion for the linear and nonlinear fixed point solvers. Using
the criteria suggested in the literature doubles the memory
requirement of the fixed point solvers. Thirdly, we introduce
an analytical solution for a rank-one laminate consisting of
two St.Venant–Kirchhoff materials. This class of materials is
particularly simple and can correctly describe small strain—
large deformation behavior. To the best of our knowledge, this
explicit solution is not mentioned in the literature. We use the
laminate solution for comparison and accuracy tests of the
FFT-based solvers, we consider the solution to be of imma-
nent independent interest, however. For a particular choice of
elastic parameters, a bifurcation occurs for a particular inten-
sity of compression which is not present for elongation. From
a mechanical perspective we see that the effective behavior
cannot be adequately described by a St.Venant–Kirchhoff
material, which is quite interesting. From the numerical view-
point this bifurcation poses severe challenges to any numer-
ical solver, constituting a brilliant test case. The numerical
examples in this article were implemented and tested with the
commercial code FeelMath,1 distributed as part of GeoDict.2

This article is organized as follows. Section 2 is devoted to
the reformulation of the elastostatic problem at finite strains
in terms of an equivalent integral equation of Lippmann–
Schwinger type. Section 3 contains algorithms of the stud-
ied FFT-based methods for large strains, a reformulation of
the basic scheme as a gradient descent method, a discus-
sion of the instability of linear fixed point solvers, and of
the problem of indefinite tangential stiffness. In Sect. 4 we
consider a rank-one laminate that consists of two materials
of St.Venant–Kirchhoff type [12] and derive a set of implicit
analytic solutions for the deformation at finite strains. Finally,
in Sect. 5 we show that the FFT-based methods reproduce
the mechanical fields in the rank-one laminate even if mul-
tiple solutions exist and compare the computational costs of
the different FFT-based schemes. Afterwards we apply the

1 www.itwm.fraunhofer.de/FeelMath
2 www.geodict.com/ElastoDict
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FFT-based methods to a microstructure typical for glass fiber
reinforced plastics (GFRP).

2 The Lippmann–Schwinger equation in hyperelasticity

Let d ∈ N+, L i > 0 for i = 1, . . . , d . In a Lagrangian
setting with periodic boundary conditions the (static) equi-
librium condition for the representative element Td =
R/L1Z × · · · × R/LdZ without volume forces is given by
[40,43]

Div(P) = 0 (1)

with the 1st-Piola–Kirchhoff stress tensor P = F S, F =
F̄ + ∇u and u being the periodic fluctuation field, i.e.

u(x1, . . . , xi + L i , . . . , xd) = u(x1, . . . , xd), (2)

for i = 1, . . . , d . The operator Div(·) represents the
divergence operator in the reference configuration of the
body. Combining a constitutive equation for the 2nd-Piola–
Kirchhoff stress tensor S = det(F)F−1σ F−T with the equi-
librium condition (1) gives a set of explicit field equations
for the determination of the periodic fluctuation field which
depend on the prescribed average deformation gradient F̄ .

Let C0 be a constant reference stiffness satisfying

F : C0 : F ≥ c F : F, ∀F ∈ R
3×3, (3)

for a positive constant c independent of F . Introducing the
stress polarization

τ = P(F) − C
0 : F, (4)

the equilibrium Eq. (1) transforms into the relation

Div(C0 : ∇u) = −Div(τ ). (5)

Denote by G0 : [H−1
# (Td)]d → [H1

# (Td)]d the solution
operator of the linear reference problem, which associates to
a right-hand side f the solution u of the variational equation
∫

Td

∇v : C0 : ∇u d X =

−
∫

Td

f · v d X,∀v ∈ [H1
# (Td)]d . (6)

The subscript # denotes function spaces with vanishing mean
value. Then

∇u = −∇G0Div(τ ) = −∇G0Div(P(F) − C
0 : F) (7)

or, equivalently,

F = F̄ − Γ 0 : (P(F) − C
0 : F), (8)

with

Γ 0 = ∇G0Div. (9)

The Lippmann–Schwinger Eq. (8) was first introduced in
[23,47] and is equivalent to the variational form

∫

Td

∇v : P(F̄ + ∇u) d X = 0, ∀v ∈ [H1
# (Td)]d , (10)

of the equilibrium Eq. (1) (the proof of [46] for small defor-
mations carries over directly). The bounded linear opera-
tor Γ 0 : [L2(Td)]d×d → [L2(Td)]d×d is usually called
Green’s operator.

In contrast to [13] and in accord with [10] we do not use
linear elasticity as our reference problem. Indeed, since a
linearly elastic C0 satisfies minor symmetries, it necessarily
violates (3). This inequality, however, serves as the basis to
prove rigorous error bounds for the linear systems arising
in the Newton–Raphson iterations, cf. the bounds (28), (34),
and (36).

3 FFT-based schemes

Following [30,31] we discretize the nonlinear Lippmann–
Schwinger Eq. (8) by the method of trigonometric colloca-
tion, see [5,39] for background material.

There are basically two solution strategies to solve (8).
Firstly, one can use a fixed point iteration on the nonlin-
ear equation, introduced in [31] for small deformations and
extended to large deformations in [13]. Alternatively, one
can use the Newton–Raphson method [35,36] to tackle the
nonlinear problem by solving a sequence of linear problems.
These linear problems can either be solved by the fixed point
method of Moulinec and Suquet [25,30,31], the fixed point
method of Eyre and Milton [14] or Krylov subspace solvers
[8,9,48] (see also [17] for small deformations). Although
all these algorithms directly iterate on deformation gradient
fields and do not compute the corresponding displacement
fields, their iterates satisfy compatibility due to Eq. (9).

In this section, we exhibit the fixed point scheme of
Moulinec and Suquet as a gradient descent method, explain-
ing its basic mechanisms. Furthermore, we propose memory-
minimal variants of all algorithms, including convergence
criteria, and discuss the choice of reference material ensuring
fastest convergence. For instance, our Newton–Krylov (con-
jugate gradient) method requires 40 % less memory than a
naive implementation, and has identical iterates.
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3.1 Basic scheme

Moulinec and Suquet [30,31] proposed to use the fixed point
form of Eq. (8) as the basis of an algorithm, and to com-
pute the action of Γ 0 efficiently by fast Fourier transform
(FFT). More precisely, they proposed the Algorithm 1, where
the basic Moulinec–Suquet iteration is performed in place.
Algorithm 1 is easily extended to incorporate multiple load
steps {F̄n}, compare Algorithm 2. An explicit formula for the
Fourier coefficients Γ̂ 0 of Green’s operator can be found in
the Appendix 7.

Algorithm 1 Basic scheme [31]

1: F ← F̄ ⊲ F̄ is the prescribed macroscopic load
2: repeat

3: F ← MSiterate(F ,P ,C0,F̄)
4: until Convergence
5: return F

MSiterate(F ,P ,C0,F̄)
1: F ← P(F) − C0 : F

2: F ← FFT(F)

3: F ← −Γ̂ 0 : F, F(0) = F̄

4: F ← FFT−1(F)

5: return F

Algorithm 2 Basic scheme (multiple load steps)

1: F ← F̄0
2: for n ∈ {0, . . . , nmax} do

3: repeat

4: F ← MSiterate(F ,P ,C0,F̄n)
5: until Convergence.
6: end for

7: return F

To understand the basic scheme we will reformulate it as
a gradient descent method. First recall the notion of gradient
from Riemannian geometry. Let M be a manifold, endowed
with a Riemannian metric g, i.e. a family (gx )x∈M of inner
products on the tangent spaces (Tx M)x∈M . The gradient of a
continuously differentiable function f : M → R is defined
by the equality

g(GRAD f (x), ξ) = D f (x)[ξ ], x ∈ M, ξ ∈ Tx M, (11)

where D f (x)[ξ ] denotes the derivative of f at x in direction
ξ . The space

V =
{

G ∈ [L2(Td)]d×d
∣∣ ∃u ∈ [H1

# (Td)]d : G = ∇u
}

(12)

is a closed subspace of [L2(Td)]d×d . For fixed F̄ ∈ Rd×d

the space

M =
{

F̄ + G ∈ [L2(Td)]d×d
∣∣ G ∈ V

}
(13)

is an affine manifold modelled on the Hilbert space V . In
particular, the tangent space TF M at F ∈ M can be identified
with V . We endow M with the Riemannian metric

g(G, H) =
∫

Td

G : C0 : H d X, G, H ∈ V, (14)

for some fixed reference tensor C0 satisfying (3). Suppose
that we have a hyperelastic energy density function W : Td ×
Rd×d → R, i.e. DW (F) = P(F), where D refers to the
derivative in the second variable only. In particular, solutions
of the equilibrium condition (1) correspond to critical points
of the total hyperelastic energy

f (F) =
∫

Td

W (F) d X, F ∈ M, (15)

where we consistently suppress the X -dependence. Then
Eq. (11) reads

g(GRAD f (F), G) = D f (F)[G], F ∈ M, G ∈ V . (16)

Writing G = ∇v for some v the right hand side of (16)
becomes

∫

Td

P(F) : ∇v d X, (17)

whereas the left hand side reads

∫

Td

GRAD f (F) : C0 : ∇v d X. (18)

Writing GRAD f (F) = ∇u for u ∈ [H1
# (Td)]d we see that

u solves the variational equation
∫

Td

∇u : C0 : ∇v d X =
∫

Td

P(F) : ∇v d X, v ∈ [H1
# (Td)]d , (19)

i.e.

u = G0DivP(F), (20)

GRAD f (F) = ∇u = Γ 0 : P(F). (21)

Suppose we have a family Ft of solutions to the gradient
descent equation

d Ft

dt
= −GRAD f (Ft ). (22)
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Then,

d

dt
f (Ft ) = D f (Ft )

[
d Ft

dt

]

= g(GRAD f (Ft ),−GRAD f (Ft ))

= −
∫

Td

(Γ 0 : P(Ft )) : C0 : (Γ 0 : P(Ft )) d X

≤ −C‖DivP(Ft )‖2
H−1 (23)

for a constant depending only on C0. In particular, the
hyperelastic energy decreases monotonically as long as
DivP(Ft ) �= 0. A forward Euler discretization of the gradi-
ent descent method (22) with time step �t and initial guess
F0 reads

F i+1 = F i − �tGRAD f (F i )

= F i − �tGRAD f (F i )

= F i − �tΓ 0 : P(F i )

= (1 − �t)F i + �t (F̄ − Γ 0 : (P(F i ) − C
0 : F i )).

(24)

Here, we have used the equality F = F̄ + Γ 0 : C0 : F for
F ∈ M . We see that the gradient descent with �t = 1 corre-
sponds directly to the basic scheme. �t < 1 leads to a relaxed
formulation, sometimes called damped Picard iteration. This
reformulation has several important consequences.

1. Under mild hypotheses on the hyperelastic energy, like
some coercivity assumption, and sufficiently small time
steps we see that the basic scheme converges to a critical
point.

2. The chosen reference material determines the Rie-
mannian metric, directly influencing the descent direc-
tion. However, it is not necessary to choose a truly
anisotropic reference material like Eisenlohr et al. [13].

3. The convergence speed of the method is limited. One
should compare to the linear case, where CG converges
significantly faster compared to a pure gradient descent
[48].

4. Assuming sufficiently small time steps (or large itera-
tion number) the hyperelastic energy decreases monoton-
ically. Thus, the related hyperelastic energy difference
can be used as an inexpensive stopping criterion.

5. These conclusions remain valid for small deformations.

The choice of reference stiffness is central to the conver-
gence speed of the basic scheme. Suppose we have an initial
guess C0 and scale with a positive factor ε > 0. Then, the
corresponding gradient scales as ε−1GRAD f (F). If ε is very
small, the gradient becomes prohibitively large, leading to an
unstable method. Large ε, on the other hand, slows down the
method significantly.

The choice of reference material for the nonlinear basic
scheme is not discussed in the literature to the best of the
authors’ knowledge, with the notable exception of Eisenlohr
et al. [13]. They propose to determine C0 as the mean value
of d P/d F in the current configuration.

In this work we propose to use as reference material a
scalar multiple of the identity on d × d matrices. The scalar
factor in front of the identity is computed as the average of
the maximal and minimal (positive) eigenvalue of d P/d F

in the current configuration. This choice can be proved to be
theoretically optimal for anisotropic linear elasticity and is
simple to implement. Our choice has the following advan-
tages in comparison to [13].

1. In general the averaging approach of [13] leads to
fully anisotropic reference materials. These do not admit
explicit formulae for the Green’s operator. Thus in three
spatial dimensions one either has to invert a (symmetric)
9×9 matrix for every voxel and every Moulinec–Suquet
iteration or compute these once and store them, requiring
the equivalent of 9 deformation gradients. Furthermore,
the averaged reference material [13] need not be positive.
In contrast, we can make make use of explicit formulas
for the Fourier coefficients of the Green’s operator (cf.
Appendix 7), and our C0 is always positive definite.

2. It is possible to construct examples for which the choice
of the average of the elastic stiffness as reference material
is detrimental for the convergence behavior. For simplic-
ity, we have chosen an example in linear elasticity. Con-
sider a two-phase laminate consisting of isotropic linear
elastic materials C1 = 2µ1I

S and C2 = 2µ2I
S with IS

being the identity tensor on 2nd-order symmetric tensors.
The (theoretically) optimal reference material is defined
by C0 = (µ1 + µ2)I

S [26], whereas volume averaging
gives C0 = 2(c1µ1 + c2µ2)I

S with c1 and c2 denot-
ing the volume fractions of the two phases. For c1 → 0
or c1 → 1 the difference of the two reference materi-
als becomes large for high material contrasts µ1/µ2. For
µ1 = 500 [GPa] and µ2 = 0.5 [GPa] we can actually
choose the volume fractions in such a way that the vol-
ume average of the stiffness leads to divergence of the
basic scheme (see Table 1, − indicates divergence).

Similarly, a clever choice of the convergence criterion can
reduce the computational costs. In contrast to other authors
[8,28,31] who suggested criteria that need storage for both
the deformation gradient and the first Piola–Kirchhoff stress,
we propose to use a less memory and time consuming conver-
gence test for the basic scheme that only needs the L2-norm
of the iterates
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Table 1 Deformation of a linear elastic two-phase laminate

c1 µ0 = c1µ1 + c2µ2 # Iter. µ0 = (µ1 + µ2)/2 # Iter.
[−] [GPa] [−] [GPa] [−]

0.1 50.45 – 250.25 48

0.2 100.40 – 250.25 23

0.3 150.35 – 250.25 13

0.4 200.30 18 250.25 8

0.5 250.25 1 250.25 1

0.6 300.20 12 250.25 8

0.7 350.15 22 250.25 14

0.8 400.10 43 250.25 25

0.9 450.05 103 250.25 57

Number of iterations of the basic scheme necessary for convergence
depending on the choice of the reference material C0 and the volume
fractions c1 and c2 = 1 − c1

∣∣∥∥F i+1
∥∥ −

∥∥F i
∥∥∣∣2

∥∥F1
∥∥2 < ε, (25)

but no extra storage. Since
∣∣∥∥F i+1

∥∥−
∥∥F i

∥∥∣∣ ≤
∥∥F i+1 − F i

∥∥
the sequence (F i ) cannot converge if our criterion fails. Our
criterion also applies to the two linear fixed point solvers
presented in the succeeding sections.

3.2 Newton–Raphson method

To solve the nonlinear Lippmann–Schwinger Eq. (8) the
Newton–Raphson method generates a sequence of deforma-
tion gradients F i , related by F i+1 = F i + �F i+1, where
each �F i+1 solves the linear equation
(
I + Γ 0 :

[
d P

d F
(F i ) − C

0
])

: �F i+1 =

F̄n − F̄ i − Γ 0 : P(F i ), (26)

with I denoting the identity tensor on 2nd-order tensors, at
the load step F̄n . The condition number of this linear sys-
tem depends strongly on the current configuration F i and
can change significantly throughout the Newton–Raphson
process. In the subsequent Sects. 3.2.1, 3.2.2, 3.2.3, and 3.2.4
we will discuss methods to solve this linear equation effi-
ciently under the working assumption that d P/d F(F i ) is
positive definite. We will discuss the indefinite case there-
after, see Sect. 3.2.7.

For the convenience of the reader, we include the New-
ton–Raphson pseudocode for multiple load steps, see Algo-
rithm 3, where we use the Moulinec–Suquet iterate with non-
constant right hand side to change between the load steps.
Conditions for convergence of the Newton–Raphson method
are addressed by the Newton–Kantorovich Theorem [35,36].
The Newton–Raphson method requires storing two deforma-

Algorithm 3 Newton–Raphson method (multiple load steps)
1: F ← 0
2: for n ∈ {0, . . . , nmax} do

3: F ← MSiterate(F ,P ,C0,F̄n) ⊲ After this step we have F̄ = F̄n

4: repeat

5: �F ← −
(
I + Γ 0 :

[
d P/d F(F) − C0

])−1 : Γ 0 : P(F)

6: F ← F + �F

7: until ‖�F‖ /
∥∥F̄n

∥∥ < δ

8: end for

9: return F

tion gradients, i.e. 18 scalars per voxel, plus possibly addi-
tional memory for the linear solver.

3.2.1 Newton–Moulinec–Suquet method

The linear Eq. (26) can be solved analogously to the basic
scheme described above using Algorithm 4 as proposed by
Lahellec, Moulinec, and Suquet [25]. For a hyperelastic

Algorithm 4 Linear basic scheme [31]
1: �F ← 0
2: repeat

3: �F ← P(F) + (d P/d F(F) − C0) : �F

4: �F ← FFT(�F)

5: �F ← −Γ̂ 0 : �F , �F(0) = 0
6: �F ← FFT−1(�F)

7: until Convergence
8: return �F

material the tensor field d P/d F(F) satisfies the major sym-
metry. Suppose furthermore there are positive constants C, c,

s.t.

c G : G ≤ G : d P/d F(F) : G ≤ C G : G, (27)

for all G ∈ Rd×d . Then the reference material C0 = c+C
2 I

leads to the estimate
∥∥∥�F i+1,k −�F i+1

∥∥∥
L2

≤
(

κ−1

κ+1

)k ∥∥∥�F i+1,0−�F i+1
∥∥∥

L2
,

(28)

where �F i+1 denotes the exact solution to Eq. (26) and κ =
C/c.

Since the Moulinec–Suquet iteration operates in place,
the Newton–Moulinec–Suquet method can be implemented
storing two deformation gradients, i.e. 18 scalars per voxel,
only.

3.2.2 Newton–Eyre–Milton method

To accelerate the basic scheme faster linear solver have been
developed. Eyre–Milton [14] proposed to rewrite the equa-
tion
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(I+Γ 0 : [d P/d F(F)−C
0]) : �F = F̄n − F̄ −Γ 0 : P(F)

(29)

using the operator identity

(I − Y Z) : (d P/d F(F) + C
0) =

2C0 : (I + Γ 0 : [d P/d F(F) − C
0]), (30)

where

Y = I − 2C0 : Γ 0, (31)

Z = (d P/d F(F) − C
0) : (d P/d F(F) + C

0)−1. (32)

See also [26,28] for a relaxed version of the method. Thus,
the following fixed point equation has to be solved

Q = Y : Z : Q+2C0 : (F̄n − F̄) − 2C0 : Γ 0 : P(F) (33)

and �F is recovered via �F = (d P/d F(F) + C0)−1 : Q.

Under the assumption (27) the reference material C0 =√
cC I guarantees the estimate

‖Qi+1,k − Qi+1‖L2 ≤
(√

κ − 1√
κ + 1

)k ∥∥∥Qi+1,0 − Qi+1
∥∥∥

L2

(34)

with κ = C/c. Compared to the basic scheme, the Eyre–
Milton scheme converges significantly faster [14,26,28].

A fast and memory-efficient method is obtained by rewrit-
ing (33) in the form

Q = Y : (Z Q + P(F)) + 2C0 : (F̄n − F̄) − P(F). (35)

This leads to the Algorithm 5.
Analogously to the Moulinec–Suquet iteration the Eyre–

Milton scheme iterates in place, and no additional storage is
necessary. Thus, the Newton–Eyre–Milton method requires
storing two deformation gradients, i.e. 18 scalars per voxel.

Algorithm 5 Eyre–Milton linear solver for Newton–
Raphson

NREMsolver(F ,P ,C0)
1: �F ← 0
2: repeat

3: �F ← P(F) + (d P/d F(F) + C0) : �F

4: �F ← FFT(�F)

5: �F ← �F − 2C0 : Γ̂ 0 : �F

6: �F ← FFT−1(�F)

7: �F ← �F − P(F) ⊲ F̄ = F̄n in Algorithm 3
8: �F ← (d P/d F(F) + C0)−1 : �F

9: until Convergence.
10: return �F

Vinogradov and Milton [44] introduced a variant of this
method for nonlinear thermoelasticity at small deformations.
Instead of computing the increment �F i+1, they solve for
F i+1 = F i +�F i+1 directly using the Eyre–Milton method.

3.2.3 Newton–Krylov method

Zeman, Vondřejc, Novák, and Marek [48] as well as Bris-
ard and Dormieux [8,9] advocate utilizing Krylov subspace
methods for the solution of linear systems of the type (26).
The conjugate gradient method of Hestenes and Stiefel [18]
has been demonstrated to be a powerful method for solv-
ing linear Lippmann–Schwinger equations, and is virtually
independent of the reference material C0 [45]. The idea of
combining the Newton–Raphson method with Krylov sub-
space solvers has been initiated for nonlinear problems at
small deformation by Gélébart and Mondon–Cancel [17].
The iterates generated by the conjugate gradient method sat-
isfy the error estimate
∥∥∥�F i+1,k − �F i+1

∥∥∥
∗

≤

2

(√
cond − 1√
cond + 1

)k ∥∥∥�F i+1,0 − �F i+1
∥∥∥

∗
, (36)

where the ∗-subscript indicates the d P/d F-weighted
L2-norm and

cond = inf

{
C

c

∣∣∣∣ c ‖∇u‖L2 ≤ ‖∇u‖L2(d P/d F(F))

≤ C ‖∇u‖L2 , ∀u ∈
[

H1
# (Td)

]d
}

, (37)

provided cond is finite.
Although the error estimates (34) for Eyre–Miton and (36)

for CG look similar, κ and cond differ in general. Indeed,
cond ≤ κ by construction, but cond can be significantly
smaller. Furthermore, in every iteration CG eliminates the
largest eigenvalue, so that the estimate (36) improves with
every step, see [3].

However, there is a downside because the CG method
needs the storage of four3 deformation gradients, raising the
required storage of the Newton–Krylov method to five defor-
mation gradients (or 45 scalars per voxel). The CG method
for the linearized Lippmann–Schwinger Eq. (26) is recalled
in Algorithm 6, cf. [6].

3.2.4 Memory-efficient Newton–Krylov method

Exploiting the special structure of the Green’s operator (9)
the need for additional storage can be drastically reduced.

3 It is possible to work with three deformation gradients but only at the
expense of two matrix operations per iteration.
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Algorithm 6 CG method for Newton–Raphson

NRCGsolver(F ,P ,C0)
1: X ← −P(F) ⊲ F̄ = F̄n in Algorithm 3
2: X ← FFT(X)

3: X ← Γ̂ 0 : X

4: X ← FFT−1(X)

5: ApplyOperator(X, R)

6: Q ← R

7: γ ← ‖R‖2
L2

8: repeat

9: ApplyOperator(Q, W )

10: α ← 〈Q, Q − W 〉L2

11: α ← γ /α

12: X ← X + αQ

13: R ← R − αQ + αW

14: δ ← ‖R‖2
L2

15: β ← δ/γ

16: γ ← δ

17: Q ← R + βQ

18: until Convergence
19: return X

ApplyOperator(Q,W)
1: W ← −(d P/d F(F) − C0) : Q

2: W ← FFT(W )

3: W ← Γ̂ 0 : Q

4: W ← FFT−1(W )

Indeed, each of the four deformation gradients arise as gra-
dients of displacements, i.e.

X = ∇x, R = ∇r, Q = ∇q, W = ∇w (38)

and Γ 0 = ∇G0Div. Furthermore, we need to compute the
inner product

〈∇d,∇ y〉 =
∫

Td

∇d : ∇ y d X (39)

cheaply for vector fields d and y. If d and y are written4 as

d(X) =
∑

ξ∈2πZd/L

d̂(ξ) exp(i X · ξ), (40)

y(X) =
∑

ξ∈2πZd/L

ŷ(ξ) exp(i X · ξ) (41)

for X ∈ Td = R/L1Z×· · ·×R/LdZ and the short notation

2πZd/L =
{(

2π z1

L1
, . . . ,

2π zd

Ld

) ∣∣∣∣ (z1, . . . , zd) ∈ Z
d

}

(42)

Parseval’s theorem enables us to write

4 One should not confuse the position variable X with the solution
vector X from (38).

〈∇d,∇ y〉 = |Td |
∑

ξ∈2πZd/L

‖ξ‖2d̂(ξ) · ŷ(ξ), (43)

where z �→ z denotes complex conjugation. In particular to
save required FFTs, it seems convenient to work in Fourier
space throughout. Then, the evaluation of inner products like
〈∇d,∇ y〉 reduces to a simple sum that can be computed in
place. Expressions of the Fourier coefficients of the operators
∇, G0 and Div can be found in Appendix 7. The Algorithm 7
generates iterates related by (38) to the iterates of Algorithm
6. In particular, the convergence speed is preserved.

Algorithm 7 memory-efficient CG for Newton-Raphson

NRCGsolver2[F ,P ,C0]
1: W ← −P(F) ⊲ F̄ = F̄n in Algorithm 3
2: W ← FFT(W )

3: x ← Ĝ0D̂iv W

4: ApplyReducedOperator(x, W, r)

5: q ← r

6: γ ← Innerproduct(r, r)

7: repeat

8: ApplyReducedOperator(q, W, w) ⊲ w uses the memory of the
first three components of W

9: α ← Innerproduct(q, q − w)

10: α ← γ /α

11: x ← x + αq

12: r ← r − αq + αw

13: δ ← Innerproduct(r, r)

14: β ← δ/γ

15: γ ← δ

16: q ← r + βq

17: until Convergence.
18: W ← ∇̂x

19: return FFT−1(W )

ApplyReducedOperator(q,W,w)
1: W ← ∇̂q

2: W ← FFT−1(W )

3: W ← −(d P/d F(F) − C0) : W

4: W ← FFT(W )

5: w ← Ĝ0D̂iv W

Innerproduct(q,r)
1: return

∑
ξ ‖ξ‖2 q : r ⊲ z �→ z̄ denotes complex conjugation

It is important to note that memory for the displacements
x, q, r and the deformation gradient W needs to be allocated.
In particular, the displacement w occupies a third of the mem-
ory of W. This needs to be kept in mind writing the function
ApplyReducedOperator(q, W, w).

In contrast to the naive CG implementation, our mem-
ory-efficient version of the Newton–Krylov method requires
storing two deformation gradients and three displacements,
i.e. 27 doubles per voxel, and amounts to a 40 % memory
reduction.
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3.2.5 Intrinsic instability of linear fixed point solvers

In this section we will discuss an instability phenomenon
related to the choice of reference material for the linear fixed
point solvers used in Sects. 3.2.1 and 3.2.2. These problems
are not present for the Krylov methods.

If the reference configuration has no residual stresses at
the undeformed state F = I , with I denoting the 2nd-order
identity tensor, d P/d F(I ) defines pointwise a linear elas-
tic material. In particular, d P/d F satisfies minor and major
symmetries. As a consequence d P/d F(I ) is degenerate in
the sense that it does not satisfy the inequality (3).

In linear elasticity instead of (3) one works with the weaker
inequality

cε : ε ≤ ε : C : ε ≤ Cε : ε, ε ∈ R
d×d , εT = ε, (44)

for positive constants C and c independent of ε and a linearly
elastic reference material like 2µIS, where IS is the identity
on symmetric matrices. If F is slightly perturbed from the
identity, d P/d F(F) loses its minor symmetry, and usually
becomes non-degenerate in the sense of (3). Then, linearly
elastic reference materials do not lead to the bounds (28) and
(34), which are only valid for reference materials that are
non-degenerate on the whole of Rd×d .

On the other hand, choosing the reference material of the
type 2µIwith I being the identity tensor on 2nd-order tensors
leads to the bounds (28) and (34), but these bounds becomes
arbitrarily bad as F → I . More precisely, let (Fk) be a
sequence of sufficiently smooth deformations converging to
I in C1. Then, κ(Fk) → ∞ as k → ∞. Similar phenom-
ena can occur in the vicinity of other states exhibiting low
stresses or particular symmetries.

The phenomenon just described is intrinsic and cannot be
easily repaired. Furthermore, the phenomenon is not present
in linear elasticity. In particular, the Eyre–Milton scheme
exhibits instabilities and loses a lot of its computational
power compared to the linear case. We will see this in the
computational section.

It is important to note that for the sequence (Fk) above the
Kroylov methods has no problems. Indeed, cond(I ) is finite,
and cond(Fk) → cond(I ) as k → ∞.

3.2.6 Comparison

With our convergence criterion the basic scheme for the
nonlinear Lippmann–Schwinger equation only needs storage
for the solution, i.e. one (asymmetric) deformation gradient.
Application of the Newton–Raphson methods combined with
linear fixed point solvers requires one additional deformation
gradient for the solution increment. The CG method for solv-
ing the linearized Lippmann–Schwinger equation demands
three additional deformation gradients, whereas our adapted

Table 2 Computational costs of the different FFT-based methods

FFT-based
method

Memory usage per
voxel [byte]

Number of
iterations [−]

MS 72 ∼ κ

NR 144 ∼ κ

NE 144 ∼ √
κ

NK 360 ∼
√

cond

NK2 216 ∼
√

cond

κ denotes the contrast, i.e. the quotient of the largest and smallest eigen-
value of d P/d F in Td . cond is the condition number of the resulting
linear system

Newton–Krylov method gets by with three additional dis-
placements. In Table 2 we summarize the memory usage at
Double-precision (8 bytes = 64 bits) and the number of itera-
tions necessary for convergence. For the FFT-based methods
we use the following abbreviations

MS Moulinec–Suquet for the nonlinear
Lippmann–Schwinger equation

NR Moulinec–Suquet for the linearized
Lippmann–Schwinger equation

NE Eyre–Milton for the linearized
Lippmann–Schwinger equation

NK CG for the linearized
Lippmann–Schwinger equation

NK2 memory-efficient CG for the linearized
Lippmann–Schwinger equation

3.2.7 Indefinite d P/d F(F)

The linear solvers for the Newton–Raphson procedure pre-
sented so far assume positive definite linearized first Piola–
Kirchhoff stress tensor d P/d F during the Newton–Raphson
steps. This assumption is often encountered in practice,
and can be easily checked. Indeed, to determine the refer-
ence material it is necessary to compute the eigenvalues of
d P/d F(F i ) for every voxel. If these eigenvalues are all pos-
itive, the linear solvers can be used without second thought.

If negative eigenvalues appear, the resulting linear systems
are not necessarily positive definite, and convergence cannot
be guaranteed in general. Such systems arise frequently in the
presence of (continuous or discrete) symmetries or buckling.
In Sect. 5 we will encounter such indefinite systems. In our
experience there are three remedies to this difficulty.

1. Use the basic scheme until the linear system becomes
positive again.

2. Use the linear solvers, and disregard the negative eigen-
values in the computation of the reference material.
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3. m Use a Krylov subspace solver that can handle indefinite
systems, like SYMMLQ or MINRES [37].

Our numerical experiments in Sect. 5 indicate that 2. suffices
to handle the problems in this article.

4 St.Venant–Kirchhoff laminate

We consider a laminate consisting of two elastic materials
with volume fractions c1 and c2, respectively. The ratio of
the volume fractions corresponds to the ratio of the layer
thicknesses, i.e. c1/c2 = d1/d2 (see Fig. 1).

The elastic behavior of the layers is assumed to be of the
St.Venant–Kirchhoff type

S = C : E, (45)

which means that the 2nd-Piola–Kirchhoff stress tensor S =
det(F)F−1σ F−T is a linear function of the Green’ strain
tensor E = (FT F − I )/2. Assuming a hyperelastic material
behavior implies that the stiffness tensor C has the major
symmetry. In the isotropic case, the stiffness tensor is given
by C = λI ⊗ I + 2µIS with IS being the identity tensor on
2nd-order symmetric tensors. The two Lamé moduli λ and
µ specify completely the physically linear elastic behavior.
They are related to Young’s modulus and Poisson’s ratio by
λ = νE/(1+ν)/(1−2ν) and µ = E/(1+ν)/2, respectively.

The St.Venant–Kirchhoff type constitutive equation has
been noted to exhibit general deficiencies. Reasons are the
lack of rank-one convexity [4,7,12,22] which implies non-
polyconvexity and the physically incorrect behavior of the
stored energy function W̄ (F) = λ/2(tr E)2 + µ tr(E2) for
det F → 0+, i.e. limdet F→0+ W̄ (F) �= +∞ [12]. Therefore,
the existence of minimizers of the underlying boundary value
problem is not guaranteed at large strains. Nevertheless, the
St. Venant–Kirchhoff model gives reasonable results in the

Layer 1
Layer 2

n

d2/2 d1 d2/2

x

y

Fig. 1 Laminate

small strain—large displacement regime and allows for the
derivation of analytical solutions in Sect. 4.1, and can thus
serve as a benchmark for the analysis of geometrically non-
linear FFT-based schemes. In contrast to the derivation of the
analytical solutions these schemes do not depend on the linear
stress–strain relation of the St. Venant–Kirchhoff model and
for example have been successfully applied to compressible
Mooney–Rivlin materials [25].

The effective deformation gradient F̄ of the laminate is
given by its volume average in the reference configuration.
Hence, it is given by F̄ = c1 F1 + c2 F2, where F1 and
F2 denote the phase averages of the deformation gradient in
phase 1 and 2.

4.1 Analytical solution

In the following, it will be assumed that for given F̄ the two
layers of the laminate deform homogeneously. In this case the
equilibrium conditions are satisfied trivially inside the layers.
The static equilibrium condition for a singular interface—
here the interface between the two layers—translates into the
requirement that the traction vector is continuous [40,43]. In
a Lagrangian setting this condition reads

P1n = P2n. (46)

The vector n is the unit-normal vector of the interface (see
Fig. 1). On singular interfaces, the kinematic compatibility
condition implies that the jump of the deformation gradient
is a tensor of rank one and is of the following form

F2 = F1 + a ⊗ n (47)

[40,43]. Combining the equilibrium condition, the kinematic
compatibility condition, the constitutive equations and the
boundary conditions result in the following 21 equations

F1(C1 : ((F1)T F1− I ))n = F2(C2 : ((F2)T F2− I ))n, (48)

F̄ = c1 F1 + c2 F2, (49)

F2 = F1 + a ⊗ n (50)

for the 21 unknowns F1, F2 and a. The solution of the equa-
tions can be simplified by eliminating F1 and F2 and obtain-
ing three cubic equations in the components of the vector a.
The solution for a can be used to determine explicitly the
deformation gradients in the layers as a function of a

F1 = F̄ − c2a ⊗ n, F2 = F̄ + c1a ⊗ n. (51)

In Fig. 2 the solutions for the deformation gradients in the
layers are shown for different deformation processes in terms
of F̄ . The cubic equation for a is solved numerically, then the
deformation gradients in the layers are determined. The elas-
tic constants in the layers are chosen as follows:λ1 = 50 GPa,
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Fig. 2 Microscopic deformation gradient components of the analytical
solutions subject to prescribed macroscopic deformation gradients

µ1 = 25 GPa, λ2 = 1000 GPa, µ2 = 25 GPa. The volume
fractions are given by c1 = 1/10 and c2 = 9/10, respec-
tively. In the subsequent discussion only solutions with pos-
itive eigenvalues of the deformation gradient are considered.

1. The effective deformation gradient corresponds to a uni-
axial elongation or compression in the normal direction
of the layers: F̄ = I + εex ⊗ ex . The parameter ε rep-
resents the Biot strain. It can be seen that the two layers
are subjected to the same deformation mode as the com-
posite. The only difference is the intensity of elongation
in ex direction which is larger in the soft layer 1. The
solution is unique in the considered range of ε.

2. The effective deformation gradient corresponds to a uni-
axial elongation or compression in the tangential direc-
tion of the layers: F̄ = I + εey ⊗ ey . Obvioulsy the
two layers are not subjected to the same deformation
mode as the composite. In the elongation direction the
stretches are identical. In the cross direction, layer 1
shows an elongation whereas layer 2 shows a contraction.
No shear deformation is induced for macroscopic elon-
gation. Under compression, the solution is unique up to
a compression of approximately ε = −0.046639, then
three solutions exist, i.e. we encounter a bifurcation in
the sense of a radical change of the characteristics of the
energy landscape. These three solutions a = (ax , ay, 0)
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Fig. 3 Critical points of the elastic energy density f (F)/|Td | [GPa]

correspond to the critical points of the total hyperelastic
energy density

f (F)

|Td | = 1

|Td |

∫

Td

W̄ (F) d X

= (1/16000)(−50760a3
x + 13311a4

x

+13311a4
y + 1910000ε2(2 + ε)2

−360ax (141a2
y − 1900x(2 + ε))

+1800a2
y(10 + 39ε(2 + ε)) + 18a2

x

(1479a2
y + 100(78 + 29ε(2 + ε)))), (52)

which is invariant with respect to ay �→ −ay . Energy
landscapes for varying compression are displayed in
Fig. 3. The solution which exists for the complete range
of compression shows equal stretches in the compression
direction and a compression in layer 1 and a elongation in
layer 2 in the cross direction. The symmetric second and
third solutions occurring for larger amounts of compres-
sion exhibit a reduced cross directional stretch in both
layers and a significant shear mode in both layers. Both
shears have the composite normal ex = n as shear plane
normal and the composite tangential direction ey as shear
direction. Since the energy density is smaller for the two
solutions with shear modes (Fig. 4) these are the physi-
cally correct solution under compression.

3. The effective deformation gradient corresponds to a sim-
ple shear deformation: F̄ = I + K ex ⊗ ey . The shear
plane normal is ey . The shear direction is given by ex .
The amount of shear is specified by the shear number
K . The macroscopic shear deformation induces in both
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Fig. 4 Elastic energy density f (F)/|Td | [GPa] of the analytical solu-
tions under uniaxial elongation/compression in the tangential direction
of the layers

layers stretches in the composite normal direction. The
shear deformation Fxy is identical in both layers. The
shear deformations Fyx are slightly different in the lay-
ers.

4. The effective deformation gradient corresponds also to a
simple shear deformation: F̄ = I + K ey ⊗ ex . The shear
plane normal is ex . The shear direction is given by ey .
The macroscopic shear deformation induces stretches in
the composite normal direction in both layers. The shear
deformation Fyx is identical in both layers for small and
intermediate shear numbers K . For large K the compo-
nents Fyx differ in both layers. In contrast to case 3, no
shear deformations Fxy are induced.

The bifurcation behavior of the laminate is similar to that
of a rigid rod attached to a wall with a torsional spring. For a
compression loading there is a first loading range with only
one solution, which is furthermore stable. After passing a crit-
ical load there are two symmetric stable solutions (deflected)
and an unstable one (non-deflected). The two deflected solu-
tions are physically equivalent due to the symmetry of the
laminate problem reflected both in the microstructure and in
the boundary condition, compare Fig. 2.

4.2 Effective behavior

The effective stiffness of a laminate of two isotropic linearly
elastic phases satisfying µ1 = µ2 is also isotropic. One might
wonder whether this result extends to large deformations,
replacing isotropic linearly elastic materials by isotropic St.
Venant–Kirchhoff materials.

In the linear elastic case one obtains, following [27],
µeff = 25GPa and λeff = 6350/13GPa. Since for small
deformations F → I the second Piola–Kirchhoff stress
S = C : E converges to the linear elastic material law, an
effective St. Venant–Kirchhoff material (45) would have to
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Fig. 5 First Piola–Kirchhoff stress for elongation/compression in the
tangential direction of the layers

be defined by the effective linear elastic material parameters,
i.e. Ceff = λeff I ⊗ I + 2µeffIS .

Clearly, a homogeneous isotropic St. Venant–Kirchhoff
material would behave in the same way for elongation resp.
compression in all space directions. Since the laminate shows
bifurcations of the solution only under compression in the
tangential direction of the layers (Fig. 2, (1), (2)) the effec-
tive St.Venant–Kirchhoff material can not approximate the
laminate for large strains.

Nevertheless, Fig. 5 shows that the average of the first
Piola–Kirchhoff stress P̄ of the laminate and the effective
first Piola–Kirchhoff stress Peff = F̄Ceff : (F̄T F̄ − I )/2
are in good agreement up to an elongation of approximately
10 % and up to a compression of approximately 5 %.

5 Numerical studies

In this section we will first numerically deform the St. Ven-
ant–Kirchhoff laminate discussed in Sect. 4. If the layers are
aligned with the coordinate axis the geometry can be exactly
resolved by a voxel discretization and we do not have to deal
with voxel resolution effects. Aterwards, we will apply the
FFT-based methods to a complex microstructure typical for
glass fiber reinforced plastics. The numerical examples in this
section were implemented and tested with the commercial
code FeelMath, distributed as part of GeoDict.

Due to robustness issues we used for NE the same refer-
ence material as for NR , i.e. C0 = c+C

2 Id, cf. Sect. 3.2.2
and the instability discussion in Sect. 3.2.5.
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Fig. 6 Comparison of numerical and analytical solutions. Microscopic
deformation gradient components subject to prescribed macroscopic
deformation gradients

5.1 St. Venant–Kirchhoff laminate

The numerical solution of the Lippmann–Schwinger Eq. (8)
confirms that the two layers of the laminate deform homoge-
neously. In Fig. 6 the solutions for the deformation gradients
in the layers are compared with the corresponding solutions
of the Lippmann–Schwinger equation for different deforma-
tion processes in terms of F̄ . For all deformations the solution
of the different FFT-based methods coincide. Therefore only
one numerical result will be compared to the solution of the
analytical Eqs. (48), (49), (50) in Fig. 6.
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Fig. 7 Applications of the basic scheme

1. The numerical solution coincides with the unique analyt-
ical solution for uniaxial elongation/compression in the
normal direction of the layers: F̄ = I + εex ⊗ ex .

2. There exist three different analytical solutions. The ana-
lytical solution without shear mode exists in the whole
range of uniaxial elongation/compression in the tan-
gential direction of the layers: F̄ = I + εey ⊗ ey .
Without perturbations the numerical solution coincides
with this analytical solution (Fig. 6, (2) (a)). Since the
energy density is smaller for the two analytical solu-
tions with shear modes (Fig. 4) this is not the physi-
cally correct solution under compression. By small per-
turbations of the prescribed average deformation gradient
F̄ = I + εey ⊗ ey ± 0.01ey ⊗ ex both physical correct
solutions can be obtained numerically (Fig. 6, (2) (b),
(c)).

3. The numerical solution coincides with the unique ana-
lytical solution for a simple shear deformation: F̄ =
I + K ex ⊗ ey .

4. The numerical solution coincides with the unique ana-
lytical solution for a simple shear deformation: F̄ =
I + K ey ⊗ ex .

For all FFT-based methods used to solve the Lippmann–
Schwinger Eq. (8) the CPU-Time is dominated by the num-
ber of applications of FFTs, which we measure in equivalent
applications of the basic scheme (≡ 18 FFTs). Remarkably,
this number does not depend on the grid spacing [31]. The
number of applications of the basic scheme necessary for
convergence (ε = 10−5, δ = 10−2) is shown in Fig. 7 for
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Fig. 8 Number of Newton–Raphson iterations

different deformation processes in terms of F̄ . The corre-
sponding number of Newton–Raphson iterations is shown in
Fig. 8.

1. MS needs approximately twice the number of applica-
tions of the basic scheme to compute uniaxial elongation
in the normal direction of the layers: F̄ = I + εex ⊗ ex .
The number of Newton–Raphson iterations is higher for
NR at the beginning of the deformation.

2. The number of applications of the basic scheme grows
dramatically for uniaxial compression in the tangential
direction of the layers with perturbation (F̄ = I + εey ⊗
ey ±0.01ey ⊗ex ) when the shear mode starts to evolve. In
Table 3 the iteration numbers at the onset of the bifurca-
tion (Fig. 6, (2) (b)) are shown. Only the Newton–Krylov
methods NK and NK2 need acceptable number of itera-
tions for convergence.

3. The number of applications of the basic scheme of MS for
a simple shear deformation F̄ = I+K ex⊗ey has its max-
imum when the she shear deformation Fxy evolves. For
NR and NE and NK and NK2 the computational costs
stay almost constant over the whole range of considered
shearing.

4. The number of applications of the basic scheme of
MS for a simple shear deformation F̄ = I + K ey ⊗ ex

becomes maximal when the she shear deformation Fxy

evolves. For NR and NE and NK and NK2 the computa-

Table 3 Computational costs at the onset of the bifurcation during
compression in the tangential direction of the layers

FFT-based
method

Applications of the
basic scheme [−]

Newton–Raphson
iterations [−]

MS 1441 –

NR 467 22

NE 304 15

NK / NK2 16 3
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5
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4
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3.5
3

3
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[-
]
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Fig. 9 Iterates of the FFT-based schemes for 10 % compression in
tangential direction of the layers

tional costs stay almost constant over the whole range of
considered shearing.

The advantage of the Newton–Raphson iteration can also
be seen for this simple example. In Fig. 9 we show both the
iterates of MS and the Newton–Raphson method on a contour
plot for the energy densitiy f (F)/|Td | of the deformation
(51) for 10 % compression in the tangential direction of the
layers (F̄ = I − 0.1ey ⊗ ey). All iterates are represented
by a = (ax , ay, 0) satisfying (51). The iterates of MS have
been obtained by using one load step, whereas the iterates
of the Newton–Raphson methods are the projections of the
solutions for multiple load steps.

5.2 Glas fiber reinforced plastic (GFRP)

The industrial-sized example of a glass fiber reinforced plas-
tic (GFRP) shown in Figs. 10 and 11 was generated with
GeoDict5 by use of the algorithm described in [38]. The fiber
volume fraction of the GFRP is 13 % and the fiber orientation
tensor (see [1] for a definition) is given by

5 www.geodict.com
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Fig. 10 GFRP microstructure

Fig. 11 Green Lagrange strain Ezz of the GFRP microstructure under
compression F̄zz = 0.95

1 1.1 1.2
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100

200

300

F̄zz [-]

Applications of basic scheme

1 1.1 1.2

2

4

6

8

F̄zz [-]

Newton-Raphson iterations

MS NR NE NK / NK2

Fig. 12 Comparison of the computational costs for the realistic
microstructure during elongation and compression in z-direction

⎛
⎝

0.61 0 0
0 0.36 0
0 0 0.03

⎞
⎠ . (53)

This corresponds to a planar orientation state in the
x − y−plane, where on average almost twice as many fibers

Table 4 Computational costs for the first load increment F̄zz = 0.99

FFT-based
method

Memory usage
[GB]

Applicat. of the
basic scheme [−]

Newton–Raphson
iterations [−]

MS 9 363 –

NR 18 147 9

NE 18 98 7

NK 45 39 4

NK2 27 39 4

The fiber geometry (Fig. 10) was disretized with 512 × 512 × 512
voxels and the simulation was performed at Double-precision (8 byte =
64 bits)

0 20 40

0

1

2

Ēzz [%]

S̄M
zz

S̄F
zz

S̄zz

S̄eff
zz

Fig. 13 Comparison of the GFRP with an effective St. Venant–
Kirchhoff material. The superscripts M and F denote local averages
over the matrix and fibers, respectively

point in the x−direction as in the y−direction. The elas-
tic constants of the glass fibers and the plastic were chosen
as follows: EF = 73GPa, νF = 0.2, EM = 1.665GPa,
νM = 0.36. The applied effective deformation gradient F̄

corresponds to a uniaxial elongation/compression in the nor-
mal direction of most of the fibers: F̄ = I + εez ⊗ ez . We
notice the following.

1. The results of the four different FFT-based methods for
solving the nonlinear Lippmann–Schwinger equation for
finite strain coincide.

2. Compression is more expensive than elongation (see
Fig. 12).

3. The Newton–Krylov methods NK and NK2 need less
computational effort than MS and NR and NE (see Fig. 12
and Table 4).

4. The behavior of the composite can only be approxi-
mated up to a deformation of about 10 % by an effec-
tive St.Venant–Kirchhoff material: Fig. 13 compares the
average second Piola–Kirchhoff stress of the GFRP with
the second Piola–Kirchhoff stress of the homogenous St.
Venant–Kirchoff material Seff = Ceff : E . The effective
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linear elastic stiffness Ceff of the GFRP has been calcu-
lated numerically by the original FFT-based method of
Moulinec and Suquet [30]. Following [19] the average
Green-Langrange strain and the average second Piola–
Kirchhoff stress are defined by Ē := (F̄T F̄ − I )/2 and
S̄ := F̄−1 P̄ .

These observations agree with the lessons learned from
deforming the laminate in the previous section.

6 Conclusion

In this article we carried over the FFT-based methods of
Vinogradov and Milton [44] as well as of Gélébart and
Mondon–Cancel [17] to the geometrically nonlinear case
(Sects. 3.2.2 and 3.2.3). It turned out that the first looses its
computational power compared to the case of small deforma-
tions (Sect. 3.2.5) and the second needs excessive memory
(Table 2). Therefore, we have modified the latter (Sect. 3.2.4)
and reduced the additional memory requirement of the CG
method in the Newton–Krylov iteration by 40 %. As a
result we obtained a memory-efficent FFT-based method
with a convergence rate proportional to

√
cond whereas

the FFT-based method proposed by Lahellec, Moulinec,
and Suquet [25] has a convergence rate proportional to the
material contrast κ . Furthermore, we discussed the choice
of reference material ensuring fastest convergence (Sect.
3) and proposed a memory-minimal convergence criterion.
Clearly, our idea for reducing the memory need of the
CG method can also be applied in the context of small
deformations [48] and to the Lippmann–Schwinger equa-
tion for the problem of electric conductivity or heat transfer
[44].

By exhibiting the fixed point scheme of Moulinec and
Suquet [30] and the counterpart of Eisenlohr et al. [13] for
large deformations as a gradient descent method we could
explain the strongly growing iteration number in the vicinity
of bifurcations of the solution (Fig. 9) and its overall lack of
speed which is compensated by its superior robustness and
memory efficiency.

Our analytic solution shows a complex effective constitu-
tive behavior despite the simplicity of the microstructure and
constitutive properties. The St. Venant–Kirchhoff laminate
exhibits bifurcation of the solution (see Fig. 2). For more
complex problems (see Fig. 10) all deformations states stud-
ied for the St. Venant–Kirchhoff laminate are expected to
occur locally at the fiber-matrix interface. Whether the bifur-
cation can also be observed for complex microstructures or is
even only an artifact of the known inconsistencies of the St.
Venant–Kirchhoff ansatz might serve as a point of departure
for further investigation.

Both the St. Venant–Kirchhoff laminate as well as the
GFRP are perfectly described by the stiffness tensor homog-
enized by the approach of [16] in the range of small and
intermediate deformations. For larger strains it is interest-
ing to note that the effective behavior is not reproduced by a
St.Venant–Kirchhoff law with the stiffness tensor determined
within an infinitesimal theory (see Figs. 5 and 13). Hence, it
can be concluded that the effective elastic behavior of a com-
posite consisting of two St. Venant–Kirchhoff materials is in
general not given by a macroscopic St.Venant type constitu-
tive relation. This phenomen justifies the need for simulations
of complex microstructures at large strains (e.g. crash sim-
ulation), hopefully memory-efficient and highly performing
(see FeelMath distributed as part of GeoDict).

Acknowledgments The authors benefited from many fruitful discus-
sions with Heiko Andrä and Andreas Günnel.

7 Green’s operator for large deformations in Fourier

space

An efficient implementation of the basic scheme (Algorithm
1) needs two main ingredients. A fast implementation of
the discrete Fourier transformations as provided for exam-
ple by the FFTW6 library [20] and an explicit formula for
the Fourier coefficients Γ̂ 0 of Green’s operator.

The operators ∇, Div and G0 are understood in Fourier
space via

[
∇̂d(ξ)

]
kl

= iξl d̂k(ξ), (54)
[
D̂ivD(ξ)

]
k

= iξl D̂kl(ξ), (55)
[
Ĝ0d(ξ)

]
k

= Ĝ0(ξ)kl d̂l(ξ), (56)

for k, l = 1, . . . , d , where ξ = 2π z/L , z ∈ Zd ,
denotes a wave vector with the short notation z/L =
(z1/L1, . . . zd/Ld). Therefore, in Fourier space the constitu-
tive Eq. (4) and the equilibrium condition (1) have the form

P̂kL(ξ) = iC0
kLm N ξN ûm(ξ) + τ̂kL(ξ), (57)

i P̂kL(ξ)ξL = 0, (58)

Eliminating P̂kL yields

C
0
kLm N ξLξN ûm(ξ) = i τ̂kL(ξ)ξL . (59)

6 www.fftw.org
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Due to the definition of the solution operator G0 this implies

(Ĝ0)−1
km(ξ) = C

0
kLm N ξLξN , (60)

ûm(ξ) = Ĝ0
mk(ξ)i τ̂kLξL . (61)

Using (9) yields additionally

Γ̂ 0
kLm N (ξ) = ξLξN Ĝ0

km(ξ). (62)

In the case of an isotropic reference material C0 with
Lamé moduli λ0 and µ0, i.e. C0 = λ0 I ⊗ I + 2µ0I

S

or C
0
kLm N = λ0δkLδm N + µ0(δkmδL N + δk N δLm) for

k, L , m, N = 1, . . . , d , the Fourier coefficients Ĝ0 of the
solution operator read (cf. [33])

(Ĝ0)−1
km(ξ)=λ0δkLδm N ξLξN +µ0(δkmδL N +δk N δLm)ξLξN ,

(63)

(Ĝ0)−1(ξ) = (λ0 + µ0)ξ ⊗ ξ + µ0|ξ |2 I, (64)

Ĝ0(ξ) = (λ0 + 2µ0)|ξ |2 I − (λ0 + µ0)ξ ⊗ ξ

µ0(λ0 + 2µ0)|ξ |4 . (65)

By applying (62) we arrive at an explicit formula for the
Fourier coefficients of the Green’s operator

Γ̂ 0(ξ)τ̂ = τ̂ ξ ⊗ ξ

µ0|ξ |2 − λ0 + µ0

µ0 (λ0 + 2µ0)

τ̂ ξ · ξ

|ξ |4 ξ ⊗ ξ, (66)

Γ̂ 0
kLm N (ξ) = δkmξLξN

µ0|ξ |2 − λ0 + µ0

µ0 (λ0 + 2µ0)

ξkξLξmξN

|ξ |4 . (67)

Symmetrizing Γ̂ 0 gives the Fourier coefficients of Green’s
operator for linear elasticity.

If the isotropic reference material C0 with Lamé moduli
λ0 and µ0 is not symmetrized (cf. Sects. 3.1 and 3.2.5), i.e.
C0 = λ0 I ⊗ I +2µ0I or C0

kLm N = λ0δkLδm N +2µ0δkmδL N

for k, L , m, N = 1, . . . , d , the Fourier coefficients Ĝ0 of the
solution operator read

(Ĝ0)−1
km(ξ) = λ0δkLδm N ξLξN + 2µ0δkmδL N ξLξN , (68)

(Ĝ0)−1(ξ) = λ0ξ ⊗ ξ + 2µ0|ξ |2 I, (69)

Ĝ0(ξ) = (λ0 + 2µ0)|ξ |2 I − λ0ξ ⊗ ξ

2µ0(λ0 + 2µ0)|ξ |4 . (70)

By applying (62) we arrive at an explicit formula for the
Fourier coefficients of the Green’s operator

Γ̂ 0(ξ)τ̂ = τ̂ ξ ⊗ ξ

2µ0|ξ |2 − λ0

2µ0 (λ0 + 2µ0)

τ̂ ξ · ξ

|ξ |4 ξ ⊗ ξ, (71)

Γ̂ 0
kLm N (ξ) = δkmξLξN

2µ0|ξ |2 − λ0

2µ0 (λ0 + 2µ0)

ξkξLξmξN

|ξ |4 . (72)
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