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We prove a conjecture due to Sun involving the sequence of alternating odd harmonic numbers. In this regard, we employ a computer-assisted and experimental approach toward formulating a proof of this result, using Mathematica algorithms for obtaining dilogarithmic forms for antiderivatives, together with the MultipleZetaValues Mathematica package recently introduced by Au. Our methods, more broadly, allow us to reduce difficult binomial-harmonic sums to finite combinations of dilogarithms that are evaluable via Au's MZPolyLog algorithms.

Introduction

The author had recently introduced a proof [START_REF] Campbell | Proof of a conjecture due to Sun concerning Catalan's constant[END_REF] (cf. equation in [START_REF] Ablinger | Discovering and proving infinite binomial sums identities[END_REF]; see also [START_REF] Chen | Interesting Ramanujan-like series associated with powers of central binomial coefficients[END_REF]) of the following formula that had been conjectured by Sun in 2014 [START_REF] Sun | List of Conjectural series for Powers of π and Other Constants[END_REF] (cf. [START_REF] Sun | New series for some special values of L-functions[END_REF]):

∞ k=0 2k k (2k + 1)16 k 3H 2k+1 + 4 2k + 1 = 8G, (1) 
where G = ∞ k=0

(-1) k (2k+1) 2 denotes Catalan's constant, and where

H n = 1 + 1 2 + • • • + 1 n
denotes the n th entry in the sequence of harmonic numbers. It appears that the only known or previously available full, self-contained proof of (1) is given in [START_REF] Campbell | Proof of a conjecture due to Sun concerning Catalan's constant[END_REF], although Ablinger, in 2017 [START_REF] Ablinger | Discovering and proving infinite binomial sums identities[END_REF], had briefly noted that (1) may be proved using his HarmonicSums package. As it turns out, techniques introduced in [START_REF] Campbell | Proof of a conjecture due to Sun concerning Catalan's constant[END_REF] may be used or reformulated to solve similar conjectures due to Sun, including conjectures that apparently [9,17] (cf. [START_REF] Ablinger | Discovering and proving infinite binomial sums identities[END_REF]) had been open prior to our current paper. Both Ce Xu [17] and Marco Cantarini [9] had recently expressed to the author that the problem of proving the following formula experimentally discovered by Sun is open [START_REF] Sun | New Conjectures in Number Theory and Combinatorics[END_REF][START_REF] Sun | New series for some special values of L-functions[END_REF]:

∞ k=0 2k k (2k + 1)8 k 0≤j<k (-1) j 2j + 1 - (-1) k 2k + 1 = - √ 2 16 π 2 . ( 2 
)
As below, we introduce, in this article, a proof of Sun's conjectured formula in (2), using a similar approach as in [START_REF] Campbell | Proof of a conjecture due to Sun concerning Catalan's constant[END_REF]. It appears that our techniques as in [START_REF] Campbell | Proof of a conjecture due to Sun concerning Catalan's constant[END_REF] may be applied much more broadly to many of Sun's conjectures; we leave a full exploration of this to a future project.

1

Preliminaries

The recent article [START_REF] Campbell | An integration technique for evaluating quadratic harmonic sums[END_REF] heavily exploited integral identities for harmonic-type numbers, and the following well-known moment formula was included:

O (m+1) n = n k=1 (-1) k+1 (2k -1) m+1 = (-1) m m! 1 0 1 -(-1) n x 2n 1 + x 2 ln m x dx. (3) 
We refer to harmonic-type numbers of the above form as alternating odd harmonic numbers. We are to make use of the above moment formula, as below, to prove Sun's conjectured formula in [START_REF] Adams | The newest inductee in the number hall of fame[END_REF]. We are again letting Li 2 (z) := ∞ k=1 z k k 2 denote the dilogarithm function. There has been much research as of late concerning colored multiple zeta values (CMZVs) [START_REF] Au | Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series[END_REF][START_REF] Singer | Finite and symmetrized colored multiple zeta values[END_REF][START_REF] Tasaka | Finite and symmetric colored multiple zeta values and multiple harmonic q-series at roots of unity[END_REF], and the concept of a CMZV provides us with a key tool used in our proof in Section 2 below. Following [START_REF] Au | Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series[END_REF], we write

ζ(s 1 , . . . , s k ) = s 1 >•••>s k ≥1 1 n s 1 1 • • • n s k k and L s 1 ,...,s k (a 1 , . . . , a k ) = s 1 >•••>s k ≥1 a n 1 1 • • • a n k k n s 1 1 • • • n s k k
to denote, respectively, the multiple zeta function and the colored polylogarithm, where the value k is referred to as the length and s 1 + • • • + s k is referred to as the weight. A CMZV is an expression of the form L s 1 ,...,s k (a 1 , . . . , a k ) in the case whereby the arguments of the form a i are N th roots of unity, the indices of the form s i are positive integers, and (a i , s i ) ̸ = (1, 1) for all indices i. See Section 3 for a discussion concerning our "black box" approach involving CMZVs, as below.

2 Solution Theorem 1. Sun's conjectured equality in (2) is true.

Proof. From (3), we find that

k-1 j=0 (-1) j 2j + 1 = 1 0 1 -(-1) k x 2k 1 + x 2 dx ( 4 
)
for each natural number k. Expanding the summand in (2), we obtain the series

∞ k=0 -1 8 k 2k k (2k + 1) 2 , (5) 
and we may obtain a dilogarithmic form for this expression in virtually exactly the same way that a very similar formula for Gieseking's constant [START_REF] Adams | The newest inductee in the number hall of fame[END_REF] had been proved in [START_REF] Campbell | Proof of a conjecture due to Sun concerning Catalan's constant[END_REF] in order to prove Sun's formula in [START_REF] Ablinger | Discovering and proving infinite binomial sums identities[END_REF]. For the sake of brevity, we refer to [START_REF] Campbell | Proof of a conjecture due to Sun concerning Catalan's constant[END_REF] for details as to how to prove that the evaluation suggested below holds, noting that Mathematica is able to obtain the following from (5) via the FunctionExpand command:

√ 2Li 2 - 3 2 - 1 √ 2 - √ 2Li 2 1 - 3 2 - 1 √ 2 + π 2 6 √ 2 - log 2 3 2 + 1 √ 2 √ 2 + √ 2 log 3 2 + 1 √ 2 log 1 + 3 2 + 1 √ 2 .
So, it remains to show that

∞ k=0 2k k k-1 j=0 
(-1) j 2j+1 (2k + 1)8 k (6) 
is equal to the following expression:

π 2 24 √ 2 - log 2 3 2 + 1 √ 2 √ 2 + √ 2 log 3 2 + 1 √ 2 log 1 + 3 2 + 1 √ 2 + √ 2Li 2 - 3 2 - 1 √ 2 - √ 2Li 2 1 - 3 2 - 1 √ 2 .
We replace the summand factor k-1 j=0 (-1) j 2j+1 in ( 6) with the equivalent integral in (4), and we rearrange this resultant expression so as to obtain

∞ k=0 1 0 2k k (2k + 1)8 k 1 -(-1) k x 2k 1 + x 2 dx.
By the dominated convergence theorem, we are allowed to switch the order of the operators ∞ k=0 • and

1 0 • dx, giving us 1 0 πx -4 sinh -1 x √ 2 2 √ 2x (x 2 + 1) dx,
according the the Maclaurin series for sinh -1 . We have determined the followed antiderivative for the above integrand, and this may be verified by differentiating the following expression and then simplifying:

1 2 √ 2 2Li 2   - (1 + i)e sinh -1 x √ 2 √ 2   + 2Li 2   - (1 -i)e sinh -1 x √ 2 √ 2   + 2Li 2   (1 -i)e sinh -1 x √ 2 √ 2   + 2Li 2   (1 + i)e sinh -1 x √ 2 √ 2   - 2Li 2 e 2 sinh -1 x √ 2 + π tan -1 (x) + 2 sinh -1 x √ 2 log   1 - (1 + i)e sinh -1 x √ 2 √ 2   + 2 sinh -1 x √ 2 log   1 - (1 -i)e sinh -1 x √ 2 √ 2   + 2 sinh -1 x √ 2 log   1 + (1 -i)e sinh -1 x √ 2 √ 2   + 2 sinh -1 x √ 2 log   1 + (1 + i)e sinh -1 x √ 2 √ 2   -4 sinh -1 x √ 2 log 1 -e 2 sinh -1 x √ 2
.

Setting x → 1 and x → 0 and then taking the difference, and then subtracting the dilogarithmic form for [START_REF] Campbell | Proof of a conjecture due to Sun concerning Catalan's constant[END_REF], it remains to prove that the following expression vanishes:

1 48 √ 2 12 Li 2 -7 -4 √ 3 -8Li 2 -2 + √ 3 -4Li 2 2 + √ 3 + 8Li 2 1 -2 + √ 3 + log 2 2 - √ 3 + 4 log 2 - √ 3 log 1 + 2 + √ 3 + log(16)csch -1 √ 2 + 13π 2 -96iπcsch -1 √ 2 .
According to the elementary dilogarithmn identity

Li 2 (x) + Li 2 (1 -x) = 1 6 π 2 -log x log(1 -x),
it remains to prove that the following expression vanishes:

1 48 √ 2 29π 2 -48iπ 2csch -1 √ 2 + log 2 + √ 3 + 12 csch -1 √ 2 log(16)+ log 2 2 - √ 3 -4 log 2 + √ 3 log -1 + 2 + √ 3 + 4 log 2 - √ 3 log 1 + 2 + √ 3 + Li 2 -7 -4 √ 3 -8Li 2 -2 + √ 3 - 8Li 2 2 + √ 3 -4Li 2 2 + √ 3 .
Using the elementary dilogarithm identity

Li 2 (x) + Li 2 (-x) = 1 2 Li 2 (x 2 ),
it remains to prove that the following expression vanishes:

29π 2 48 √ 2 -i √ 2πcsch -1 √ 2 + csch -1 √ 2 log(16) 4 √ 2 + log 2 2 - √ 3 4 √ 2 - iπ log 2 + √ 3 √ 2 - log 2 + √ 3 log -1 + 2 + √ 3 √ 2 + log 2 - √ 3 log 1 + 2 + √ 3 √ 2 + Li 2 -7 -4 √ 3 4 √ 2 - √ 2Li 2 2 + √ 3 .
So, it remains to prove the closed form for

1 8 Li 2 -2 + √ 3 2 -Li 2 2 + √ 3
suggested by the purportedly vanishing expression indicated above. Using Landen's identity, this is equivalent to

- 1 16 log 2 1 + 2 + √ 3 2 - 1 8 Li 2 2 + √ 3 4 -Li 2 2 + √ 3 .
The two-term linear combination

1 8 Li 2 2 + √ 3 4 + Li 2 2 + √ 3 (7) 
of dilogarithmic values is a CMZV of level 12 and weight 2 [START_REF] Au | [END_REF]. CMZVs of this form are completely tabulated via the Mathematica package MultipleZetaValues due to Au [START_REF] Au | Mathematica package MultipleZetaValues[END_REF][START_REF] Au | [END_REF].

After loading the required package [START_REF] Au | Mathematica package MultipleZetaValues[END_REF][START_REF] Au | [END_REF], inputting

MZPolyLog[{0, 1}, (2 + Sqrt[3])/4]
provides the desired evaluation, which holds according to the algorithms corresponding to the package MultipleZetaValues [START_REF] Au | Mathematica package MultipleZetaValues[END_REF][START_REF] Au | [END_REF].

Discussion

Our derivation of the two-term dilogarithm relation for ( 7) is quite experimental, as there are many "black boxes" involved in this derivation and the underlying algorithms [START_REF] Au | [END_REF], in something of an analogous way compared to the famous Wilf-Zeilberger method [START_REF] Petkovšek | A = B[END_REF]. We provide, as below, a more complete explanation as to how the closed form (7) may be obtained via the algorithms we had applied.

The required package contains a basis B for a Q-vector space of level 12, weight 2 CMZVs. We denote this Q-space as V [START_REF] Au | [END_REF]. The basis B may be accessed via the following command [START_REF] Au | [END_REF].

MZBasis [START_REF] Singer | Finite and symmetrized colored multiple zeta values[END_REF][START_REF] Adams | The newest inductee in the number hall of fame[END_REF] After inputting

MZPolyLog[{0, 1}, (2 + Sqrt[3])/4]

Au's package determines that the above expression lies in V , and an algorithm is applied to determine how this expression may be written in terms of the members of B, noting that Li 2 (2 -√ 3) is in B, and that we may rewrite the desired two-term Li 2 identity in an equivalent way so that the following holds [START_REF] Au | [END_REF]: 2). ( 8)

Li 2 √ 3 + 2 4 -8Li 2 (2 - √ 3) = - π 2 4 - 2 
The foregoing considerations inspire a full exploration as to how our proof in the preceding Section may be generalized, by reducing the series in Sun's conjectures to finite combinations of polylogarithms of "reasonable" weight, and then invoking Au's algorithms. On the other hand, our two-term dilogarithm relations as in ( 8) are of interest in their own right, in view of recent results as in [START_REF] Campbell | Some nontrivial two-term dilogarithm identities[END_REF].
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