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MONOTONE DISCRETIZATION OF THE MONGE–AMPÈRE EQUATION OF
OPTIMAL TRANSPORT

Guillaume Bonnet1,2,* and Jean-Marie Mirebeau3

Abstract. We design a monotone finite difference discretization of the second boundary value problem
for the Monge–Ampère equation, whose main application is optimal transport. We prove the existence
of solutions to a class of monotone numerical schemes for degenerate elliptic equations whose sets of
solutions are stable by addition of a constant, and we show that the scheme that we introduce for
the Monge–Ampère equation belongs to this class. We prove the convergence of this scheme, although
only in the setting of quadratic optimal transport. The scheme is based on a reformulation of the
Monge–Ampère operator as a maximum of semilinear operators. In dimension two, we recommend
to use Selling’s formula, a tool originating from low-dimensional lattice geometry, in order to choose
the parameters of the discretization. We show that this approach yields a closed-form formula for the
maximum that appears in the discretized operator, which allows the scheme to be solved particularly
efficiently. We present some numerical results that we obtained by applying the scheme to quadratic
optimal transport problems as well as to the far field refractor problem in nonimaging optics.
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1. Introduction

The problem of optimal transport [45] is strongly related to the Monge–Ampère equation [30]: under suitable
assumptions, the potential function which solves an optimal transport problem is also solution to the Monge–
Ampère equation associated with this problem, equipped with the relevant boundary condition [20]. Some
problems in nonimaging optics are also described by Monge–Ampère equations, among which some fit in the
framework of optimal transport [12,30] and some do not [31,34].

Let us outline some approaches to the numerical resolution of optimal transport problems. One may solve an
entropic regularization of a discrete optimal transport problem using Sinkhorn’s iterations [17]. The Benamou–
Brenier method [2] is based on an extension of the optimal transport problem, with an added time variable. Some
methods were also developed to solve semi-discrete optimal transport problems [33], and applied to problems
in nonimaging optics [18]. Finally, one may solve numerically the Monge–Ampère equation associated with
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the considered optimal transport problem, as suggested in this paper and previously in [3, 26]. One benefit of
this last approach is that, as illustrated by our numerical experiments in the setting of nonimaging optics in
Section 6.5, it can be applied to optimal transport problems with various cost functions, provided that one uses
a numerical scheme capable of handling Monge–Ampère equations with arbitrary coefficients. Another benefit
is that convergence results may be established using the theory of monotone schemes for degenerate elliptic
partial differential equations [1]. Note however that establishing theoretical guarantees is more complicated
when considering general cost functions, and in this paper our convergence proof only applies in the setting of
a quadratic transport cost.

We design a monotone finite difference discretization of the Monge–Ampère equation

det+
(︀
𝐷2𝑢(𝑥)−𝐴(𝑥,𝐷𝑢(𝑥))

)︀
= 𝐵(𝑥,𝐷𝑢(𝑥)) in 𝑋, (1.1)

where 𝑋 is an open bounded subset of R𝑑 containing the origin and 𝐴 and 𝐵 are bounded functions on
𝑋×R𝑑, whose values are respectively symmetric matrices and nonnegative numbers, 𝐴 and 𝐵1/𝑑 being Lipschitz
continuous with respect to their second variables uniformly with respect to their first variables, and 𝐴 being
continuous with respect to both its variables. For any symmetric matrix 𝑀 of size 𝑑, we denoted

det+𝑀 :=

{︃
det𝑀 if 𝑀 ⪰ 0,
−∞ else.

(We use the Loewner order on the space of symmetric matrices: 𝑀1 ⪰𝑀2 if 𝑀1 −𝑀2 is positive semidefinite.
From now on, we denote respectively by 𝒮𝑑, 𝒮+

𝑑 , and 𝒮++
𝑑 the sets of symmetric, symmetric positive semidefinite,

and symmetric positive definite matrices of size 𝑑.)
Since we consider Monge–Ampère equations which are related to the problem of optimal transport, see

Since we consider Section 5.1 and Remark 5.1, we also have to discretize the relevant boundary condition,
described in Section 1.2. We prove the existence of solutions, under suitable assumptions, to the proposed
finite difference scheme. We also prove the convergence of solutions to this scheme, but only in the setting of
quadratic optimal transport, where the function 𝐴 is identically zero and the function 𝐵 is separable in the form
𝐵(𝑥, 𝑝) = 𝑓(𝑥)/𝑔(𝑝).

The Monge–Ampère equation is degenerate elliptic, meaning that it may be written in the form

𝐹MA(𝑥,𝐷𝑢(𝑥), 𝐷2𝑢(𝑥)) = 0 in 𝑋, (1.2)

where the operator 𝐹MA : 𝑋 × R𝑑 × 𝒮𝑑 → R is degenerate elliptic, that is, nondecreasing with respect to its
last variable: 𝐹MA(𝑥, 𝑝,𝑀1) ≤ 𝐹MA(𝑥, 𝑝,𝑀2) if 𝑀1 ⪰ 𝑀2. The degenerate ellipticity property has a discrete
counterpart which we call monotonicity, see Definition 2.5. Convergence of monotone schemes for degenerate
elliptic equations may often be proved using a general argument, which was introduced in [1]. We use the
fundamental part of this argument, see Theorem 2.7. As we discuss below Theorem 2.7, the full convergence
result stated in [1] requires the approximated equation to satisfy a strong comparison principle which does not
hold for the Monge–Ampère equation equipped with the boundary condition (1.24). Therefore, in order to prove
Theorem 5.25, our convergence result in the setting of quadratic optimal transport, we need to establish an
appropriate substitute to this comparison principle, in the form of Theorems 5.11 and 5.12.

One way to define the operator 𝐹MA(𝑥, 𝑝,𝑀) so that it is both degenerate elliptic and consistent with (1.1)
would be as

𝐵(𝑥, 𝑝)− det+(𝑀 −𝐴(𝑥, 𝑝)). (1.3)

This is not the definition we use, however. The reason is that there is no obvious way to build a monotone
scheme by directly discretizing (1.3).

Instead, we use strategies described in [35,36] to reformulate the Monge–Ampère equation in the form (1.2),
where 𝐹MA is a supremum of semilinear operators (see also Prop. 5.8 for a more detailed description of what



MONOTONE DISCRETIZATION OF THE MONGE–AMPÈRE EQUATION 817

follows). First, note that formally, solutions to the Monge–Ampère equation satisfy the admissibility constraint

𝐷2𝑢(𝑥) ⪰ 𝐴(𝑥,𝐷𝑢(𝑥)) in 𝑋, (1.4)

since otherwise the left-hand side in (1.1) would be equal to −∞. For any symmetric positive semidefinite matrix
𝑀 , it holds that

𝑑(det𝑀)1/𝑑 = inf
𝒟∈𝒮++

𝑑
det𝒟=1

⟨𝒟,𝑀⟩ = inf
𝒟∈𝒮++

𝑑

Tr(𝒟)=1

(det𝒟)−1/𝑑⟨𝒟,𝑀⟩, (1.5)

where ⟨𝒟,𝑀⟩ := Tr(𝒟𝑀). Choosing 𝑀 = 𝐷2𝑢(𝑥)−𝐴(𝑥,𝐷𝑢(𝑥)) yields the two following reformulations of the
Monge–Ampère equation (1.1):

𝐵(𝑥,𝐷𝑢(𝑥))− inf
𝒟∈𝒮++

𝑑
det𝒟=1

(︃⟨︀
𝒟, 𝐷2𝑢(𝑥)−𝐴(𝑥,𝐷𝑢(𝑥))

⟩︀
𝑑

)︃𝑑

= 0 (1.6)

and alternatively, following [23],

max
𝒟∈𝒮+

𝑑

Tr(𝒟)=1

𝐿𝒟
(︀
𝐵(𝑥,𝐷𝑢(𝑥)), 𝐷2𝑢(𝑥)−𝐴(𝑥,𝐷𝑢(𝑥))

)︀
= 0 in 𝑋, (1.7)

where for any symmetric matrices 𝒟 and 𝑀 and nonnegative number 𝑏,

𝐿𝒟(𝑏,𝑀) := 𝑑𝑏1/𝑑(det𝒟)1/𝑑 − ⟨𝒟,𝑀⟩.

Note that the maximum in (1.7) is attained, as the maximum over a compact set of the continuous function
𝒟 ↦→ 𝐿𝒟(𝑏,𝑀) (this function is also concave, by the Minkowski determinant inequality). On the contrary, the
parameter set of the infimum in (1.6) is not compact. Both reformulations enforce the admissibility constraint
(1.4): for instance in (1.7), for any unit vector 𝑒 ∈ R𝑑, choosing 𝒟 = 𝑒⊗ 𝑒 in the maximum yields the inequality⟨︀

𝑒,
(︀
𝐷2𝑢(𝑥)−𝐴(𝑥,𝐷𝑢(𝑥))

)︀
𝑒
⟩︀
≥ 0,

from which it follows that 𝐷2𝑢(𝑥) ⪰ 𝐴(𝑥,𝐷𝑢(𝑥)).
The numerical scheme that we study in this paper is a discretization of (1.7). Hence we define the operator

𝐹MA in (1.2) by
𝐹MA(𝑥, 𝑝,𝑀) := max

𝒟∈𝒮+
𝑑

Tr(𝒟)=1

𝐿𝒟(𝐵(𝑥, 𝑝),𝑀 −𝐴(𝑥, 𝑝)). (1.8)

1.1. Discretization of the Monge–Ampère equation

For any discretization step ℎ > 0, we discretize the operator 𝐹MA on a grid 𝒢ℎ ⊂ 𝑋 ∩ ℎZ𝑑. Denoting by 𝑑H

the Hausdorff distance between compact subsets of R𝑑, which we recall is defined by

𝑑H(𝐾1,𝐾2) := max
{︂

max
𝑥∈𝐾1

min
𝑦∈𝐾2

|𝑥− 𝑦|, max
𝑥∈𝐾2

min
𝑦∈𝐾1

|𝑥− 𝑦|
}︂
, (1.9)

we will assume that
lim
ℎ→0

𝑑H

(︀
𝜕𝑋 ∪

(︀(︀
𝑋 ∩ ℎZ𝑑

)︀
∖ 𝒢ℎ

)︀
, 𝜕𝑋

)︀
= 0, (1.10)

or equivalently that if 𝐾 ⊂ 𝑋 is compact, then for sufficiently small ℎ > 0 one has 𝐾 ∩ ℎZ2 ⊂ 𝒢ℎ. We will also
need the technical assumption (3.1) of uniform connectedness of the grid 𝒢ℎ.
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Before introducing the discretization of 𝐹MA, we need to define some finite difference operators. For any
function 𝑢 : 𝒢ℎ → R, point 𝑥 ∈ 𝒢ℎ, and vector 𝑒 ∈ Z𝑑, we define

𝑇 𝑒
ℎ𝑢[𝑥] :=

{︃
𝑢[𝑥+ ℎ𝑒] if 𝑥+ ℎ𝑒 ∈ 𝒢ℎ,

+∞ else,
(1.11)

𝛿𝑒
ℎ𝑢[𝑥] :=

𝑇 𝑒
ℎ𝑢[𝑥]− 𝑢[𝑥]

ℎ
, ∆𝑒

ℎ𝑢[𝑥] :=
𝑇 𝑒

ℎ𝑢[𝑥] + 𝑇−𝑒
ℎ 𝑢[𝑥]− 2𝑢[𝑥]
ℎ2

· (1.12)

The constant +∞ in the definition of 𝑇 𝑒
ℎ is related to the way we recommend discretizing the optimal transport

boundary condition, discussed in Section 1.2.
In the whole paper, we denote by (𝑒1, . . . , 𝑒𝑑) the canonical basis of Z𝑑. For any function 𝑢 : 𝒢ℎ → R and

point 𝑥 ∈ 𝒢ℎ, we define the Laplacian approximation and, whenever it makes sense, the centered gradient
approximation

∆ℎ𝑢[𝑥] :=
𝑑∑︁

𝑖=1

∆𝑒𝑖

ℎ 𝑢[𝑥], 𝐷ℎ𝑢[𝑥] :=
(︂
𝛿𝑒𝑖

ℎ 𝑢[𝑥]− 𝛿−𝑒𝑖

ℎ 𝑢[𝑥]
2

)︂
1≤𝑖≤𝑑

. (1.13)

We use Lax–Friedrichs approximations of the gradient of 𝑢 in 𝐴(𝑥,𝐷𝑢(𝑥)) and 𝐵(𝑥,𝐷𝑢(𝑥)). To this end, we
let 𝑎min ≤ 0, 𝑎LF ≥ 0, and 𝑏LF ≥ 0 be three constants independent of ℎ. We will assume that for any 𝑥 ∈ 𝑋
and 𝑝, 𝑝′ ∈ R𝑑,

𝐴(𝑥, 𝑝) ⪰ 𝑎min𝐼𝑑, (1.14)
|𝐴(𝑥, 𝑝)−𝐴(𝑥, 𝑝′)|2 ≤ 𝑎LF|𝑝− 𝑝′|1, (1.15)⃒⃒⃒

𝐵(𝑥, 𝑝)1/𝑑 −𝐵(𝑥, 𝑝′)1/𝑑
⃒⃒⃒
≤ 𝑏LF|𝑝− 𝑝′|1. (1.16)

For any function 𝑢 : 𝒢ℎ → R, point 𝑥 ∈ 𝒢ℎ, and vector 𝑒 ∈ Z𝑑, we define

𝐴𝑒
ℎ𝑢[𝑥] :=

{︃
𝑎min|𝑒|2 ∨

(︀
⟨𝑒,𝐴(𝑥,𝐷ℎ𝑢[𝑥])𝑒⟩ − ℎ

2𝑎LF|𝑒|2∆ℎ𝑢[𝑥]
)︀

if ∆ℎ𝑢[𝑥] < +∞,

𝑎min|𝑒|2 else,
(1.17)

𝐵ℎ𝑢[𝑥] :=

⎧⎨⎩0 ∨
(︁
𝐵(𝑥,𝐷ℎ𝑢[𝑥])1/𝑑 − ℎ

2 𝑏LF∆ℎ𝑢[𝑥]
)︁𝑑

if ∆ℎ𝑢[𝑥] < +∞,

0 else.
(1.18)

(In the whole paper, we denote respectively by 𝑎 ∨ 𝑏 and 𝑎 ∧ 𝑏 the maximum and the minimum of two real
numbers 𝑎 and 𝑏.) For any family 𝑣 = (𝑣𝑖)1≤𝑖≤𝐼 of vectors of Z𝑑 and any 𝛾 ∈ R𝐼 , we define

𝒟𝑣(𝛾) :=
𝐼∑︁

𝑖=1

𝛾𝑖𝑣𝑖 ⊗ 𝑣𝑖.

Finally, for any function 𝑢 : 𝒢ℎ → R, point 𝑥 ∈ 𝒢ℎ, and family 𝑣 of vectors of Z𝑑, we define

∆𝑣
ℎ𝑢[𝑥] := (∆𝑒

ℎ𝑢[𝑥])𝑒∈𝑣, 𝐴𝑣
ℎ𝑢[𝑥] := (𝐴𝑒

ℎ𝑢[𝑥])𝑒∈𝑣. (1.19)

For any ℎ > 0, let 𝑉ℎ be a set of families of size 𝑑(𝑑+ 1)/2 of vectors of Z𝑑 such that

lim
ℎ→0

𝑑H

(︁{︁
𝒟𝑣(𝛾) | 𝑣 ∈ 𝑉ℎ, 𝛾 ∈ R𝑑(𝑑+1)/2

+ , Tr(𝒟𝑣(𝛾)) = 1
}︁
,
{︀
𝒟 ∈ 𝒮+

𝑑 | Tr(𝒟) = 1
}︀)︁

= 0. (1.20)

Equivalently, if 𝐾 ⊂ 𝒮++
𝑑 is compact, then for sufficiently small ℎ > 0 each element of 𝐾 can be written as

𝒟𝑣(𝛾) where 𝑣 ∈ 𝑉ℎ and 𝛾 ∈ R𝑑(𝑑+1)/2
+ . We will also need to assume that

lim
ℎ→0

ℎmax
𝑣∈𝑉ℎ

max
𝑒∈𝑣

|𝑒| = 0, (1.21)
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and that for any ℎ > 0,
𝑒1 ∈

⋃︁
𝑣∈𝑉ℎ

⋃︁
𝑒∈𝑣

{±𝑒}, (1.22)

where we recall that 𝑒1 denotes the first vector of the canonical basis of R𝑑. We discretize 𝐹MA by the operator
𝑆ℎ

MA : R𝒢ℎ → R𝒢ℎ defined by

𝑆ℎ
MA𝑢[𝑥] := max

𝑣∈𝑉ℎ

max
𝛾∈R𝑑(𝑑+1)/2

+
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾(𝐵ℎ𝑢[𝑥],∆𝑣
ℎ𝑢[𝑥]−𝐴𝑣

ℎ𝑢[𝑥]), (1.23)

where for any family 𝑣 = (𝑣𝑖)1≤𝑖≤𝐼 of vectors of Z𝑑, 𝛾 ∈ R𝐼
+, 𝑏 ≥ 0, and 𝑚 ∈ (R ∪ {+∞})𝐼 ,

𝐿𝑣,𝛾(𝑏,𝑚) := 𝑑𝑏1/𝑑(det𝒟𝑣(𝛾))1/𝑑 − ⟨𝛾,𝑚⟩.

Coefficients of 𝛾 are required to be nonnegative in order for the discretization to result in a numerical scheme
which satisfies the monotonicity property (defined rigorously in Def. 2.12). Note that the constraint Tr(𝒟𝑣(𝛾)) =
1 may be rewritten as

∑︀𝑑(𝑑+1)/2
𝑖=1 𝛾𝑖|𝑣𝑖|2 = 1.

In dimension 𝑑 = 2, we recommend choosing 𝑉ℎ as a set of superbases of Z2:

Definition 1.1. A pair 𝑣 = (𝑣1, 𝑣2) of vectors of Z2 is a basis of Z2 if det(𝑣1, 𝑣2) = ±1. A triple 𝑣 = (𝑣1, 𝑣2, 𝑣3)
of vectors of Z2 is a superbase of Z2 if 𝑣1 + 𝑣2 + 𝑣3 = 0 and det(𝑣1, 𝑣2) = ±1.

Note that in the definition above, the constraint det(𝑣1, 𝑣2) = ±1 is equivalent to det(𝑣2, 𝑣3) = ±1 or
det(𝑣1, 𝑣3) = ±1. We explain in Appendix B how a set 𝑉ℎ of superbases of Z2 satisfying the above assumptions
may be constructed, using tools from the fields of lattice geometry and arithmetic known as the Selling’s
decomposition [43] and the Stern–Brocot tree [7]. We prove in Section 4 that when choosing 𝑉ℎ in this way,
the second maximum in (1.23) admits a closed-form expression, at least when no infinite values are involved
(infinite values may stem from the handling of the boundary condition, see (1.11), and a simple modification
of the formula of Thm. 1.2 allows to compute the maximum in this case, by excluding finite differences whose
value is infinite):

Theorem 1.2. If 𝑣 = (𝑣1, 𝑣2) is a basis of Z2, then for any 𝑏 ≥ 0 and 𝑚 ∈ R2,

max
𝛾∈R2

+
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾(𝑏,𝑚) = 𝐻̃𝑣(𝑏,𝑚),

where

𝐻̃𝑣(𝑏,𝑚) :=

⎛⎝ 𝑏

|𝑣1|2|𝑣2|2
+

(︃
𝑚1

2|𝑣1|2
− 𝑚2

2|𝑣2|2

)︃2
⎞⎠1/2

− 𝑚1

2|𝑣1|2
− 𝑚2

2|𝑣2|2
·

If 𝑣 = (𝑣1, 𝑣2, 𝑣3) is a superbase of Z2, then for any 𝑏 ≥ 0 and 𝑚 ∈ R3,

max
𝛾∈R3

+
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾(𝑏,𝑚) = 𝐻𝑣(𝑏,𝑚) ∨ max
1≤𝑖<𝑗≤3

𝐻̃(𝑣𝑖,𝑣𝑗)(𝑏,𝑚),

where

𝐻𝑣(𝑏,𝑚) :=

{︃
(𝑏+ ⟨𝑚,𝑄𝑣𝑚⟩)1/2 + ⟨𝑤𝑣,𝑚⟩ if 𝑄𝑣𝑚+ (𝑏+ ⟨𝑚,𝑄𝑣𝑚⟩)1/2

𝑤𝑣 <vec 0,
−∞ else,
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𝑄𝑣 :=
1
4

⎛⎜⎜⎝
|𝑣2|2|𝑣3|2 ⟨𝑣1, 𝑣2⟩|𝑣3|2 ⟨𝑣1, 𝑣3⟩|𝑣2|2

⟨𝑣1, 𝑣2⟩|𝑣3|2 |𝑣1|2|𝑣3|2 ⟨𝑣2, 𝑣3⟩|𝑣1|2

⟨𝑣1, 𝑣3⟩|𝑣2|2 ⟨𝑣2, 𝑣3⟩|𝑣1|2 |𝑣1|2|𝑣2|2

⎞⎟⎟⎠, 𝑤𝑣 :=
1
2

⎛⎜⎝⟨𝑣2, 𝑣3⟩⟨𝑣1, 𝑣3⟩
⟨𝑣1, 𝑣2⟩

⎞⎟⎠,
and, for 𝑎 ∈ R𝑑, we write 𝑎 <vec 0 (respectively 𝑎 >vec 0) if all components of 𝑎 are negative (respectively
positive).

1.2. Discretization of the boundary condition

In the setting of optimal transport, the relevant problem for the Monge–Ampère equation (1.1) is the second
boundary value problem, which involves the optimal transport boundary condition

𝐷𝑢(𝑥) ∈ 𝑃 (𝑥), ∀𝑥 ∈ 𝑋, (1.24)

where for any 𝑥 ∈ 𝑋, 𝑃 (𝑥) is an open bounded convex nonempty subset of R𝑑. We assume that 𝑃 (𝑥) depends
continuously on 𝑥, for the Hausdorff distance 𝑑H over compact subsets of R𝑑 whose definition we recalled in (1.9).
In the particular setting of quadratic optimal transport, in which we will prove convergence of the proposed
numerical scheme, the set 𝑃 (𝑥) does not depend on the variable 𝑥.

Note that despite being called a boundary condition, the constraint (1.24) involves the whole domain 𝑋. Some
numerical approaches for solving the second boundary value problem, although not the one that we describe in
this paper, rely on the fact that, in some cases, the constraint (1.24) can be reformulated in a way that only
involves the boundary 𝜕𝑋 of the domain 𝑋, see for instance [3].

For now, let us consider the class of numerical schemes for equations (1.1) and (1.24) that are defined, for
any discretization step ℎ > 0, by an operator 𝑆ℎ

MABV2 : R𝒢ℎ → R𝒢ℎ , and may be written as

𝑆ℎ
MABV2𝑢[𝑥] = 0 in 𝒢ℎ. (1.25)

One property of equations (1.1) and (1.24) is that their expressions depend only on derivatives of the function
𝑢 and not on 𝑢 itself, and therefore that the set of solutions is stable by addition of a constant. Accordingly,
we say that the operator 𝑆ℎ

MABV2 and the scheme (1.25) are additively invariant if for any function 𝑢 : 𝒢ℎ → R
and real number 𝜉, 𝑆ℎ

MABV2(𝑢+ 𝜉) = 𝑆ℎ
MABV2𝑢.

We adapt the approach introduced in [26] to build an operator 𝑆ℎ
MABV2 suitable for (1.25). The idea is to

build 𝑆ℎ
MABV2 as a maximum of 𝑆ℎ

MA and of a monotone discretization 𝑆ℎ
BV2 : R𝒢ℎ → R𝒢ℎ of the left-hand side

in a degenerate elliptic formulation of (1.24).
We use the following formulation of (1.24), initially introduced in [4]:

𝐹BV2(𝑥,𝐷𝑢(𝑥)) ≤ 0 in 𝑋, (1.26)

where 𝐹BV2 : 𝑋 × R𝑑 → R is defined by

𝐹BV2(𝑥, 𝑝) := max
|𝑒|=1

(⟨𝑒, 𝑝⟩ − 𝜎𝑃 (𝑥)(𝑒)). (1.27)

(We denote by 𝜎𝑃 (𝑥) the support function of the convex set 𝑃 (𝑥): for any 𝑒 ∈ R𝑑, 𝜎𝑃 (𝑥)(𝑒) := sup𝑝∈𝑃 (𝑥)⟨𝑒, 𝑝⟩.
Formally, if 𝑝 belongs to the boundary 𝜕𝑃 (𝑥) of 𝑃 (𝑥), then the maximum in the definition of 𝐹BV2 is attained
when 𝑒 is the unit outer normal of 𝜕𝑃 (𝑥) at the point 𝑝.)

For any function 𝑢 : 𝒢ℎ → R, point 𝑥 ∈ 𝒢ℎ, and vector 𝑒 ∈ R𝑑, we define the upwind finite difference

𝐷𝑒
ℎ𝑢[𝑥] :=

𝑑∑︁
𝑖=1

(︀
(0 ∧ ⟨𝑒, 𝑒𝑖⟩)𝛿𝑒𝑖

ℎ 𝑢[𝑥]− (0 ∨ ⟨𝑒, 𝑒𝑖⟩)𝛿−𝑒𝑖

ℎ 𝑢[𝑥]
)︀
,
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using the convention 0×(+∞) = 0 (this convention is only needed in the immediate neighborhood of 𝜕𝑋, where
𝛿±𝑒𝑖

ℎ 𝑢[𝑥] may take infinite values). Then we define 𝑆ℎ
BV2 and 𝑆ℎ

MABV2 as

𝑆ℎ
BV2𝑢[𝑥] := max

|𝑒|=1

(︀
𝐷𝑒

ℎ𝑢[𝑥]− 𝜎𝑃 (𝑥)(𝑒)
)︀
, (1.28)

𝑆ℎ
MABV2𝑢[𝑥] := 𝑆ℎ

MA𝑢[𝑥] ∨ 𝑆ℎ
BV2𝑢[𝑥].

In this setting, the scheme (1.25) is additively invariant.
Additively invariant schemes of the form (1.25) are not well-posed: their sets of solutions are stable by

addition of a constant, thus not a singleton. Moreover they often have no solutions. One way to see this formally
is that a well-posed scheme would need an additional equality to guarantee uniqueness of solutions, for instance
𝑢[0] = 0, but that then there would be one more equality than unknowns in the scheme. In the continuous
setting, equations whose sets of solutions are stable by addition of a constant often admit solutions if and only
if their coefficients satisfy some nonlocal condition, such as the mass balance condition (5.1) in the case of the
Monge–Ampère equation of optimal transport; however, there may be no obvious discrete counterpart to this
condition. See Section 2 for further discussion of this issue.

In order to get around this difficulty, we solve an altered form of the scheme (1.25), following the approach
used in the numerical experiments of [3] (note that we present a fully detailed mathematical analysis of this
alteration, in contrast with [3] where it was introduced essentially as a numerical trick). We add an unknown
𝛼 to the scheme, which must be a real number. For fixed 𝛼, we define the operators 𝑆ℎ,𝛼

MA : R𝒢ℎ → R𝒢ℎ and
𝑆ℎ,𝛼

MABV2 : R𝒢ℎ → R𝒢ℎ as

𝑆ℎ,𝛼
MA𝑢[𝑥] := 𝑆ℎ

MA𝑢[𝑥] + 𝛼, 𝑆ℎ,𝛼
MABV2𝑢[𝑥] := 𝑆ℎ,𝛼

MA𝑢[𝑥] ∨ 𝑆ℎ
BV2𝑢[𝑥]. (1.29)

The scheme that we actually solve, with respect to the extended unknown (𝛼, 𝑢), is

𝑆ℎ,𝛼
MABV2𝑢[𝑥] = 0 in 𝒢ℎ. (1.30)

1.3. Main contributions and relation to previous works

We introduce the numerical scheme (1.30) for the Monge–Ampère equation (1.1), equipped with the boundary
condition (1.24). We prove the existence of solutions to a class of monotone additively invariant numerical
schemes featuring an additional unknown 𝛼 ∈ R as in (1.30), see Section 2, and we show, in Section 3, that
the scheme (1.30) belongs to this class. This scheme is based on a discretization of the reformulation (1.7) of
the Monge–Ampère equation. We prove in Section 4 that this discretization admits a closed-form expression, as
stated in Theorem 1.2. We prove convergence of the scheme in the setting of quadratic optimal transport, see
Section 5; convergence in the setting of more general optimal transport problems remains an open problem. We
present in Section 6 some numerical experiments, including an application to the far field refractor problem in
nonimaging optics.

The closed-form expression obtained in Theorem 1.2 makes the implementation of the scheme particularly
efficient, since no discretization of the parameter set of the maximum in (1.7) is needed. While to our knowledge
the proposed discretization is the first one to admit such a closed-form expression among those that are based on
the reformulation (1.7) of the Monge–Ampère equation, it is to be related to the MA-LBR scheme, introduced
in [5] in the setting of the Dirichlet problem for the Monge–Ampère equation when the function 𝐴 is identically
zero, and to the scheme we introduced in [9] for the Pucci equation. Both of the above-mentioned schemes
involve the notion of superbases of Z2. We prove in Appendix A that the MA-LBR scheme is a discretization
of (1.6), although it was not introduced as such in [5].

As opposed to (1.6), the reformulation (1.7) has the benefit that its left-hand side remains finite even when
(1.4) is not satisfied. Thus schemes based on it are more stable numerically than those based on (1.6), and can
handle the degenerate case of functions 𝐵 : 𝑋 ×R𝑑 → R+ which are not everywhere positive, in which case the
solutions to the Monge–Ampère problem typically satisfy (1.4) but not its strict variant. On the contrary, the
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MA-LBR scheme only applies in the case 𝐵 > 0, and in addition solving it using the damped Newton requires
using extremely small steps so that the constraint (1.4) remains satisfied along the iterations. This behavior of
the Newton method is illustrated numerically in Section 6.4, and does not occur with the scheme introduced in
this paper.

Numerical schemes based on (1.7) were previously introduced in [23], and then in [14], although only in the
setting of the Dirichlet problem for the Monge–Ampère equation when 𝐴 = 0. In those papers, no counterpart
of Theorem 1.2 was proved, hence the parameter set of the maximum in (1.7) had to be discretized.

Convergence of schemes for the second boundary value problem was previously studied in [3,26] in the setting
of the quadratic optimal transport problem. Schemes considered in those two papers were based on the MA-LBR
scheme introduced in [5], and adapted in order to discretize the boundary condition (1.24).

In [3], convergence of a scheme of the form (1.25) was proved, but existence of solutions to this scheme
was not. It turns out that solutions typically do not exist, due to the scheme being additively invariant. The
approach used to solve the scheme in the numerical experiments was equivalent to adding an unknown 𝛼 ∈ R
as in (1.30), but the proof of convergence was not extended to this setting.

Remark 1.3 (Applicability of Thm. 2.15 to the scheme in [3]). The work [3] establishes the convergence of the
solutions to a discretization of the optimal transport problem, under the assumption that they exist. The latter
point is dubious, as discussed above and acknowledged by the authors of [3], and for that reason an altered
variant of the scheme is considered in the numerical experiments section, featuring an additional unknown which
is analogous to the parameter 𝛼 ∈ R in (1.29); the existence of solutions to this variant is observed numerically
in [3], but left as an open problem from a theoretical standpoint.

While the detailed analysis of the scheme in [3] is out of the scope of this paper, let us discuss the applicability
to this scheme of the assumptions of our existence result, Theorem 2.15. Those assumptions are continuity,
monotonicity and stability, in the sense of Definition 2.12. The continuity of the scheme in [3] is easy to prove,
since no infinite values are involved in the definition of the scheme operator, contrary to the scheme that we
introduce in this paper. The monotonicity property is not satisfied by the scheme recommended by default in
[3] due to the centered discretization of the gradient of the unknown 𝑢; however, a monotone Lax–Friedrichs
discretization was described as an alternative in Section 4.4 of [3]. The remaining open question is the stability of
the scheme in [3], again in the sense of Definition 2.12; we could not see an immediate proof of this property, but
one could expect to develop one based on the sketches of the proofs of Proposition 3.6 and also of Proposition 4.3,
item (5) from [3], which is a result about the Lipschitz continuity of the solutions to this scheme.

Another scheme of the form (1.25) is studied in [26]. In that work, a Dirichlet boundary condition is enforced
on 𝜕𝑋, which in our setting would amount to replacing +∞ with some fixed constant 𝐶 ∈ R in (1.11). Therefore
the scheme considered in [26] is not additively invariant. The Dirichlet boundary condition is to be understood
in a weak sense (the one of viscosity solutions, see Def. 2.3). It may formally be simplified to 𝑢(𝑥) ≤ 𝐶 on 𝜕𝑋,
with equality at some point 𝑥* ∈ 𝜕𝑋. An important assumption in [26] is that the scheme satisfies a property
of underestimation, discussed in Remark 1.4. Under this assumption, the existence and convergence of solutions
is proved. The property of underestimation is satisfied in the case of quadratic optimal transport at the cost of
a careful handling of the constraint (1.24), but it does not seem obvious that it is satisfied for similar schemes
in the case of more general optimal transport problems, with 𝐴 ̸= 0 in (1.1). No numerical experiments were
performed in [26]. In our experience, the scheme introduced in that paper has the drawback that the numerical
error of its solutions tends to be unevenly distributed. This effect is related to the particular role played in the
discretization by the point 𝑥* ∈ 𝜕𝑋 where the Dirichlet condition is satisfied in the classical sense, which leads
to numerical artifacts and tends to decrease the accuracy of the scheme.

In our proof of convergence of the scheme (1.30), we use the arguments introduced in [26] when appropriate.
However, the property of underestimation is not required in our setting.

Remark 1.4 (Role of the property of underestimation in [3, 26], and substitutes used in this paper). In each
of the papers [3, 26], the theoretical analysis of the considered scheme uses the fact that this scheme satisfies
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some property of underestimation. The schemes considered in those papers are both based on the MA-LBR
discretization [5], represented in Appendix A by the operator Λℎ in (A.1), of the Monge–Ampère operator
𝑢 ↦→ det𝐷2𝑢(·).

The property of underestimation used in [3] is formulated as the fact that the operator Λℎ overestimates the
Lebesgue measure of the subgradient, in the sense that Λℎ𝑢[𝑥] ≥ ℎ−𝑑|𝜕𝑢̃(𝑥)| for any function 𝑢 : 𝒢ℎ → R and
for any suitable point 𝑥 ∈ 𝒢ℎ, where 𝑢̃ : R𝑑 → R denotes the convex envelope of 𝑢. This property is described in
more detail in Lemma 4.2 of [3]. Whether this property could be extended to the setting of the scheme (1.30)
considered in this paper is not clear, since this scheme is based on a discretization of the reformulation (1.2)
of the Monge–Ampère equation, which does not feature directly the Monge–Ampère operator 𝑢 ↦→ det𝐷2𝑢(·).
The arguments in the convergence analysis in [3] that use the property of underestimation are based on the
construction of solutions to semi-discrete optimal transport problems, and are completely different from the
arguments in this paper, which are based on the theory of convergence of monotone schemes to viscosity
solutions to degenerate elliptic equations.

In [26], two distinct definitions of the property of underestimation are given. The first one ([26], Def. 3.8) is
similar to the definition in [3]. The second one ([26], Rem. 3.9) asks that 𝑆ℎ

MABV2𝑢[𝑥] ≤ 𝐹MABV2𝑢(𝑥) in 𝒢ℎ, for
all smooth convex functions 𝑢, where 𝑆ℎ

MABV2 is the discrete operator describing the whole scheme and 𝐹MABV2

is its continuous counterpart. The second definition is claimed to correctly approximate the first one at small
grid scales.

The property of underestimation is not only used in the convergence analysis in [26], but it is also crucial
for the proof ([26], Lem. 3.12), which guarantees the existence of a subsolution to the scheme in [26] and is an
intermediary step for proving the existence of solutions. One technique that is often used to build a subsolution
to a scheme is to consider a strict subsolution to the continuous problem, and to use the consistency of the
scheme to show that it is also a subsolution to the scheme. However in the setting of [26] no strict subsolutions
to the continuous problem may exist, as shown by some counterpart to Theorem 5.11 in this setting (with
𝛼 = 0, see [26], Thm. 2.1). Formally, the property of underestimation allows one to consider a solution to the
continuous problem instead of a strict subsolution in the argument above (in [26], a slight variation of the
solution, constructed by solving a semi-discrete optimal transport problem, is considered instead for technical
reasons). In our setting, Theorem 5.11 does not prevent us to build a strict subsolution to the continuous
problem for some value 𝛼 < 0, which is sufficient in order to apply our existence result Theorem 2.15, hence we
have no need for the underestimation property at this stage.

Let us finally discuss why the property of underestimation is needed in the proof of the convergence result
([26], Thm. 3.11). In the standard theory of convergence of monotone schemes [1], it is shown that some
appropriately defined upper and lower limits 𝑢 and 𝑢 of sequences of solutions to the scheme are respectively a
subsolution and supersolution to the continuous problem (see Thm. 2.7). In [26], the counterpart ([26], Thm. 2.1)
to Theorem 5.11 is used to deduce that the subsolution 𝑢 is actually a solution to the Monge–Ampère problem.
From this point, it remains to prove that 𝑢 = 𝑢. In the general setting of monotone schemes, this is often done
by using a comparison principle for the continuous problem, but such a comparison principle is lacking in the
setting of [26]. Another strategy is to prove that the solutions to the scheme are sufficiently regular so that
the limits 𝑢 and 𝑢 coincide by definition, at least up to extraction of a subsequence: this is what we do in this
paper, see our stability result Proposition 3.6. In [26], no such stability result is proved, and the arguments used
instead to show that 𝑢 = 𝑢 rely on the assumption that the scheme satisfies the property of underestimation,
indirectly through the use of the subsolutions to the scheme built in the previous paragraph.

Note that the scheme (1.30), and its continuous counterpart (3.2) below, which both feature an additional
unknown or parameter 𝛼 ∈ R, fit in the framework of eigenvalue problems recently studied in [27]. Although our
proof of convergence only applies to Monge–Ampère equation in the setting of quadratic optimal transport, our
existence result, Theorem 2.15, is applicable to other such eigenvalue problems, as illustrated by the examples
in Section 2.
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2. Monotone additively invariant schemes

2.1. Degenerate elliptic additively invariant equations

In this section, we study numerical schemes for a general degenerate elliptic equation of the form

𝐹
(︀
𝑥,𝐷𝑢(𝑥), 𝐷2𝑢(𝑥)

)︀
= 0 in 𝑋. (2.1)

Typically, 𝐹 is discontinuous and 𝐹 (𝑥, 𝑝,𝑀) is defined differently depending on whether 𝑥 belongs to 𝑋 or to
𝜕𝑋, in order to take into account the boundary condition in equation (2.1). The equation without the boundary
condition would then be

𝐹
(︀
𝑥,𝐷𝑢(𝑥), 𝐷2𝑢(𝑥)

)︀
= 0 in 𝑋. (2.2)

Let us recall the definition of degenerate ellipticity:

Definition 2.1 (Degenerate ellipticity). The operator 𝐹 : 𝑋 × R𝑑 × 𝒮𝑑 → R, and the equations (2.1) and
(2.2), are degenerate elliptic if 𝐹 is nonincreasing with respect to its last variable for the Loewner order:
𝐹 (𝑥, 𝑝,𝑀1) ≤ 𝐹 (𝑥, 𝑝,𝑀2) if 𝑀1 ⪰𝑀2.

We say that equations (2.1) and (2.2) are additively invariant since, for reasonable notions of solutions,
their sets of solutions are stable by addition of a constant, due to the fact that at any point 𝑥, the left-hand
sides of those equations depend only on the derivatives 𝐷𝑢(𝑥) and 𝐷2𝑢(𝑥) of the function 𝑢, and not on its
value 𝑢(𝑥). This is not a standard property, and we will show that it is a source of difficulty in the design of
monotone numerical schemes. Typically, an additively invariant equation only has solutions if its coefficients are
well-chosen and satisfy a particular nonlocal property.

Example 2.2. Throughout this section, we illustrate our definitions and results with Poisson’s equation on the
one-dimensional domain 𝑋 = (−1, 1), with the zero Neumann boundary condition:{︃

𝑢′′(𝑥) = 𝜓(𝑥) in (−1, 1),
𝑢′(−1) = 𝑢′(1) = 0,

where 𝜓 : [−1, 1] → R is an integrable function. We write this equation in the form

𝐹ex(𝑥, 𝑢′(𝑥), 𝑢′′(𝑥)) = 0 in [−1, 1], (2.3)

where the degenerate elliptic operator 𝐹ex : [−1, 1]× R× R → R is defined by

𝐹ex(𝑥, 𝑝,𝑚) :=

⎧⎪⎨⎪⎩
−𝑝 if 𝑥 = −1,
𝑝 if 𝑥 = 1,
𝜓(𝑥)−𝑚 else.

(The choice 𝐹ex(𝑥, 𝑝,𝑚) = 𝜓(𝑥)−𝑚, rather than 𝐹ex(𝑥, 𝑝,𝑚) = 𝑚−𝜓(𝑥), is required in order for the equation
(2.3) to be degenerate elliptic. The choice 𝐹ex(−1, 𝑝,𝑚) = −𝑝 and 𝐹ex(1, 𝑝,𝑚) = 𝑝, rather than 𝐹ex(−1, 𝑝,𝑚) = 𝑝
and 𝐹ex(1, 𝑝,𝑚) = −𝑝, is not dictated by the degenerate ellipticity property, but is the standard formulation
of Neumann boundary conditions for degenerate elliptic equations, and the one which allows a comparison
principle to hold in the context of more favorable equations such as 𝜓 − 𝑢′′ + 𝑢 = 0, see Section 7.B of [16].)
The equation (2.3) only has solutions (respectively subsolutions, supersolutions) if

∫︀ 1

−1
𝜓(𝑥) d𝑥 = 0 (respectively

≤ 0, ≥ 0), which we assume. Notice the similarity with the mass balance condition (5.1) which occurs in the
setting of optimal transport.
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An appropriate notion of solutions for degenerate elliptic equations, and for the study of discretizations of
such equations, is the one of viscosity solutions. Before defining them, let us recall the definitions of the upper
semicontinuous envelope 𝐹 * and lower semicontinuous envelope 𝐹* of a function 𝐹 : 𝐸 → R, 𝐸 being a subset
of R𝑛: for any 𝑥 ∈ 𝐸,

𝐹 *(𝑥) := lim sup
𝑥′→𝑥

𝐹 (𝑥), 𝐹*(𝑥) := lim inf
𝑥′→𝑥

𝐹 (𝑥).

Definition 2.3 (Viscosity solution). A function 𝑢 : 𝑋 → R is a viscosity subsolution to (2.1) if (i) it is upper
semicontinuous and (ii) for any function 𝜙 in 𝐶2(𝑋) and local maximum 𝑥 of 𝑢− 𝜙 in 𝑋,

𝐹*
(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
≤ 0.

It is a viscosity supersolution if (i) it is lower semicontinuous and (ii) for any function 𝜙 in 𝐶2(𝑋) and local
minimum 𝑥 of 𝑢− 𝜙 in 𝑋,

𝐹 *
(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
≥ 0.

It is a viscosity solution if it is both a viscosity subsolution and a viscosity supersolution. The same definitions,
with 𝑋 replaced by 𝑋, apply to equation (2.2).

Note that if a viscosity subsolution (respectively supersolution) 𝑢 to (2.1) is twice differentiable at some point
𝑥 ∈ 𝑋 and if 𝐹*

(︀
𝑥,𝐷𝑢(𝑥), 𝐷2𝑢(𝑥)

)︀
= 𝐹 *

(︀
𝑥,𝐷𝑢(𝑥), 𝐷2𝑢(𝑥)

)︀
, then 𝑢 is a classical subsolution (respectively

supersolution) to (2.1) at the point 𝑥.

2.2. Discretization

For any discretization step ℎ > 0, let 𝒢ℎ be a finite nonempty subset of 𝑋 containing the origin. In the rest
of this paper, it is required that 𝒢ℎ be a subset of the Cartesian grid 𝑋 ∩ ℎZ𝑑; however, this is not necessary in
this section. What will be required in our definition of consistency is that

lim
ℎ→0

𝑑H(𝒢ℎ, 𝑋) = 0. (2.4)

Note that in the case that 𝒢ℎ is included in 𝑋 ∩ ℎZ𝑑, then (2.4) is implied by (1.10).
We represent discretizations of the operator 𝐹 by operators 𝑆 : R𝒢ℎ → R𝒢ℎ that are additively invariant,

according to the following definition:

Definition 2.4. An operator 𝑆 : R𝒢ℎ → R𝒢ℎ is additively invariant if for any 𝑢 : 𝒢ℎ → R, 𝜉 ∈ R, and 𝑥 ∈ 𝒢ℎ,
it holds that

𝑆(𝑢+ 𝜉)[𝑥] = 𝑆𝑢[𝑥].

For now, we let 𝑆ℎ : R𝒢ℎ → R𝒢ℎ be an additively invariant operator, for any ℎ > 0, and we consider a
numerical scheme of the form

𝑆ℎ𝑢[𝑥] = 0 in 𝒢ℎ. (2.5)

Definition 2.5. The scheme (2.5) is:

– Monotone if for any ℎ > 0, 𝑥 ∈ 𝒢ℎ, and 𝑢, 𝑢 : 𝒢ℎ → R such that 𝑢[𝑥] = 𝑢[𝑥] and 𝑢 ≥ 𝑢 in 𝒢ℎ, it holds that
𝑆ℎ𝑢[𝑥] ≤ 𝑆ℎ𝑢[𝑥].

– Consistent with equation (2.1) if (2.4) holds and for any 𝜙 ∈ 𝐶∞(𝑋) and 𝑥 ∈ 𝑋,

lim sup
ℎ>0, ℎ→0

𝑥′∈𝒢ℎ, 𝑥′→𝑥

𝑆ℎ𝜙[𝑥′] ≤ 𝐹 *
(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
,

lim inf
ℎ>0, ℎ→0

𝑥′∈𝒢ℎ, 𝑥′→𝑥

𝑆ℎ𝜙[𝑥′] ≥ 𝐹*
(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
.
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Remark 2.6. Schemes of the form (2.5) are typically called degenerate elliptic if for any ℎ > 0, 𝑥 ∈ 𝒢ℎ, and
𝑢, 𝑢 : 𝒢ℎ → R such that 𝑢[𝑥] ≤ 𝑢[𝑥] (rather than 𝑢[𝑥] = 𝑢[𝑥] in Def. 2.5) and 𝑢 ≥ 𝑢 in 𝒢ℎ ∖ {𝑥}, it holds that
𝑆ℎ𝑢[𝑥] ≤ 𝑆ℎ𝑢[𝑥]. In our setting, monotonicity and degenerate ellipticity are equivalent, since the operators 𝑆ℎ

are additively invariant.

A framework is outlined in [1] for the proof of convergence of monotone schemes. The following fundamental
result follows directly from the proof of Theorem 2.1 from [1]:

Theorem 2.7. Assume that there exist a sequence (ℎ𝑛)𝑛∈N of discretization steps ℎ𝑛 > 0 converging to zero
and a sequence (𝑢𝑛)𝑛∈N of solutions 𝑢𝑛 : 𝒢ℎ𝑛

→ R to (2.5) with ℎ = ℎ𝑛 such that 𝑢𝑛[𝑥] is bounded, uniformly
over 𝑛 ∈ N and 𝑥 ∈ 𝒢ℎ𝑛

. If (2.5) is monotone and consistent with equation (2.1), then functions 𝑢, 𝑢 : 𝑋 → R
defined by

𝑢(𝑥) := lim sup
𝑛∈N, 𝑛→+∞
𝑥′∈𝒢ℎ𝑛 , 𝑥′→𝑥

𝑢𝑛[𝑥′], 𝑢(𝑥) := lim inf
𝑛∈N, 𝑛→+∞
𝑥′∈𝒢ℎ𝑛 , 𝑥′→𝑥

𝑢𝑛[𝑥′], (2.6)

are respectively a viscosity subsolution and supersolution to (2.1).

The definition of consistency in Definition 2.5 is slightly simpler than the one in [1], due to the assumption
that operators 𝑆ℎ are additively invariant. In the framework of [1], in which the left-hand side in (2.1) may
also depend on 𝑢(𝑥), a strong comparison principle, that is, a result stating that viscosity subsolutions to (2.1)
are always less than viscosity supersolutions, is used after applying Theorem 2.7 to prove that 𝑢 ≤ 𝑢, which
allows to conclude that 𝑢 = 𝑢, since 𝑢 ≥ 𝑢 by definition. Obviously, no strong comparison principle may hold if
the set of viscosity solutions is nonempty and stable by addition of a constant. In our proof of convergence in
the setting of quadratic optimal transport, we use Theorems 5.11 and 5.12 as a substitute to this comparison
principle.

An important difficulty that we encounter is that numerical schemes of the form (2.5) typically have no
solutions.

Example 2.8. Let 𝑋 = [−1, 1]. For any ℎ > 0, we let ℎ̃ := ⌈ℎ−1⌉−1, 𝒢ℎ := [−1, 1] ∩ ℎ̃Z, and we define the
additively invariant operator 𝑆ℎ

ex : R𝒢ℎ → R𝒢ℎ by

𝑆ℎ
ex𝑢[𝑥] :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(︁
𝑢[−1]− 𝑢

[︁
−1 + ℎ̃

]︁)︁
/ℎ̃ if 𝑥 = −1,(︁

𝑢[1]− 𝑢
[︁
1− ℎ̃

]︁)︁
/ℎ̃ if 𝑥 = 1,

𝜓(𝑥)−
(︁
𝑢
[︁
𝑥+ ℎ̃

]︁
+ 𝑢
[︁
𝑥− ℎ̃

]︁
− 2𝑢[𝑥]

)︁
/ℎ̃2 else.

Then the scheme
𝑆ℎ

ex𝑢[𝑥] = 0 in 𝒢ℎ

is monotone and consistent with equation (2.3). Solving this scheme is equivalent to solving a square linear
system, since the scheme operator 𝑆ℎ

ex : R𝒢ℎ → R𝒢ℎ is an affine map. However, this linear system is noninvertible,
since all constant functions belong to the kernel of the associated linear operator.

To get around this difficulty, we add a parameter 𝛼 ∈ R to the equation (2.1), yielding a new equation

𝐹𝛼
(︀
𝑥,𝐷𝑢(𝑥), 𝐷2𝑢(𝑥)

)︀
= 0 in 𝑋, (2.7)

where for any 𝛼 ∈ R, 𝐹𝛼 : 𝑋 × R𝑑 × 𝒮𝑑 → R is a given operator, typically degenerate elliptic. The idea is to
choose 𝐹𝛼 so that 𝐹 0 = 𝐹 and (2.7) has no viscosity subsolutions when 𝛼 > 0 and no viscosity supersolutions
when 𝛼 < 0.
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Example 2.9. For any 𝛼 ∈ R, we define 𝐹𝛼
ex : [−1, 1]× R× R → R by

𝐹𝛼
ex(𝑥, 𝑝,𝑚) :=

⎧⎪⎨⎪⎩
−𝑝 if 𝑥 = −1,
𝑝 if 𝑥 = 1,
𝜓(𝑥)−𝑚+ 𝛼 else.

Then equation
𝐹𝛼

ex(𝑥, 𝑢′(𝑥), 𝑢′′(𝑥)) = 0 in 𝑋

coincides with (2.3) when 𝛼 = 0, and only has solutions (respectively subsolutions, supersolutions) if∫︀ 1

−1
𝜓(𝑥) d𝑥 = −2𝛼 (respectively ≤ −2𝛼, ≥ −2𝛼). Recall that we assumed that

∫︀ 1

−1
𝜓(𝑥) d𝑥 = 0.

Accordingly, we add an unknown 𝛼 ∈ R to the numerical scheme. For any ℎ > 0 and 𝛼 ∈ R, we let
𝑆ℎ,𝛼 : R𝒢ℎ → R𝒢ℎ be an additively invariant operator, and we consider the scheme

𝑆ℎ,𝛼𝑢[𝑥] = 0 in 𝒢ℎ. (2.8)

Example 2.10. In the setting of Example 2.8, for any ℎ > 0 and 𝛼 ∈ R, we define 𝑆ℎ,𝛼
ex : R𝒢ℎ → R𝒢ℎ by

𝑆ℎ,𝛼
ex 𝑢[𝑥] :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(︁
𝑢[−1]− 𝑢

[︁
−1 + ℎ̃

]︁)︁
/ℎ̃ if 𝑥 = −1,(︁

𝑢[1]− 𝑢
[︁
1− ℎ̃

]︁)︁
/ℎ̃ if 𝑥 = 1,

𝜓(𝑥)−
(︁
𝑢
[︁
𝑥+ ℎ̃

]︁
+ 𝑢
[︁
𝑥− ℎ̃

]︁
− 2𝑢[𝑥]

)︁
/ℎ̃2 + 𝛼 else

(recall that ℎ̃ :=
⌈︀
ℎ−1

⌉︀−1). Then a solution (𝛼, 𝑢) ∈ R× R𝒢ℎ to the scheme

𝑆ℎ,𝛼
ex 𝑢[𝑥] = 0 in 𝒢ℎ

may easily be constructed explicitly.

The definition of solutions (𝛼, 𝑢) ∈ R×R𝒢ℎ to (2.8) is obvious, but we will also need a notion of subsolutions
(we could define supersolutions similarly, but this will not be needed):

Definition 2.11 (Subsolution). Let ℎ > 0. A pair (𝛼, 𝑢) ∈ R× R𝒢ℎ is a subsolution to (2.8) if 𝑆ℎ,𝛼𝑢[𝑥] ≤ 0 in
𝒢ℎ.

Since 𝛼 is an unknown of the scheme, and not simply a fixed parameter, Definition 2.5 needs to be adapted
to this new setting. We also define some other properties that the scheme (2.8) may satisfy. Conceptually, the
following definition is intended for schemes such that 𝑆ℎ,𝛼𝑢[𝑥] is nondecreasing with respect to 𝛼.

Definition 2.12. The scheme (2.8) is:

– Monotone if for any 𝛼 ∈ R, the scheme (2.5) with 𝑆ℎ = 𝑆ℎ,𝛼 is monotone in the sense of Definition 2.5.
– Consistent with the parametrized equation (2.7) if for any family of real numbers (𝛼ℎ)ℎ>0 converging to

some 𝛼 ∈ R as ℎ approaches zero, the scheme (2.5) with 𝑆ℎ = 𝑆ℎ,𝛼ℎ is consistent with equation (2.7) in the
sense of Definition 2.5.

– Continuous if for any small ℎ > 0, the map R × R𝒢ℎ → R𝒢ℎ , (𝛼, 𝑢) ↦→ 𝑆ℎ,𝛼𝑢 takes finite values and is
continuous.

– Stable if the following properties hold:
(i) For any small ℎ > 0, there exists a subsolution (𝛼, 𝑢) ∈ R× R𝒢ℎ to (2.8).
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(ii) There exists a nonincreasing function 𝜔 : R → R+ such that for any small ℎ > 0, any subsolution
(𝛼, 𝑢) ∈ R× R𝒢ℎ to (2.8), and any 𝑥1, 𝑥2 ∈ 𝒢ℎ, one has

|𝑢[𝑥1]− 𝑢[𝑥2]| ≤ 𝜔(𝛼).

(iii) There exists 𝛼0 ∈ R such that for any small ℎ > 0 and any subsolution (𝛼, 𝑢) ∈ R × R𝒢ℎ to (2.8), one
has 𝛼 ≤ 𝛼0.

(iv) There exists 𝛼1 ∈ R such that for any small ℎ > 0 and any solution (𝛼, 𝑢) ∈ R× R𝒢ℎ to (2.8), one has
𝛼 ≥ 𝛼1.

– Equicontinuously stable if it satisfies all items in the definition of stability above, with (ii) replaced by the
following:

(ii’) There exists a function 𝜔 : R× R+ → R+, nonincreasing with respect to its first variable and satisfying
lim𝑡→0 𝜔(𝛼, 𝑡) = 0 for any 𝛼 ∈ R, such that for any small ℎ > 0, any subsolution (𝛼, 𝑢) ∈ R × R𝒢ℎ to
(2.8), and any 𝑥1, 𝑥2 ∈ 𝒢ℎ, one has

|𝑢[𝑥1]− 𝑢[𝑥2]| ≤ 𝜔(𝛼, |𝑥1 − 𝑥2|).

Note that the value 𝛼 = 0 does not play a special role in Definition 2.12. The role of the functions 𝜔 in the
definitions of stability and equicontinuous stability is to allow schemes to become unstable when 𝛼→ −∞.

Obviously, if (2.8) is equicontinuously stable, then it is stable. In the case of the scheme considered in this
paper for the Monge–Ampère equation, subsolutions will be established to be uniformly Lipschitz continuous,
which is stronger than equicontinuity, see the proof of Proposition 3.6. In particular, the boundary condition
𝑢(𝑥) − ∞ = 0 on 𝜕𝑋 (to be understood in the viscosity sense, as mentioned in Sect. 1) does not induce a
boundary layer.

Theorem 2.7 is easily adapted to the scheme (2.8):

Corollary 2.13. Assume that there exist a sequence (ℎ𝑛)𝑛∈N of discretization steps ℎ𝑛 > 0 converging to
zero, a sequence (𝛼𝑛)𝑛∈N of real numbers 𝛼𝑛 converging to some 𝛼 ∈ R, and a sequence (𝑢𝑛)𝑛∈N of functions
𝑢𝑛 : 𝒢ℎ𝑛 → R such that (𝛼𝑛, 𝑢𝑛) is solution to (2.8) with ℎ = ℎ𝑛 and 𝑢𝑛[𝑥] is bounded, uniformly over 𝑛 ∈ N
and 𝑥 ∈ 𝒢ℎ𝑛

. If (2.8) is monotone and consistent with (2.7), then limits superior and inferior 𝑢, 𝑢 : 𝑋 → R
defined as in (2.6) are respectively a viscosity subsolution and supersolution to (2.7) in 𝑋.

If (2.8) is equicontinuously stable, then Corollary 2.13 is simplified by the fact that, by the Arzelà–Ascoli
theorem, sequences (𝛼𝑛)𝑛∈N and (𝑢𝑛)𝑛∈N converge uniformly, up to extracting a subsequence, to some 𝛼 ∈ R,
and to some continuous function 𝑢 : 𝑋 → R, which coincides with the limits superior and inferior 𝑢 and 𝑢 for
this subsequence.

2.3. Existence

Our main result in this section concerns existence of solutions to the scheme (2.8). The proof is an adaptation
of discrete Perron’s method to our setting.

Remark 2.14 (Discrete Perron’s method). In the context of this remark, let us consider a scheme of the form
(2.5) where the operator 𝑆ℎ : R𝒢ℎ → R𝒢ℎ is not necessarily additively invariant. Discrete Perron’s method states
that, if this scheme is monotone in the sense of Definition 2.5 and if, at some fixed step size ℎ > 0, the map
𝑆ℎ : R𝒢ℎ → R𝒢ℎ takes finite values and is continuous, then the function 𝑢̃ : 𝒢ℎ → R defined by

𝑢̃[𝑥] := sup
{︀
𝑢[𝑥] | 𝑢 ∈ R𝒢ℎ , ∀𝑥′ ∈ 𝒢ℎ, 𝑆

ℎ𝑢[𝑥′] ≤ 0
}︀

(2.9)

is a solution to the scheme, provided that this function takes finite values. While the discrete version of Perron’s
method is not as extensively described in the literature as its continuous part ([16], Sect. 4), some of its variants
are stated and proved in Theorem 2.3 of [40] and Theorem 3.5 of [42]. Discrete Perron’s method is not directly
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applicable when the operator 𝑆ℎ is additively invariant, since in this case one has 𝑢̃[𝑥] = +∞ for all 𝑥 ∈ 𝒢ℎ

(unless the scheme does not admit subsolutions, in which case 𝑢̃[𝑥] = −∞ for all 𝑥 ∈ 𝒢ℎ). In the proof of
Theorem 2.15 below, we get around this difficulty by further restricting the set of admissible subsolutions 𝑢
considered in the supremum (2.9).

While we assume in Theorem 2.15 that the scheme (2.8) is stable in the sense of Definition 2.12, this assump-
tion may be relaxed, see Remark 2.16 below.

Theorem 2.15 (Existence). Assume that (2.8) is monotone, continuous, and stable. Then for small ℎ > 0,
there exists a solution to (2.8).

Proof. We define the set
𝑈 :=

{︀
(𝛼, 𝑢) ∈ R× R𝒢ℎ | 𝑆ℎ,𝛼𝑢[𝑥] ≤ 0 in 𝒢ℎ

}︀
of subsolutions to (2.8). Since we assumed that (2.8) is stable, 𝑈 is nonempty and there exists 𝛼 ∈ R defined
by

𝛼 := sup
(𝛼,𝑢)∈𝑈

𝛼. (2.10)

Let us show that there exists 𝑢 : 𝒢ℎ → R such that (𝛼, 𝑢) is a subsolution to (2.8). Let ((𝛼𝑛, 𝑢𝑛))𝑛∈N be a
maximizing sequence in the definition of 𝛼, and let 𝛼* := min𝑛∈N 𝛼𝑛. We may assume, up to adding a constant
to 𝑢𝑛, that 𝑢𝑛[0] = 0 for any 𝑛 ∈ N. Then by stability, |𝑢𝑛[𝑥]| = |𝑢𝑛[𝑥] − 𝑢𝑛[0]| ≤ 𝜔(𝛼𝑛) ≤ 𝜔(𝛼*), for any
𝑛 ∈ N and 𝑥 ∈ R𝒢ℎ . This means that the sequence (𝑢𝑛)𝑛∈N is bounded in R𝒢ℎ and thus that it converges, up
to extracting a subsequence, to some function 𝑢̂ : 𝒢ℎ → R. By continuity of the scheme, (𝛼, 𝑢̂), as the limit of
subsolutions ((𝛼𝑛, 𝑢𝑛))𝑛∈N, is a subsolution to (2.8).

Among all functions 𝑢 : 𝒢ℎ → R such that (𝛼, 𝑢) is a subsolution to (2.8), we choose one which maximizes
the cardinality of the set 𝒢* :=

{︀
𝑥 ∈ 𝒢ℎ | 𝑆ℎ,𝛼𝑢[𝑥] < 0

}︀
. We will show that such a function 𝑢 may be turned

into another function 𝑢̃ : 𝒢ℎ → R such that (𝛼, 𝑢̃) is a solution to (2.8), by a maximization procedure similar to
the construction of the function 𝑢̃ in Remark 2.14.

One important difference between our proof and the classical proof of Perron’s method is that in the classical
proof, no specific subsolution 𝑢 has to be used as a basis for constructing the solution 𝑢̃. In particular the
assumption about the maximal cardinality of the set 𝒢* is specific to our setting.

Note that 𝒢* cannot be equal to 𝒢ℎ, since in this case, by continuity of the scheme, there would exist 𝛼′ > 𝛼
such that (𝛼′, 𝑢) ∈ 𝑈 (choose 𝛼′ close enough to 𝛼), and this would contradict (2.10).

Knowing that 𝒢* ̸= 𝒢ℎ, and using stability, we may define, for small 𝜀 > 0, the function 𝑢̃𝜀 : 𝒢ℎ → R by

𝑢̃𝜀[𝑥] := sup
{︀
𝑢[𝑥] | (𝛼, 𝑢) ∈ 𝑈, 𝑢 = 𝑢 in 𝒢ℎ ∖ 𝒢*, 𝑆ℎ,𝛼𝑢[𝑥] ≤ −𝜀 in 𝒢*

}︀
. (2.11)

To ensure that the supremum above is the one of a nonempty set, we choose 𝜀 small enough so that 𝑢 itself is
suitable choice of function 𝑢.

In the following two paragraphs, we show, using arguments from the classical proof of Perron’s method, that
(𝛼, 𝑢̃𝜀) is a subsolution to (2.8) and that 𝑆ℎ,𝛼𝑢̃𝜀[𝑥] = −𝜀 in 𝒢*.

By continuity of the scheme, we may pass to the limit in maximizing sequences and deduce that for any
𝑥 ∈ 𝒢ℎ, there exists 𝑢 : 𝒢ℎ → R such that (𝛼, 𝑢) ∈ 𝑈 , 𝑆ℎ,𝛼𝑢[𝑥] ≤ −𝜀 in 𝒢*, 𝑢̃𝜀 ≥ 𝑢 in 𝒢ℎ, and 𝑢̃𝜀[𝑥] = 𝑢[𝑥]. Then
by monotonicity, 𝑆ℎ,𝛼𝑢̃𝜀[𝑥] ≤ 𝑆ℎ,𝛼𝑢[𝑥]. It follows that (𝛼, 𝑢̃𝜀) is a subsolution to (2.8) and that 𝑆ℎ,𝛼𝑢̃𝜀[𝑥] ≤ −𝜀
in 𝒢*.

Let us show that 𝑆ℎ,𝛼𝑢̃𝜀[𝑥] = −𝜀 in 𝒢*. Assume that there exists 𝑥* ∈ 𝒢* so that 𝑆ℎ,𝛼𝑢̃𝜀[𝑥*] < −𝜀. For any
𝛿 > 0, we define 𝑢̃𝜀,𝛿 : 𝒢ℎ → R by

𝑢̃𝜀,𝛿[𝑥] :=

{︃
𝑢̃𝜀[𝑥] + 𝛿 if 𝑥 = 𝑥*,

𝑢̃𝜀[𝑥] else.



830 G. BONNET AND J.-M. MIREBEAU

By monotonicity, 𝑆ℎ,𝛼𝑢̃𝜀,𝛿[𝑥] ≤ 𝑆ℎ,𝛼𝑢̃𝜀[𝑥] for any 𝑥 ∈ 𝒢ℎ∖{𝑥*}, and by continuity, we may choose 𝛿 small enough
so that 𝑆ℎ,𝛼𝑢̃𝜀,𝛿[𝑥*] ≤ −𝜀. This contradicts (2.11), since 𝑢̃𝜀,𝛿 is a suitable choice for 𝑢 and 𝑢̃𝜀,𝛿[𝑥*] > 𝑢̃𝜀[𝑥*].

We now define 𝑢̃ : 𝒢ℎ → R by
𝑢̃[𝑥] := lim

𝜀→0
𝑢̃𝜀[𝑥].

Note that the right-hand side is the limit of a bounded nondecreasing sequence. By continuity, 𝑆ℎ,𝛼𝑢̃[𝑥] = 0 in
𝒢* and (𝛼, 𝑢̃) is a subsolution to (2.8). Let us show that it is a solution. If it is not the case, then there exists
𝑥* ∈ 𝒢ℎ ∖𝒢* such that 𝑆ℎ,𝛼𝑢̃[𝑥*] < 0. By continuity, there exists 𝜀 > 0 such that 𝑆ℎ,𝛼𝑢̃𝜀[𝑥*] < 0. Since (𝛼, 𝑢̃𝜀) is
a subsolution to (2.8) and 𝑆ℎ,𝛼𝑢̃𝜀[𝑥] < 0 in 𝒢*, this contradicts the assumption that 𝒢* is of maximal cardinal.
Thus (𝛼, 𝑢̃) is necessarily a solution to (2.8). �

Remark 2.16. Since ℎ > 0 is fixed in Theorem 2.15, the subsolution, the function 𝜔, and the number 𝛼0 in
(i), (ii), and (iii) in the definition of stability of the scheme (Def. 2.12) only need to exist for this fixed value of
ℎ. Also, (iv) is not needed.

3. Properties of the proposed scheme

In this section, we show that the scheme (1.30) satisfies the properties we defined in Section 2. First note
that for any ℎ > 0 and 𝛼 ∈ R, the operator 𝑆ℎ,𝛼

MABV2 : R𝒢ℎ → R𝒢ℎ is additively invariant.

Proposition 3.1 (Monotonicity). Assume the Lipschitz regularity properties (1.15) and (1.16). Then the
scheme (1.30) is monotone, in the sense of Definition 2.12.

Proof. Let ℎ > 0, 𝛼 ∈ R, 𝑥 ∈ 𝒢ℎ, and 𝑢, 𝑢 : 𝒢ℎ → R be such that 𝑢[𝑥] = 𝑢[𝑥] and 𝑢 ≥ 𝑢 in 𝒢ℎ. We need to show
that

𝑆ℎ,𝛼
MABV2𝑢[𝑥] ≤ 𝑆ℎ,𝛼

MABV2𝑢[𝑥].

By the definition (1.29) of the operator 𝑆ℎ,𝛼
MABV2, it suffices to prove that both 𝑆ℎ

MA𝑢[𝑥] ≤ 𝑆ℎ
MA𝑢[𝑥] and

𝑆ℎ
BV2𝑢[𝑥] ≤ 𝑆ℎ

BV2𝑢[𝑥]. The second inequality follows directly from the definition (1.28) of 𝑆ℎ
BV2, so let us

prove the first one.
By the definition (1.23) of 𝑆ℎ

MA, it suffices to prove that for any family 𝑣 = (𝑣1, . . . , 𝑣𝐼) of vectors of Z𝑑 and
any 𝛾 ∈ R𝐼

+,
𝐿𝑣,𝛾(𝐵ℎ𝑢[𝑥],∆𝑣

ℎ𝑢[𝑥]−𝐴𝑣
ℎ𝑢[𝑥]) ≤ 𝐿𝑣,𝛾(𝐵ℎ𝑢[𝑥],∆𝑣

ℎ𝑢[𝑥]−𝐴𝑣
ℎ𝑢[𝑥]).

First note that the operator ∆𝑣
ℎ was defined so that ∆𝑣

ℎ𝑢[𝑥] ≥ ∆𝑣
ℎ𝑢[𝑥] elementwise. If 𝐵ℎ𝑢[𝑥] = 0, then

𝐵ℎ𝑢[𝑥]1/𝑑 ≤ 𝐵ℎ𝑢[𝑥]1/𝑑, since 𝐵ℎ is a nonnegative operator. If 𝐵ℎ𝑢[𝑥] > 0 (which, by definition of 𝐵ℎ, implies
that 𝑥± ℎ𝑒𝑖 ∈ 𝒢ℎ for any 𝑖 ∈ {1, . . . , 𝑑}), then, using (1.16) for the second inequality,

𝐵ℎ𝑢[𝑥]1/𝑑 −𝐵ℎ𝑢[𝑥]1/𝑑 ≤ 𝐵(𝑥,𝐷ℎ𝑢[𝑥])1/𝑑 −𝐵(𝑥,𝐷ℎ𝑢[𝑥])1/𝑑 − ℎ

2
𝑏LF∆ℎ(𝑢− 𝑢)[𝑥]

≤ 𝑏LF

(︂
|𝐷ℎ𝑢[𝑥]−𝐷ℎ𝑢[𝑥]|1 −

ℎ

2
∆ℎ(𝑢− 𝑢)[𝑥]

)︂
=
𝑏LF

2ℎ

𝑑∑︁
𝑖=1

(|(𝑢− 𝑢)[𝑥+ ℎ𝑒𝑖]− (𝑢− 𝑢)[𝑥− ℎ𝑒𝑖]|

− (𝑢− 𝑢)[𝑥+ ℎ𝑒𝑖]− (𝑢− 𝑢)[𝑥− ℎ𝑒𝑖])
≤ 0,

and thus 𝐵ℎ𝑢[𝑥]1/𝑑 ≤ 𝐵ℎ𝑢[𝑥]1/𝑑. Similarly, for any 𝑒 ∈ 𝑣, if 𝐴𝑒
ℎ𝑢[𝑥] = 𝑎min|𝑒|2, then 𝐴𝑒

ℎ𝑢[𝑥] ≤ 𝐴𝑒
ℎ𝑢[𝑥], and

otherwise, using (1.15),

𝐴𝑒
ℎ𝑢[𝑥]−𝐴𝑒

ℎ𝑢[𝑥] ≤
⟨︀
𝑒,
(︀
𝐴(𝑥,𝐷ℎ𝑢[𝑥])−𝐴(𝑥,𝐷ℎ𝑢[𝑥])

)︀
𝑒
⟩︀
− ℎ

2
𝑎LF|𝑒|2∆ℎ(𝑢− 𝑢)[𝑥]
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≤ 𝑎LF|𝑒|2
(︂
|𝐷ℎ𝑢[𝑥]−𝐷ℎ𝑢[𝑥]|1 −

ℎ

2
∆ℎ(𝑢− 𝑢)[𝑥]

)︂
≤ 0,

hence 𝐴𝑒
ℎ𝑢[𝑥] ≤ 𝐴𝑒

ℎ𝑢[𝑥]. We easily conclude that 𝑆ℎ
MA𝑢[𝑥] ≤ 𝑆ℎ

MA𝑢[𝑥]. �

From the grid 𝒢ℎ, we may build a graph whose nodes are the points of 𝒢ℎ and whose edges are pairs of points
that are neighbors on the grid, that is, between whom the Euclidean distance is equal to ℎ. To prove other
properties of the scheme, we need the technical assumption that the distance on this graph, multiplied by ℎ,
is equivalent to the Euclidean distance, uniformly over small ℎ > 0. Equivalently, we require that there exists
some positive constant 𝐶𝒢 , such that for any small ℎ > 0 and any function 𝜙 : 𝒢ℎ → R,

max
𝑥1,𝑥2∈𝒢ℎ

𝑥1 ̸=𝑥2

|𝜙[𝑥1]− 𝜙[𝑥2]|
|𝑥1 − 𝑥2|

≤ 𝐶𝒢 max
𝑥1,𝑥2∈𝒢ℎ

|𝑥1−𝑥2|=ℎ

|𝜙[𝑥1]− 𝜙[𝑥2]|
ℎ

· (3.1)

Proposition 3.2 (Continuity). Assume (3.1). Then the scheme (1.30) is continuous, in the sense of Defini-
tion 2.12.

Proof. For any 𝑥 ∈ 𝒢ℎ, the function R𝒢ℎ → R, 𝑢 ↦→ 𝑆ℎ,𝛼
MABV2𝑢[𝑥] is a maximum over a compact set of continuous

functions with values in R ∪ {−∞}, see (1.23), (1.28) and (1.29). Hence it is a continuous function with values
in R ∪ {−∞}. It remains to prove that 𝑆ℎ,𝛼

MABV2𝑢[𝑥] > −∞.
By (3.1), there exists 𝑒 = ±𝑒𝑖, 𝑖 ∈ {1, . . . , 𝑑}, such that 𝑥− ℎ𝑒 ∈ 𝒢ℎ. Therefore

𝑆ℎ,𝛼
MABV2𝑢[𝑥] ≥ 𝑆ℎ

BV2𝑢[𝑥] ≥ 𝐷𝑒
ℎ𝑢[𝑥]− 𝜎𝑃 (𝑥)(𝑒) = −𝛿−𝑒

ℎ 𝑢[𝑥]− 𝜎𝑃 (𝑥)(𝑒) > −∞,

which concludes the proof. �

Let us now study the consistency of the scheme (1.30) with the degenerate elliptic equation

𝐹𝛼
MABV2

(︀
𝑥,𝐷𝑢(𝑥), 𝐷2𝑢(𝑥)

)︀
= 0 in 𝑋, (3.2)

where for any 𝛼 ∈ R, 𝑥 ∈ 𝑋, 𝑝 ∈ R𝑑, and 𝑀 ∈ 𝒮𝑑,

𝐹𝛼
MABV2(𝑥, 𝑝,𝑀) :=

{︃
(𝐹MA(𝑥, 𝑝,𝑀) + 𝛼) ∨ 𝐹BV2(𝑥, 𝑝) if 𝑥 ∈ 𝑋,
−∞ else,

and 𝐹MA(𝑥, 𝑝,𝑀) and 𝐹BV2(𝑥, 𝑝) are defined respectively in (1.8) and (1.27). We first prove a consistency
property that is stronger to the one we introduced in Definition 2.12, and that will be useful in the study of
stability of the scheme.

Proposition 3.3 (Consistency). Assume (1.10), (1.14), (1.20), and (1.21). Let 𝜙 ∈ 𝐶∞(𝑋) and (𝛼ℎ)ℎ>0 be a
family of real numbers converging to some 𝛼 ∈ R as ℎ approaches zero. Then

𝑆ℎ,𝛼ℎ

MABV2𝜙[𝑥] ≤ 𝐹𝛼
MABV2

(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
+ 𝑜ℎ→0(1), (3.3)

uniformly over 𝑥 ∈ 𝒢ℎ and 𝛼 ∈ R. Moreover, for any compact subset 𝐾 of 𝑋,

𝑆ℎ,𝛼ℎ

MABV2𝜙[𝑥] ≥ 𝐹𝛼
MABV2

(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
+ 𝑜ℎ→0(1), (3.4)

uniformly over 𝑥 ∈ 𝐾 ∩ 𝒢ℎ and 𝛼 ∈ R.
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Proof. Let 𝐾 be a compact subset of 𝑋. For convenience, when 𝑎ℎ(𝑥) and 𝑏ℎ(𝑥) are real numbers depending
on ℎ > 0 and on 𝑥 ∈ 𝒢ℎ, we write 𝑎ℎ(𝑥) 5𝐾 𝑏ℎ(𝑥) if 𝑎ℎ(𝑥) ≤ 𝑏ℎ(𝑥) for any ℎ > 0 and 𝑥 ∈ 𝒢ℎ, with equality if
𝑥 ∈ 𝐾. Then it suffices to show that

𝑆ℎ
MA𝜙[𝑥] 5𝐾 𝐹MA

(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
+ 𝑜ℎ→0(1), (3.5)

𝑆ℎ
BV2𝜙[𝑥] 5𝐾 𝐹BV2(𝑥,𝐷𝜙(𝑥)) + 𝑜ℎ→0(1), (3.6)

uniformly over 𝑥 ∈ 𝒢ℎ.
For any 𝑥 ∈ 𝒢ℎ and 𝑖 ∈ {1, . . . , 𝑑}, it holds that 𝑇±𝑒𝑖

ℎ 𝜙[𝑥] ≥ 𝜙(𝑥±ℎ𝑒𝑖), and using (1.10), we may assume that
ℎ is small enough so that the equality 𝑇±𝑒𝑖

ℎ 𝜙[𝑥] = 𝜙(𝑥± ℎ𝑒𝑖) holds whenever 𝑥 ∈ 𝐾. Then inserting first-order
Taylor expansions of 𝜙 in the definition of 𝑆ℎ

BV2 yields (3.6).
If 𝑥 ∈ 𝒢ℎ is such that ∆ℎ𝜙[𝑥] < +∞, then 𝑥 ± ℎ𝑒𝑖 ∈ 𝒢ℎ for any 𝑖 ∈ {1, . . . , 𝑑}, and thus 𝐷ℎ𝜙[𝑥] =

𝐷𝜙(𝑥) +𝑂(ℎ2) and ∆ℎ𝜙[𝑥] = ∆𝜙(𝑥) +𝑂(ℎ2). In particular, ∆ℎ𝜙[𝑥] is bounded. Therefore, using that 𝐵1/𝑑 is
Lipschitz continuous with respect to its last variable, uniformly with respect to its first variable,

𝐵(𝑥,𝐷ℎ𝜙[𝑥])1/𝑑 − ℎ

2
𝑏LF∆ℎ𝜙[𝑥] = 𝐵(𝑥,𝐷𝜙(𝑥))1/𝑑 +𝑂(ℎ).

Since 𝐵 ≥ 0 and using the definition (1.18) of 𝐵ℎ, it follows that

𝐵ℎ𝜙[𝑥]1/𝑑 = 𝐵(𝑥,𝐷𝜙(𝑥))1/𝑑 +𝑂(ℎ).

Now if ∆ℎ𝜙[𝑥] = +∞ (by (1.10), for ℎ small, this may only happen if 𝑥 ̸∈ 𝐾), it holds that 𝐵ℎ𝜙[𝑥] = 0 ≤
𝐵(𝑥,𝐷𝜙(𝑥)). We deduce that

𝐵ℎ𝜙[𝑥]1/𝑑 5𝐾 𝐵(𝑥,𝐷𝜙(𝑥))1/𝑑 +𝑂(ℎ)

uniformly over 𝑥 ∈ 𝒢ℎ. Similarly, for any 𝑣 ∈ 𝑉ℎ and 𝑒 ∈ 𝑣, we may assume, using (1.10) and (1.21), that ℎ
is small enough so that 𝑥 ± ℎ𝑒 ∈ 𝒢ℎ whenever 𝑥 ∈ 𝐾 ∩ 𝒢ℎ, and then, using (1.14) and the same reasoning as
above,

𝐴𝑒
ℎ𝜙[𝑥] 5𝐾 ⟨𝑒,𝐴(𝑥,𝐷𝜙(𝑥))𝑒⟩+𝑂

(︀
ℎ|𝑒|2

)︀
,

−∆𝑒
ℎ𝜙[𝑥] 5𝐾 −

⟨︀
𝑒,𝐷2𝜙(𝑥)𝑒

⟩︀
+𝑂

(︀
ℎ2|𝑒|4

)︀
,

uniformly over 𝑥 ∈ 𝒢ℎ. Then for any 𝑣 ∈ 𝑉ℎ and 𝛾 ∈ R𝑑(𝑑+1)/2
+ such that Tr(𝒟𝑣(𝛾)) =

∑︀𝑑(𝑑+1)/2
𝑖=1 𝛾𝑖|𝑣𝑖|2 = 1,

using (1.21) for the last equality,

−⟨𝛾,∆𝑣
ℎ𝜙[𝑥]−𝐴𝑣

ℎ𝜙[𝑥]⟩ = −
𝑑(𝑑+1)/2∑︁

𝑖=1

𝛾𝑖(∆𝑣𝑖

ℎ 𝜙[𝑥]−𝐴𝑣𝑖

ℎ 𝜙[𝑥])

5𝐾 −
𝑑(𝑑+1)/2∑︁

𝑖=1

𝛾𝑖

⟨︀
𝑣𝑖,
(︀
𝐷2𝜙(𝑥)−𝐴(𝑥,𝐷𝜙(𝑥))

)︀
𝑣𝑖

⟩︀
+

𝑑(𝑑+1)/2∑︁
𝑖=1

𝛾𝑖𝑂(ℎ|𝑣𝑖|2 + ℎ2|𝑣𝑖|4)

= −
⟨︀
𝒟𝑣(𝛾), 𝐷2𝜙(𝑥)−𝐴(𝑥,𝐷𝜙(𝑥))

⟩︀
+𝑂

(︁
ℎ+ ℎ2|𝑣𝑖|2

)︁
= −

⟨︀
𝒟𝑣(𝛾), 𝐷2𝜙[𝑥]−𝐴(𝑥,𝐷𝜙(𝑥))

⟩︀
+ 𝑜ℎ→0(1),

(3.7)

uniformly over 𝑥 ∈ 𝒢ℎ, 𝑣, and 𝛾. Thus

𝑆ℎ
MA𝜙[𝑥] 5𝐾 max

𝑣∈𝑉ℎ

max
𝛾∈R𝑑(𝑑+1)/2

+
Tr(𝒟𝑣(𝛾))=1

𝐿𝒟𝑣(𝛾)

(︀
𝐵(𝑥,𝐷𝜙(𝑥)), 𝐷2𝜙(𝑥)−𝐴(𝑥,𝐷𝜙(𝑥))

)︀
+ 𝑜ℎ→0(1).



MONOTONE DISCRETIZATION OF THE MONGE–AMPÈRE EQUATION 833

We deduce (3.5) using (1.20) and that the affine map{︀
𝒟 ∈ 𝒮+

𝑑 | Tr(𝒟) = 1
}︀
→ R, 𝒟 ↦→ 𝐿𝒟(𝑏,𝑀) (3.8)

is continuous, uniformly over 𝑏 and 𝑀 belonging to compact sets. �

Remark 3.4 (Order of consistency). Under appropriate assumptions, the order of consistency of the scheme
(1.30) is easily deduced from the proof of Proposition 3.3. Let 𝜙 ∈ 𝐶∞(𝑋), and let 𝐾 ⊂ 𝑋 be compact. Then,
for small ℎ > 0 and uniformly over 𝑥 ∈ 𝐾 ∩ 𝒢ℎ,

𝑆ℎ
BV2𝜙[𝑥] = 𝐹BV2(𝑥,𝐷𝜙(𝑥)) +𝑂(ℎ).

For the operator 𝑆ℎ
MA, we distinguish two cases:

(General case) If there exist 𝑟1 > 0 and 𝑟2 ∈ (0, 1) such that the following refinements of (1.20) and (1.21) hold:

𝑑H

(︁{︁
𝒟𝑣(𝛾) | 𝑣 ∈ 𝑉ℎ, 𝛾 ∈ R𝑑(𝑑+1)/2

+ , Tr(𝒟𝑣(𝛾)) = 1
}︁
,
{︀
𝒟 ∈ 𝒮+

𝑑 | Tr(𝒟) = 1
}︀)︁

= 𝑂(ℎ𝑟1),

max
𝑣∈𝑉ℎ

max
𝑒∈𝑣

|𝑒| = 𝑂(ℎ−𝑟2),

then, refining the last equality in (3.7) and using that the map (3.8) is 1/𝑑-Hölder continuous, one has, for small
ℎ > 0 and uniformly over 𝑥 ∈ 𝐾 ∩ 𝒢ℎ,

𝑆ℎ
MA𝜙[𝑥] = 𝐹MA

(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
+𝑂

(︁
ℎ1∧(2−2𝑟2)∧(𝑟1/𝑑)

)︁
.

In dimension 𝑑 = 2, when choosing 𝑉ℎ as in Remark B.9, one has 𝑟1 = 2𝑟 and 𝑟2 = 𝑟, hence 𝑆ℎ
MA is consistent

with 𝐹MA to the order 1∧ (2− 2𝑟)∧ 𝑟, and the optimal choice for 𝑟 is 𝑟 = 2/3, yielding consistency to the order
2/3.
(Smooth case) The consistency is improved if (1.2) admits a solution 𝑢 ∈ 𝐶2(𝑋) such that, uniformly over 𝐾,
𝐷2𝑢(𝑥)−𝐴(𝑥,𝐷𝑢(𝑥)) ∈ 𝒮++

𝑑 has condition number less than some constant 𝑐 > 1. In this setting, the maximum

in (1.8) is attained for 𝒟 =
(︀
𝐷2𝑢(𝑥)−𝐴(𝑥,𝐷𝑢(𝑥))

)︀−1
/Tr

(︁(︀
𝐷2𝑢(𝑥)−𝐴(𝑥,𝐷𝑢(𝑥))

)︀−1
)︁

, which has condition
number less than 𝑐 for all 𝑥 ∈ 𝐾. We thus recommend choosing the set 𝑉ℎ independently of ℎ, but such that
any 𝒟 ∈ 𝒮++

𝑑 with condition number less than 𝑐 is of the form 𝒟 = 𝒟𝑣(𝛾) for some 𝑣 ∈ 𝑉ℎ and 𝛾 ∈ R𝑑(𝑑+1)/2
+

(see Appendix B for a suitable construction of 𝑉ℎ in dimension 𝑑 = 2). Then (1.20) is not satisfied, but in a
neighborhood of the solution 𝑢, the operator 𝑆ℎ

MA is still consistent with 𝐹MA, to the order one, uniformly over
𝑥 ∈ 𝐾.

In practice, one may choose to implement the scheme with Lax–Friedrichs relaxation parameters 𝑎LF = 𝑏LF =
0, as we do in Section 6. The drawback of doing this is that (1.15) and (1.16), and thus Proposition 3.1, do not
hold anymore unless 𝐴(𝑥, 𝑝) and 𝐵(𝑥, 𝑝) do not depend on 𝑝. The benefit is that consistency is improved. In
the setting of the smooth case described above, if 𝑎LF = 𝑏LF = 0, then, in a neighborhood of 𝑢 and uniformly
over 𝑥 ∈ 𝐾, 𝑆ℎ

MA is consistent with 𝐹MA to the order two.
Note that the order of consistency of the whole scheme (1.30) is the minimum of the ones of 𝑆ℎ

BV2 and 𝑆ℎ
MA,

but for a fixed point 𝑥, the order is the one of the operator for which the maximum is reached in (1.29), which
in practice is 𝑆ℎ,𝛼

MA = 𝑆ℎ
MA + 𝛼 at most points of the grid.

Corollary 3.5 (Consistency). Assume (1.10), (1.14), (1.20), and (1.21). Then the scheme (1.30) is consistent
with equation (3.2), in the sense of Definition 2.12.

Proof. We have to show that if 𝜙, (𝛼ℎ)ℎ>0, and 𝛼 are as in Proposition 3.3, then for any 𝑥 ∈ 𝑋,

lim sup
ℎ>0, ℎ→0

𝑥′∈𝒢ℎ, 𝑥′→𝑥

𝑆ℎ,𝛼ℎ

MABV2𝜙[𝑥′] ≤ (𝐹𝛼
MABV2)*

(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
, (3.9)
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lim inf
ℎ>0, ℎ→0

𝑥′∈𝒢ℎ, 𝑥′→𝑥

𝑆ℎ,𝛼ℎ

MABV2𝜙[𝑥′] ≥ (𝐹𝛼
MABV2)*

(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
. (3.10)

If 𝑥 ∈ 𝑋, then (3.9) and (3.10) follow respectively from (3.3) and (3.4), taking first the limit over ℎ
and then the limit over 𝑥′. If 𝑥 ∈ 𝜕𝑋, then (3.9) follows from (3.3) and (3.10) is always true, since
(𝐹𝛼

MABV2)*
(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
= −∞. �

Finally, we establish stability of the proposed scheme.

Proposition 3.6 (Equicontinuous stability). Assume (1.10), (1.14)–(1.16), (1.20)–(1.22), and (3.1). If there
exists a function 𝜙 ∈ 𝐶∞(𝑋) such that for any 𝑥 ∈ 𝑋, 𝐷𝜙(𝑥) ∈ 𝑃 (𝑥), then the scheme (1.30) is equicontinuously
stable, in the sense of Definition 2.12.

Proof. Let us check all items in the definition of equicontinuous stability.

(i) The function 𝜙 was chosen so that 𝐹BV2(𝑥,𝐷𝜙(𝑥)) < 0, uniformly over 𝑥 ∈ 𝑋. Also, since 𝐴 and 𝐵 are
bounded, there exists 𝛼1 ≤ 0 such that 𝐹MA

(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
< −𝛼1, uniformly over 𝑥 ∈ 𝑋. It follows

that (𝐹𝛼1
MABV2)*

(︀
𝑥,𝐷𝜙(𝑥), 𝐷2𝜙(𝑥)

)︀
< 0, uniformly over 𝑥 ∈ 𝑋. Then by Proposition 3.3, for any small ℎ > 0

and any 𝑥 ∈ 𝒢ℎ, 𝑆ℎ,𝛼1
MABV2𝜙[𝑥] < 0. Hence (𝛼1, 𝜙) is a subsolution to (1.30) for small ℎ > 0.

(ii’) Let ℎ > 0 be small and let (𝛼, 𝑢) ∈ R×R𝒢ℎ be a subsolution to (1.30). Then for any 𝑥 ∈ 𝒢ℎ, 𝑆ℎ
BV2𝑢[𝑥] ≤ 0.

Choosing 𝑒 = ±𝑒𝑖, 𝑖 ∈ {1, . . . , 𝑑} in the definition of 𝑆ℎ
BV2, it follows that −𝛿±𝑒𝑖

ℎ 𝑢[𝑥] ≤ 𝜎𝑃 (𝑥)(∓𝑒𝑖). Since
the compact set 𝑃 (𝑥) is continuous with respect to 𝑥 ∈ 𝑋 for the Hausdorff distance, there exists 𝐶𝑃 ≥ 0
such that for any 𝑥 ∈ 𝑋 and 𝑖 ∈ {1, . . . , 𝑑}, 𝜎𝑃 (𝑥)(±𝑒𝑖) ≤ 𝐶𝑃 . Hence −𝛿±𝑒𝑖

ℎ 𝑢[𝑥] ≤ 𝐶𝑃 . Using (3.1), we easily
deduce that

max
𝑥1,𝑥2∈𝒢ℎ

𝑥1 ̸=𝑥2

|𝑢[𝑥1]− 𝑢[𝑥2]|
|𝑥1 − 𝑥2|

≤ 𝐶𝒢𝐶𝑃 .

Hence (ii’) holds with 𝜔(𝛼, 𝑡) := 𝐶𝒢𝐶𝑃 𝑡.
(iii) Let ℎ > 0 be small and (𝛼, 𝑢) ∈ R×R𝒢ℎ be a subsolution to (1.30). Then for any 𝑥 ∈ 𝒢ℎ, 𝑆ℎ

MA𝑢[𝑥] ≤ −𝛼. By
(1.22), there exists 𝑣 ∈ 𝑉ℎ and 𝛾 ∈ R𝑑(𝑑+1)/2

+ such that 𝒟𝑣(𝛾) = 𝑒1⊗ 𝑒1 (and thus Tr(𝒟𝑣(𝛾)) = 1). Choosing
𝑣 and 𝛾 as parameters in the definition of 𝑆ℎ

MA yields 𝐴𝑒1
ℎ 𝑢[𝑥] − ∆𝑒1

ℎ 𝑢[𝑥] ≤ −𝛼. Since 𝐴𝑒1
ℎ 𝑢[𝑥] ≥ 𝑎min, it

follows that ∆𝑒1
ℎ 𝑢[𝑥] ≥ 𝑎min + 𝛼.

Let ℓ > 0, independent of ℎ, be such that the segment [0, ℓ𝑒1] belongs to 𝑋 (recall that 0 ∈ 𝑋 by assumption),
and let 𝑛ℎ := ⌈ℓ/ℎ⌉. By (1.10), we may assume that ℎ is small enough so that 𝑖ℎ𝑒1 ∈ 𝑋, for any 𝑖 ∈
{0, . . . , 𝑛ℎ + 1}. Then for any 𝑖 ∈ {1, . . . , 𝑛ℎ}, ℎ∆𝑒1

ℎ 𝑢[𝑖ℎ𝑒1] = 𝛿𝑒1
ℎ 𝑢[𝑖ℎ𝑒1]+𝛿−𝑒1

ℎ 𝑢[𝑖ℎ𝑒1] = 𝛿𝑒1
ℎ 𝑢[𝑖ℎ𝑒1]−𝛿𝑒1

ℎ 𝑢[(𝑖−
1)ℎ𝑒1], hence 𝛿𝑒1

ℎ 𝑢[𝑖ℎ𝑒1] = 𝛿𝑒1
ℎ 𝑢[(𝑖− 1)ℎ𝑒1] + ℎ∆𝑒1

ℎ 𝑢[𝑖ℎ𝑒1] and

𝛿𝑒1
ℎ 𝑢[𝑛ℎℎ𝑒1] = 𝛿𝑒1

ℎ 𝑢[0] + ℎ

𝑛ℎ∑︁
𝑖=1

∆𝑒1
ℎ 𝑢[𝑖ℎ𝑒1] ≥ 𝛿𝑒1

ℎ 𝑢[0] + 𝑛ℎℎ(𝑎min + 𝛼).

Since 𝑛ℎℎ ≥ ℓ, if 𝛼 ≥ −𝑎min, then

𝛿𝑒1
ℎ 𝑢[𝑛ℎℎ𝑒1] ≥ 𝛿𝑒1

ℎ 𝑢[0] + ℓ(𝑎min + 𝛼) = −𝛿−𝑒1
ℎ 𝑢[ℎ𝑒1] + ℓ(𝑎min + 𝛼).

We proved in (ii) that 𝛿𝑒1
ℎ 𝑢[𝑛ℎℎ𝑒1] ≤ 𝐶𝑃 and 𝛿−𝑒1

ℎ 𝑢[ℎ𝑒1] ≤ 𝐶𝑃 . Therefore

𝛼 ≤ 2𝐶𝑃

ℓ
− 𝑎min.

(iv) Let ℎ > 0 be small and (𝛼, 𝑢) ∈ R × R𝒢ℎ be a solution to (1.30) (note that in the proof, we only use that
it is a supersolution). Let 𝛼1 ≥ 0 be as in (i). Up to adding a constant to 𝑢, we may assume that there
exists 𝑥 ∈ 𝒢ℎ such that 𝑢[𝑥] = 𝜙[𝑥] and 𝑢 ≥ 𝜙 in 𝒢ℎ. Then by Proposition 3.1, 𝑆ℎ,𝛼1

MABV2𝑢[𝑥] ≤ 𝑆ℎ,𝛼1
MABV2𝜙[𝑥].
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We proved in (i) that 𝑆ℎ,𝛼1
MABV2𝜙[𝑥] < 0. Thus 𝑆ℎ,𝛼1

MABV2𝑢[𝑥] < 0, and by definition of 𝑆ℎ,𝛼1
MABV2, it holds that

𝑆ℎ
BV2𝑢[𝑥] < 0 and 𝑆ℎ

MA𝑢[𝑥] < −𝛼1. On the other hand, the equality 𝑆ℎ,𝛼
MABV2𝑢[𝑥] = 0 may be expanded as

𝑆ℎ
BV2𝑢[𝑥] ∨

(︀
𝑆ℎ

MA𝑢[𝑥] + 𝛼
)︀

= 0.

Since 𝑆ℎ
BV2𝑢[𝑥] < 0, we deduce that 𝛼 = −𝑆ℎ

MA𝑢[𝑥] > 𝛼1.

�

Note that in the proof of item (ii’), we actually proved that solutions to the scheme are Lipschitz continuous
uniformly over small ℎ > 0.

The existence of a suitable function 𝜙 in Proposition 3.6 is a natural assumption in the setting of optimal
transport. We defer discussion of this assumption to Section 5.1, and in particular to Remark 5.1.

4. Closed-form formula in dimension two

This section is devoted to the proof of Theorem 1.2, whose motivation is to improve the numerical efficiency
of the scheme. Recall that the scheme residues are defined as the value (1.23) of a maximization problem.
In Remark 4.1, we contrast the numerical cost of computing this maximal value using the explicit formula
of Theorem 1.2 with a more traditional approach based on a grid search in the parameter space. In practice,
and in the numerical experiments Section 6, the objective is to solve the scheme using a Newton method,
which requires the following additional ingredients: (i) generating the sparse Jacobian matrix of the scheme,
(ii) solving the linearized scheme, and (iii) iterating the previous two steps until the residues fall below a given
threshold. Point (i) is addressed using a custom automatic differentiation library1, combining sparse and dense
forward differentiation, and which takes advantage of the envelope theorem ([13], Sect. 6.1) so as to efficiently
differentiate the maximal value (1.23). Point (ii) relies on the standard SuperLU sparse direct solver. Point
(iii) usually terminates in less than a dozen steps in practice, and the proposed scheme compares favorably
to alternatives in this regard, see Section 6.4. Eventually, the evaluation of the scheme residues nevertheless
accounts for a substantial part of the complexity of the proposed numerical method, and is also its most specific
ingredient.

Remark 4.1 (Numerical complexity of the scheme numerical evaluation). Consider a two-dimensional Carte-
sian grid 𝒢ℎ with 𝑂(𝑁2) points. Assume that at any point 𝑥 ∈ 𝒢ℎ, one has to perform respectively 𝑀MA and
𝑀BV2 operations in order to compute 𝑆ℎ

MA𝑢[𝑥] and 𝑆ℎ
BV2𝑢[𝑥]. Then the overall numerical complexity of the

scheme on the grid 𝒢ℎ is 𝑂(𝑁2(𝑀MA +𝑀BV2)).
When using Theorem 1.2 in the implementation of the scheme, 𝑀MA is proportional to the number of

superbases in the set 𝑉ℎ. As in Remark 3.4, we distinguish between the smooth case and the general case. In the
smooth case, 𝑉ℎ does not depend on 𝑁 , hence 𝑀MA = 𝑂(1). In the general case, if 𝑉ℎ is built as in Remark B.9,
with 𝑟 = 2/3 as suggested by Remark 3.4, then by Proposition B.10, 𝑀MA = 𝑂(𝑁2/3 log𝑁).

For comparison, one could choose to discretize the parameter set of the maximum in the definition (1.8) of
the operator 𝑆ℎ

MA instead of using Theorem 1.2, and in this case 𝑀MA would be proportional to the number
of points in this discretization. Since the set of symmetric positive semidefinite matrices of size two and of unit
trace has dimension two, in order to guarantee consistency of the scheme to some order 𝑟 > 0, one should choose
at least 𝑀MA = 𝑂(𝑁2𝑟). This is more costly than using Theorem 1.2, both in the smooth case (in which the
desired order, according to Remark 3.4, is 𝑟 = 1, or even 𝑟 = 2 if 𝑎LF = 𝑏LF = 0) and in the general case (in
which the desired order is 𝑟 = 2/3).

There is also a maximum in the definition (1.28) of 𝑆ℎ
BV2 which, depending on the expression of the set-valued

function 𝑃 in (1.24), either admits a closed-form formula or needs to be discretized. If it admits a closed-form
formula, then 𝑀BV2 does not depend on 𝑁 . If it needs to be discretized, then 𝑀BV2 is proportional to the

1See https://github.com/Mirebeau/AdaptiveGridDiscretizations.

https://github.com/Mirebeau/AdaptiveGridDiscretizations
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number of points in the discretization and, in order to guarantee consistency of the operator 𝑆ℎ
BV2 with 𝐹BV2 at

some order 𝑟 > 0, one should choose 𝑀BV2 = 𝑂(𝑁𝑟), since the parameter set is one-dimensional. The numerical
cost of this discretization is negligible in the general case, but not in the smooth case. In practice, in many
applications, the maximum in (1.29) is only attained by 𝑆ℎ

BV2𝑢[𝑥] at points 𝑥 ∈ 𝒢ℎ that are close to 𝜕𝑋. A
perspective for future research would be to prove that one may use a variant of the scheme (1.30) which would
only require computing 𝑆ℎ

BV2𝑢[𝑥] at such points, reducing the numerical cost of handling the boundary condition
(1.24).

In dimension 𝑑 = 2, choosing 𝑉 ℎ as a family of superbases of Z2 (see Def. 1.1) is motivated by Selling’s
formula [43]: for any family 𝑣 = (𝑣1, 𝑣2, 𝑣3) of vectors of Z2, recall that we defined 𝛾 : R3 → 𝒮+

2 by

𝒟𝑣(𝛾) :=
3∑︁

𝑖=1

𝛾𝑖𝑣𝑖 ⊗ 𝑣𝑖,

and let us also define 𝛾𝑣 : 𝒮2 → R3 by

𝛾𝑣(𝒟) :=
(︀
−
⟨︀
𝑣⊥𝑖+1,𝒟𝑣⊥𝑖+2

⟩︀)︀
1≤𝑖≤3

, (4.1)

where we consider the indices of the elements of 𝑣 modulo three, and where if 𝑒 = (𝑎, 𝑏) ∈ R2, we denote
𝑒⊥ := (−𝑏, 𝑎).

Proposition 4.2 (Selling’s formula). If 𝑣 = (𝑣1, 𝑣2, 𝑣3) is a superbase of Z2, then 𝛾𝑣 is the inverse bijection of
𝒟𝑣: for any 𝒟 ∈ 𝒮2, 𝒟 = 𝒟𝑣(𝛾𝑣(𝒟)).

Proof. It suffices to show that for any 1 ≤ 𝑖 ≤ 𝑗 ≤ 2,⟨︀
𝑣⊥𝑖 ,𝒟𝑣⊥𝑗

⟩︀
=
⟨︀
𝑣⊥𝑖 ,𝒟𝑣(𝛾𝑣(𝒟))𝑣⊥𝑗

⟩︀
.

This is easily verified using the properties of superbases of Z2 and the fact that for any {𝑖, 𝑗} ⊂ {1, 2, 3},⟨︀
𝑣⊥𝑖 , 𝑣𝑗

⟩︀
= det(𝑣𝑖, 𝑣𝑗). �

Proof of Theorem 1.2. We prove separately the two statements of the theorem.
Case of bases. Let 𝑣 = (𝑣1, 𝑣2) be a basis of Z2, 𝑏 ≥ 0, and 𝑚 = (𝑚1,𝑚2) ∈ R2. Note that

{︀
𝛾 ∈ R+

2 | Tr(𝒟𝑣(𝛾)) = 1
}︀

=

{︃(︃
1 + 𝑡

2|𝑣1|2
,

1− 𝑡

2|𝑣2|2

)︃
| 𝑡 ∈ [−1, 1]

}︃
,

is the segment of endpoints
(︁

1/|𝑣1|2, 0
)︁

and (0, 1/|𝑣2|2). Then

max
𝛾∈R2

+
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾(𝑏,𝑚) = max
𝑡∈[−1,1]

⎛⎝2𝑏1/2

(︃
det𝒟𝑣

(︃(︃
1 + 𝑡

2|𝑣1|2
,

1− 𝑡

2|𝑣2|2

)︃)︃)︃1/2

− 1 + 𝑡

2|𝑣1|2
𝑚1 −

1− 𝑡

2|𝑣2|2
𝑚2

⎞⎠.
We compute that for any 𝑡 ∈ [−1, 1],

det𝒟𝑣

(︃(︃
1 + 𝑡

2|𝑣1|2
,

1− 𝑡

2|𝑣2|2

)︃)︃
= det

(︃
(1 + 𝑡)
2|𝑣1|2

𝑣1 ⊗ 𝑣1 +
(1− 𝑡)
2|𝑣2|2

𝑣2 ⊗ 𝑣2

)︃

=
1
4
(︀
1− 𝑡2

)︀det(𝑣1, 𝑣2)2

|𝑣1|2|𝑣2|2
=

(︀
1− 𝑡2

)︀
4|𝑣1|2|𝑣2|2

,
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using the definition of 𝒟𝑣 for the first equality, that det(𝑎 ⊗ 𝑎 + 𝑏 ⊗ 𝑏) = det(𝑎, 𝑏)2 for any 𝑎, 𝑏 ∈ R2 for the
second equality, and that det(𝑣1, 𝑣2) = ±1 for the third equality. After defining 𝜔(0)

𝑣 ∈ R and 𝜔(1)
𝑣 , 𝜔(2)

𝑣 ∈ R2 by

𝜔(0)
𝑣 :=

1
|𝑣1|2|𝑣2|2

, 𝜔(1)
𝑣 :=

1
2

(︂
1/|𝑣1|2

−1/|𝑣2|2
)︂
, 𝜔(2)

𝑣 :=
1
2

(︂
1/|𝑣1|2

1/|𝑣2|2
)︂
,

it follows that

max
𝛾∈R2

+
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾(𝑏,𝑚) = max
𝑡∈[−1,1]

(︂(︁
𝜔(0)

𝑣

)︁1/2

𝑏1/2
(︀
1− 𝑡2

)︀1/2 −
⟨
𝜔(1)

𝑣 ,𝑚
⟩
𝑡−

⟨
𝜔(2)

𝑣 ,𝑚
⟩)︂

.

This is the maximum of a concave function over [−1, 1]. Writing the first order optimality condition yields that
the optimal 𝑡 must satisfy

𝑡2 =

⟨
𝜔

(1)
𝑣 ,𝑚

⟩2

𝜔
(0)
𝑣 𝑏+

⟨
𝜔

(1)
𝑣 ,𝑚

⟩2 ,

from which we deduce the expected formula

max
𝛾∈R2

+
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾(𝑏,𝑚) =
(︂
𝜔(0)

𝑣 𝑏+
⟨
𝜔(1)

𝑣 ,𝑚
⟩2
)︂1/2

−
⟨
𝜔(2)

𝑣 ,𝑚
⟩

= 𝐻̃𝑣(𝑏,𝑚).

Case of superbases. We use that in the space of symmetric matrices size two equipped with the Frobenius norm,
the set of symmetric positive semidefinite matrices of unit trace is a disk. More precisely, let us define the affine
map D : R2 → 𝒮2 by

D(𝜌) =
1
2

(︂
1 + 𝜌1 𝜌2

𝜌2 1− 𝜌1

)︂
. (4.2)

Note that the above definition is closely related to Pauli matrices in quantum mechanics. It is easily proved
that {︀

𝒟 ∈ 𝒮+
2 | Tr(𝒟) = 1

}︀
= {D(𝜌) | |𝜌| ≤ 1}. (4.3)

Moreover, for any 𝜌 ∈ R𝑑 such that |𝜌| ≤ 1,

det D(𝜌) =
1
4
(︀
1− |𝜌|2

)︀
, Cond(D(𝜌)) =

1 + |𝜌|
1− |𝜌|

· (4.4)

Let 𝑣 = (𝑣1, 𝑣2, 𝑣3) be a superbase of Z2, 𝑏 ≥ 0, and 𝑚 ∈ R3. The Minkowski determinant inequality states,
in any dimension 𝑑 ∈ N, the function det(·)1/𝑑 is concave over 𝒮+

𝑑 . Hence the function{︀
𝛾 ∈ R3 | 𝒟𝑣(𝛾) ⪰ 0, Tr(𝒟𝑣(𝛾)) = 1

}︀
→ R, 𝛾 ↦→ 𝐿𝑣,𝛾(𝑏,𝑚)

is concave too. Recall that 𝒟𝑣(𝛾) ⪰ 0 whenever 𝛾 ∈ R3
+. Let

𝛾*𝑣(𝑏,𝑚) ∈ argmax
𝛾∈R3

𝒟𝑣(𝛾)⪰0
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾(𝑏,𝑚).

If the strict elementwise inequality 𝛾*𝑣(𝑏,𝑚) >vec 0 is not satisfied, then

max
𝛾∈R3

+
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾(𝑏,𝑚) = max
1≤𝑖<𝑗≤3

max
𝛾∈R2

+
Tr(𝒟𝑣(𝛾))=1

𝐿(𝑣𝑖,𝑣𝑗),𝛾(𝑏,𝑚) = max
1≤𝑖<𝑗≤3

𝐻̃(𝑣𝑖,𝑣𝑗)(𝑏,𝑚),
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since the maximum in the left-hand side is attained on the boundary of the parameter set. Thus it suffices to
prove that

𝐻𝑣(𝑏,𝑚) =

{︃
𝐿𝑣,𝛾*𝑣 (𝑏,𝑚)(𝑏,𝑚) if 𝛾*𝑣(𝑏,𝑚) >vec 0,
−∞ else.

Let us prove the above. If 𝛾𝑣 : 𝒮2 → R3 and D : R2 → 𝒮2 are functions defined respectively by (4.1) and (4.2),
then, by (4.3) and Selling’s Formula (Prop. 4.2), it holds that

max
𝛾∈R3

𝒟𝑣(𝛾)⪰0
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾(𝑏,𝑚) = max
|𝜌|≤1

𝐿𝑣,𝛾𝑣(D(𝜌))(𝑏,𝑚),

and there exists
𝜌*𝑣(𝑏,𝑚) ∈ argmax

|𝜌|≤1

𝐿𝑣,𝛾𝑣(D(𝜌))(𝑏,𝑚)

such that
𝛾*𝑣(𝑏,𝑚) = 𝛾𝑣(D(𝜌*𝑣(𝑏,𝑚))).

Let

𝑊𝑣 :=
1
2

⎛⎝𝑣2,1𝑣3,1 − 𝑣2,2𝑣3,2 𝑣2,1𝑣3,2 + 𝑣2,2𝑣3,1

𝑣1,1𝑣3,1 − 𝑣1,2𝑣3,2 𝑣1,1𝑣3,2 + 𝑣1,2𝑣3,1

𝑣1,1𝑣2,1 − 𝑣1,2𝑣2,2 𝑣1,1𝑣2,2 + 𝑣1,2𝑣2,1

⎞⎠.
Recall that 𝑄𝑣 ∈ 𝒮3 and 𝑤𝑣 ∈ R3 were defined in the statement of the theorem, and note that 𝑄𝑣 = 𝑊𝑣𝑊

⊤
𝑣 . It

is easily computed that for any 𝜌 ∈ R2,
𝛾𝑣(D(𝜌)) = 𝑊𝑣𝜌− 𝑤𝑣,

and thus, using also (4.4), that

𝐿𝑣,𝛾𝑣(D(𝜌))(𝑏,𝑚) = 𝑏1/2
(︀
1− |𝜌|2

)︀1/2 − ⟨𝑊𝑣𝜌− 𝑤𝑣,𝑚⟩.

Therefore, 𝜌*𝑣(𝑏,𝑚) is the argmax of a concave function over the unit disk, and writing the first-order optimality
condition yields

𝜌*𝑣(𝑣,𝑚) = − 𝑊⊤
𝑣 𝑚(︁

𝑏+ |𝑊⊤
𝑣 𝑚|

2
)︁1/2

= − 𝑊⊤
𝑣 𝑚

(𝑏+ ⟨𝑚,𝑄𝑣𝑚⟩)1/2
·

Thus

𝛾*𝑣(𝑏,𝑚) = 𝛾𝑣(D(𝜌*𝑣(𝑏,𝑚))) = − 𝑄𝑣𝑚

(𝑏+ ⟨𝑚,𝑄𝑣𝑚⟩)1/2
− 𝑤𝑣

and
𝐿𝑣,𝛾*𝑣 (𝑏,𝑚)(𝑏,𝑚) = 𝐿𝑣,𝛾𝑣(D(𝜌*𝑣(𝑏,𝑚)))(𝑏,𝑚) = (𝑏+ ⟨𝑚,𝑄𝑣𝑚⟩)1/2 + ⟨𝑤𝑣,𝑚⟩,

which concludes the proof. �

5. Application to quadratic optimal transport

We specialize in this section the proposed scheme to the quadratic optimal transport problem and provide a
convergence proof, taking advantage of specific tools in this setting such as Aleksandrov solutions and the mass
balance equation, in addition to the generic tools introduced in Section 3.
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5.1. The quadratic optimal transport problem

Let 𝑌 be an open bounded convex nonempty subset of R𝑑 and 𝑓 : 𝑋 → R+ and 𝑔 : 𝑌 → R*+ be two densities
satisfying the mass balance condition ∫︁

𝑋

𝑓(𝑥) d𝑥 =
∫︁

𝑌

𝑔(𝑦) d𝑦, (5.1)

𝑓 being continuous almost everywhere and bounded and 𝑔 being Lipschitz continuous. For convenience, in this
paper we extend the function 𝑔 to the whole domain R𝑑 in such a manner that 𝑔−1/𝑑 : R𝑑 → R*+ is bounded
and Lipschitz continuous.

In the quadratic optimal transport problem between 𝑓 and 𝑔, one aims to solve the minimization problem

inf
𝑇#𝑓=𝑔

∫︁
𝑋

|𝑥− 𝑇 (𝑥)|2𝑓(𝑥) d𝑥, (5.2)

where the unknown is a Borel map 𝑇 : 𝑋 → 𝑌 and the constraint 𝑇#𝑓 = 𝑔 means that for any Borel subset 𝐸
of 𝑌 , ∫︁

𝑇−1(𝐸)

𝑓(𝑥) d𝑥 =
∫︁

𝐸

𝑔(𝑦) d𝑦. (5.3)

In the literature, it is typically assumed that:

the set 𝑋 is convex. (5.4)

For simplicity, we will sometimes assume instead that:

the set 𝑋 is strongly convex. (5.5)

It was proved in [10] (see also [44], Thm. 2.12) that, under assumption (5.4), the optimal transport problem
(5.2) admits a solution 𝑇 which is the gradient of a convex function 𝑢 : 𝑋 → R, called the potential function of
the problem. Then, if 𝑢 is smooth enough, it may be deduced by performing the change of variables 𝑦 = 𝑇 (𝑥)
in the right-hand side of (5.3) that 𝑢 is solution to the Monge–Ampère equation (1.1), where

𝐴(𝑥, 𝑝) = 0, 𝐵(𝑥, 𝑝) =
𝑓(𝑥)
𝑔(𝑝)

· (5.6)

Additionally, the constraint that 𝑇 (𝑥) = 𝐷𝑢(𝑥) ∈ 𝑌 , for any 𝑥 ∈ 𝑋, may be written as (1.24), where for any
𝑥 ∈ 𝑋,

𝑃 (𝑥) = 𝑌. (5.7)

Note that in this setting, a possible choice of function 𝜙 in Proposition 3.6 is given by 𝜙(𝑥) := ⟨𝑥, 𝑦0⟩, for
some 𝑦0 ∈ 𝑌 .

Remark 5.1 (General optimal transport). In the general optimal transport problem, a cost function 𝑐 ∈
𝐶2(R𝑑 × R𝑑) is given, and one aims to solve

inf
𝑇#𝑓=𝑔

∫︁
𝑋

𝑐(𝑥, 𝑇 (𝑥))𝑓(𝑥) d𝑥. (5.8)

If 𝑐 is defined by 𝑐(𝑥, 𝑦) = |𝑥 − 𝑦|2, this problem reduces to (5.2). It is also equivalent to (5.2) when
𝑐(𝑥, 𝑦) = −⟨𝑥, 𝑦⟩, as follows directly from the equality |𝑥− 𝑦|2 = |𝑥|2 + |𝑦|2 − 2⟨𝑥, 𝑦⟩.

Under suitable assumptions (see [20, 37]), there exists a solution 𝑇 : 𝑋 → 𝑌 to (5.8) of the form 𝑇 (𝑥) =
𝑐-exp𝑥(𝐷𝑢(𝑥)), where for any 𝑥 ∈ 𝑋 and 𝑝, 𝑦 ∈ R𝑑, the function 𝑐-exp𝑥 : R𝑑 → R𝑑 is such that

𝑦 = 𝑐-exp𝑥(𝑝) ⇐⇒ 𝑝 = −𝐷𝑥𝑐(𝑥, 𝑦), (5.9)
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and where the function 𝑢 (called the potential function) is 𝑐-convex, in the sense that for any 𝑥0 ∈ 𝑋, there
exists 𝑦0 ∈ R𝑑 and 𝑧0 ∈ R such that

𝑢(𝑥0) = −𝑐(𝑥0, 𝑦0)− 𝑧0, 𝑢(𝑥) ≥ −𝑐(𝑥, 𝑦0)− 𝑧0 in 𝑋.

If 𝑐(𝑥, 𝑦) = −⟨𝑥, 𝑦⟩, 𝑐-convexity coincides with the usual notion of convexity. In the general setting, if 𝑢 is
smooth enough then it may be shown to be a solution to the Monge–Ampère equation (1.1), with

𝐴(𝑥, 𝑝) = −𝐷𝑥𝑥𝑐(𝑥, 𝑐-exp𝑥(𝑝)), (5.10)

𝐵(𝑥, 𝑝) =
𝑓(𝑥)

𝑔(𝑐-exp𝑥(𝑝))
|det𝐷𝑥𝑦𝑐(𝑥, 𝑐-exp𝑥(𝑝))|, (5.11)

and the constraint that 𝑇 (𝑥) = 𝑐-exp𝑥(𝐷𝑢(𝑥)) ∈ 𝑌 , for any 𝑥 ∈ 𝑋, may be written as (1.24), where for any
𝑥 ∈ 𝑋,

𝑃 (𝑥) = −𝐷𝑥𝑐(𝑥, 𝑌 ). (5.12)

Then a suitable choice of function 𝜙 in Proposition 3.6 would be 𝜙(𝑥) := −𝐷𝑥𝑐(𝑥, 𝑦0) (or a mollification of it),
for some 𝑦0 ∈ 𝑌 .

5.2. Weak solutions to the Monge–Ampère equation

If the open set 𝑋 is convex, and if 𝑢 : 𝑋 → R is a convex function and 𝐸 is a subset of 𝑋, then we denote
by 𝜕𝑢(𝐸) the union

⋃︀
𝑥∈𝐸 𝜕𝑢(𝑥), where 𝜕𝑢(𝑥) is the subgradient of 𝑢 at point 𝑥:

𝜕𝑢(𝑥) :=
{︀
𝑝 ∈ R𝑑 | ∀𝑥′ ∈ 𝑋, 𝑢(𝑥′) ≥ 𝑢(𝑥) + ⟨𝑝, 𝑥′ − 𝑥⟩

}︀
.

A notion of weak solutions to the Monge–Ampère equation that is directly related to the optimal transport
problem (5.2) is the one of Brenier solutions.

Definition 5.2 (Brenier solution). Assume (5.4), (5.6), and (5.7). A function 𝑢 : 𝑋 → R is a Brenier solution
to (1.1) and (1.24) if (i) it is convex and (ii) (𝐷𝑢)#𝑓 = 𝑔, in the sense that (5.3) holds for 𝑇 = 𝐷𝑢. It is a
minimal Brenier solution if moreover 𝜕𝑢(𝑋) is included in 𝑌 .

Brenier solutions are a standard notion. Note that their definition allows that 𝐷𝑢(𝑥) ̸∈ 𝑌 , typically at points
where 𝑓(𝑥) = 0. Minimal Brenier solutions were introduced in [3] to prevent this and to guarantee uniqueness
of solutions up to addition of a constant, as explained in the proof of Proposition 3.1 from [3] (the proof uses
the assumptions that 𝑌 is convex and 𝑔 is nonnegative in 𝑌 ):

Theorem 5.3 (Adapted from Prop. 3.1 of [3]). Assume (5.4), (5.6), and (5.7). If 𝑢, 𝑣 : 𝑋 → R are two minimal
Brenier solutions to (1.1) and (1.24), then there exists 𝜉 ∈ R such that 𝑣 = 𝑢+ 𝜉.

For any function 𝑢 : R𝑑 → R, let us denote by 𝑢𝑐 : R𝑑 → R its Legendre-Fenchel transform, which we recall
is defined by

𝑢𝑐(𝑦) := sup
𝑥∈R𝑑

(⟨𝑥, 𝑦⟩ − 𝑢(𝑥)).

If 𝑢 is only defined in 𝑋 (respectively 𝑋), we define 𝑢𝑐 in the same manner after having extended 𝑢 with value
+∞ outside 𝑋 (respectively 𝑋). In addition to the convex envelope 𝑢𝑐𝑐 : R𝑑 ×R of 𝑢, let us define the function
𝑢𝑐𝑐

𝑌 : R𝑑 → R by
𝑢𝑐𝑐

𝑌 (𝑥) := sup
𝑦∈𝑌

(⟨𝑥, 𝑦⟩ − 𝑢𝑐(𝑦)).

One motivation for the definition of 𝑢𝑐𝑐
𝑌 (which is similar to the definition of the function 𝑢̃𝑛 in Sect. 5.1 of [3])

is that under the assumptions (5.4), (5.6) and (5.7), if 𝑢 : 𝑋 → R is a Brenier solution to (1.1) and (1.24), then
𝑢𝑐𝑐

𝑌 is a minimal Brenier solution to (1.1) and (1.24).
Another standard notion of solutions to (1.1) and (1.24) is the one of Aleksandrov solutions:
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Definition 5.4 (Aleksandrov solution). Assume (5.4), (5.6), and (5.7). A function 𝑢 : 𝑋 → R is an Aleksandrov
solution to (1.1), and (1.24) if (i) it is convex and (ii) for any Borel subset 𝐸 of 𝑋,∫︁

𝐸

𝑓(𝑥) d𝑥 =
∫︁

𝑌 ∩𝜕𝑢(𝐸)

𝑔(𝑦) d𝑦.

It is a minimal Aleksandrov solution to (1.1) and (1.24) if moreover 𝜕𝑢(𝑋) ⊂ 𝑌 .

In our setting, Brenier and Aleksandrov solutions coincide, see for instance [24] (noting that the relevant part
([24], Sect. 1) is not specific to the dimension two):

Proposition 5.5. Assume (5.4), (5.6), and (5.7). Then 𝑢 : 𝑋 → R is a Brenier solution (respectively min-
imal Brenier solution) to (1.1) and (1.24) if and only if it is an Aleksandrov solution (respectively minimal
Aleksandrov solution) to (1.1) and (1.24).

This is related to the fact that 𝑌 is convex and 𝑔 is nonnegative in 𝑌 , and that this does not remain true in
more general settings.

We will also need to use the notion of Aleksandrov solution to the Monge–Ampère equation equipped with
the Dirichlet boundary condition

𝑢(𝑥) = 𝜓(𝑥) on 𝜕𝑋. (5.13)

Definition 5.6 (Aleksandrov solution to the Dirichlet problem). Assume (5.4) and (5.6). A function 𝑢 : 𝑋 → R
is an Aleksandrov solution to (1.1) and (5.13) if (i) it is convex continuous with 𝑢(𝑥) = 𝜓(𝑥) on 𝜕𝑋 and (ii) for
any Borel subset 𝐸 of 𝑋, ∫︁

𝐸

𝑓(𝑥) d𝑥 =
∫︁

𝜕𝑢(𝐸)

𝑔(𝑦) d𝑦.

If 𝑢 : 𝑋 → R is continuous and is a minimal Aleksandrov solution to (1.1) and (1.24), then it is an Aleksandrov
solution to (1.1) and (5.13) with 𝜓 = 𝑢|𝜕𝑋 ; however, this does not remain true if 𝑢 is not minimal.

Below is the adaptation of Theorem 1.6.2 from [29] to our setting. For simplicity, it is assumed that 𝑔(𝑝) = 1
for any 𝑝 ∈ R𝑑, which turns (1.1) into the basic Monge–Ampère equation det+(𝐷2𝑢(𝑥)) = 𝑓(𝑥). Note however
that we only use Theorem 5.7 as an intermediary result and that our convergence result, Theorem 5.25, is not
limited to the case 𝑔(𝑝) = 1.

Theorem 5.7 (Adapted from Thm. 1.6.2 of [29]). Assume (5.6), that 𝑋 is strictly convex, 𝑔(𝑝) = 1 for any
𝑝 ∈ R𝑑, and 𝜓 : 𝜕𝑋 → R is continuous. Then there exists a unique Aleksandrov solution 𝑢 : 𝑋 → R to (1.1) and
(5.13).

5.3. Reformulation of the Monge–Ampère equation

Let us now study the reformulation of the Monge–Ampère equation (1.1) in the form (1.2), in the setting of
quadratic optimal transport. We sum up the idea of the reformulation in the following proposition:

Proposition 5.8. Let 𝑏 ≥ 0 and 𝑀 ∈ 𝒮+
𝑑 . Then

max
𝒟∈𝒮+

𝑑

Tr(𝒟)=1

𝐿𝒟(𝑏,𝑀) ≤ 0 ⇐⇒ 𝑏 ≤ det𝑀, (5.14)

max
𝒟∈𝒮+

𝑑

Tr(𝒟)=1

𝐿𝒟(𝑏,𝑀) ≥ 0 ⇐⇒ 𝑏 ≥ det𝑀. (5.15)
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Proof. We refer to Lemma 3.2.2 of [35] for the proof of the equivalence

max
𝒟∈𝒮+

𝑑

Tr(𝒟)=1

𝐿𝒟(𝑏,𝑀) = 0 ⇐⇒ 𝑏 = det𝑀. (5.16)

Also, the first equality in (1.5) is proved in Lemma 3.2.1 of [35] (it is related to the inequality of arithmetic
and geometric means applied to eigenvalues of the product 𝒟1/2𝑀𝒟1/2), while the second one follows from the
identity {︀

𝒟 ∈ 𝒮++
𝑑 | det𝒟 = 1

}︀
=
{︁

(det𝒟)−1/𝑑𝒟 | 𝒟 ∈ 𝒮++
𝑑 , Tr(𝒟) = 1

}︁
.

From (1.5), we deduce that

𝑏 ≤ det𝑀 ⇐⇒ 𝑑𝑏1/𝑑 − 𝑑(det𝑀)1/𝑑 ≤ 0

⇐⇒ sup
𝒟∈𝒮++

𝑑

Tr(𝒟)=1

(︁
𝑑𝑏1/𝑑 − (det𝒟)−1/𝑑⟨𝒟,𝑀⟩

)︁
≤ 0

⇐⇒ sup
𝒟∈𝒮++

𝑑

Tr(𝒟)=1

(︁
𝑑𝑏1/𝑑(det𝒟)1/𝑑 − ⟨𝒟,𝑀⟩

)︁
≤ 0

⇐⇒ sup
𝒟∈𝒮++

𝑑

Tr(𝒟)=1

𝐿𝒟(𝑏,𝑀) ≤ 0.

Then (5.14) follows from the continuity of 𝐿𝒟(𝑏,𝑀) with respect to 𝒟 ∈ 𝒮+
𝑑 , and (5.15) follows from (5.14) and

(5.16). �

First we prove that Aleksandrov solutions to the Monge–Ampère equation are viscosity solutions to its
reformulation.

Proposition 5.9. Assume (5.4) and (5.6). If, for some function 𝜓 ∈ 𝐶(𝜕𝑋), 𝑢 : 𝑋 → R is an Aleksandrov
solution to (1.1) (5.13), then 𝑢 is a viscosity solution to (1.2).

The proof is an adaptation of the one of Proposition 1.3.4 from [29]. It uses Lemma 1.4.1 of [29], which we
recall below in our setting:

Lemma 5.10 (Adapted from Lem. 1.4.1 of [29]). Assume (5.4). Let 𝑢, 𝑣 : 𝑋 → R be convex and let 𝐸 be an
open set such that 𝐸 ⊂ 𝑋. If 𝑢 ≤ 𝑣 in 𝐸 and 𝑢 = 𝑣 on 𝜕𝐸, then 𝜕𝑣(𝐸) ⊂ 𝜕𝑢(𝐸).

Proof of Proposition 5.9. We adapt the proof of Proposition 1.3.4 from [29], which is a particular case of this
proposition.

First let us show that 𝑢 is a viscosity subsolution to (1.2). Let 𝜙 ∈ 𝐶2(𝑋), and let 𝑥0 ∈ 𝑋 be a local maximum
of 𝑢 − 𝜙. Since 𝑢 is convex, 𝐷2𝜙(𝑥) must be positive semidefinite. We may assume without loss of generality
that 𝜙 is convex, that 𝜙(𝑥0) = 𝑢(𝑥0), and that 𝑥0 is a strict local maximum. For any small 𝜀 > 0, there exists
an open set 𝑆𝜀 such that 𝑆𝜀 ⊂ 𝑋, 𝜙 ≤ 𝑢+ 𝜀 in 𝑆𝜀, 𝜙 = 𝑢+ 𝜀 on 𝜕𝑆𝜀, and lim𝜀→0 𝑑H(𝑆𝜀, {𝑥0}) = 0 (see [29] for
detail). By Lemma 5.10, 𝜕𝑢(𝑆𝜀) = 𝜕(𝑢+ 𝜀)(𝑆𝜀) ⊂ 𝜕𝜙(𝑆𝜀). Thus, since 𝑢 is an Aleksandrov solution,∫︁

𝑆𝜀

𝑓(𝑥) d𝑥 =
∫︁

𝜕𝑢(𝑆𝜀)

𝑔(𝑦) d𝑦 ≤
∫︁

𝜕𝜙(𝑆𝜀)

𝑔(𝑦) d𝑦 =
∫︁

𝑆𝜀

𝑔(𝐷𝜙(𝑥)) det𝐷2𝜙(𝑥) d𝑥.

Passing to the limit in 𝜀, we deduce that 𝑓*(𝑥0) ≤ 𝑔(𝐷𝜙(𝑥0)) det𝐷2𝜙(𝑥0). By Proposition 5.8, it follows that
(𝐹MA)*(𝑥0, 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)) ≤ 0, and thus that 𝑢 is a viscosity subsolution to (1.2).
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Now let us show that 𝑢 is a viscosity supersolution to (1.2). Let 𝜙 ∈ 𝐶2(𝑋), and let 𝑥0 ∈ 𝑋 be a local
minimum of 𝑢 − 𝜙. If there exists a unit vector 𝑒 ∈ R𝑑 such that

⟨︀
𝑒,𝐷2𝜙(𝑥0)𝑒

⟩︀
≤ 0, then choosing 𝒟 = 𝑒 ⊗ 𝑒

in the maximum in the definition (1.8) of the operator 𝐹MA yields

(𝐹MA)*
(︀
𝑥0, 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)

)︀
≥ −

⟨︀
𝑒,𝐷2𝜙(𝑥0)𝑒

⟩︀
≥ 0.

If on the contrary 𝐷2𝜙(𝑥0) is positive definite, then we may assume without loss of generality that 𝜙 is convex,
that 𝜙(𝑥0) = 𝑢(𝑥0), and that 𝑥0 is a strict local minimum. By the same reasoning as above, we prove that
𝑓*(𝑥0) ≥ 𝑔(𝐷𝜙(𝑥0)) det𝐷2𝜙(𝑥0), and we deduce using Proposition 5.8 that (𝐹MA)*

(︀
𝑥0, 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)

)︀
≥ 0.

Therefore 𝑢 is a viscosity supersolution to (1.2). �

In order to prove convergence of a family of monotone numerical schemes for the Monge–Ampère equation,
we need to study under which conditions viscosity solutions to (3.2) are minimal Aleksandrov solutions to (1.1)
and (1.24), and in particular what happens when 𝛼 ̸= 0. Thus the remaining part of Section 5.3 is devoted to
the proof of the two following theorems:

Theorem 5.11. Assume (5.4), (5.6), and (5.7). If 𝑢 : 𝑋 → R is a viscosity subsolution to (3.2) with 𝛼 ≥ 0,
then 𝛼 = 0 and 𝑢 is a minimal Aleksandrov solution to (1.1) and (1.24).

Theorem 5.12. Assume (5.5)–(5.7). If 𝑢 : 𝑋 → R is a viscosity supersolution to (3.2) with 𝛼 ≤ 0, then 𝛼 = 0
and 𝑢𝑐𝑐

𝑌 is a minimal Aleksandrov solution to (1.1) and (1.24).

Note also those two theorems are particularly strong results, since they apply to viscosity subsolutions and
supersolutions and not only to viscosity solutions as one would have expected. In the particular case of viscosity
solutions, one has the following immediate corollary, which is also particularly strong since it does not assume
that 𝛼 = 0, but instead proves this equality:

Corollary 5.13. Assume (5.5)–(5.7). If 𝑢 : 𝑋 → R is a viscosity solution to (3.2) for some 𝛼 ∈ R, then 𝛼 = 0
and 𝑢 is a minimal Aleksandrov solution to (1.1) and (1.24).

Proof. Since 𝑢 is a viscosity solution, it is both a viscosity subsolution and supersolution. By Theorem 5.12,
if 𝛼 ≤ 0, then 𝛼 = 0. This means that in any case 𝛼 ≥ 0. Therefore Theorem 5.11 applies, and concludes the
proof. �

Corollary 5.13 is the main original argument that we use in the proof of our convergence result Theorem 5.25,
in combination with standard arguments [1] about the convergence of monotone schemes for degenerate elliptic
equations.

Note that in the proof of Corollary 5.13, we did not use the part of Theorem 5.12 about 𝑢𝑐𝑐
𝑌 being a minimal

Aleksandrov solution to (1.1) and (1.24). We mention this fact nevertheless in the statement of Theorem 5.12
since it is a direct consequence of our proof that 𝛼 = 0.

Remark 5.14 (Sketch of proof of Thms. 5.11 and 5.12). The rigorous proof of Theorems 5.11 and 5.12 are
delayed to the end of Section 5.3, but let us first explain the main arguments that we use in those proofs. In
this remark we will only discuss the proof that 𝑢 (respectively 𝑢𝑐𝑐

𝑌 ) is a minimal Aleksandrov solution to (1.1)
and (1.24); in order to prove that 𝛼 = 0 one just needs to sufficiently refine the arguments below.

Theorem 5.11 is very close to Theorem 2.1 of [26] (although the considered reformulation of the Monge–
Ampère equation is not the same) and thus we follow the same sketch of proof. If 𝑢 is a viscosity subsolution to
(3.2) with 𝛼 ≥ 0, then it is a viscosity subsolution to both (1.2) and (1.26). From the fact that 𝑢 is a subsolution
to (1.2), we deduce that it is a convex function, see Lemma 5.16. The fact that 𝑢 is a subsolution to (1.24) means
that the optimal transport boundary condition 𝜕𝑢(𝑋) ⊂ 𝑌 is satisfied, see Lemma 5.17. We deduce from the
optimal transport boundary condition the inequality

∫︀
𝜕𝑢(𝑋)

𝑔(𝑦) d𝑦 ≤
∫︀

𝑌
𝑔(𝑦) d𝑦 =

∫︀
𝑋
𝑓(𝑥) d𝑥. On the other

hand, we are able to deduce from the fact that 𝑢 is a viscosity subsolution to the (reformulated) Monge–Ampère
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equation (1.2) that for any Borel set 𝐸 ⊂ 𝑋, one has the inequality
∫︀

𝜕𝑢(𝐸)
𝑔(𝑦) d𝑦 ≥

∫︀
𝐸
𝑓(𝑥) d𝑥, which is the

inequality variant of the equality in the definition of Aleksandrov solutions. Observe that the two previous
inequalities are in competition with each other. Thus we are able to show that they are actually equalities and
that 𝑢 is therefore a minimal Aleksandrov solution to (1.1) and (1.24).

Contrary to Theorem 5.11, no counterpart to Theorem 5.12 is established in [26]. The proof of Theorem 5.11
does not translate directly to the setting of Theorem 5.12. This is because, for an arbitrary viscosity supersolution
𝑢 to (3.2) with 𝛼 ≤ 0, on the one hand one cannot expect 𝑢 to be a viscosity supersolution to (1.2) (contrary
to the case of subsolutions), and on the other hand 𝑢 is not even guaranteed to be convex, so for instance the
optimal transport boundary condition 𝜕𝑢(𝑋) ⊂ 𝑌 does not make sense. We get around those difficulties by
considering the modified convex envelope 𝑢𝑐𝑐

𝑌 instead of the function 𝑢 itself. By construction, 𝑢𝑐𝑐
𝑌 is guaranteed

to be convex and to satisfy the optimal transport boundary condition 𝜕𝑢𝑐𝑐
𝑌 (𝑋) ⊂ 𝑌 . By analyzing the meaning

of the Dirichlet boundary condition 𝑢−∞ ≥ 0 in the viscosity sense, we are able to prove the converse inclusion
𝑌 ⊂ 𝜕𝑢𝑐𝑐

𝑌 (𝑋), see Lemma 5.19. We are also able to show that, contrary to 𝑢, 𝑢𝑐𝑐
𝑌 is guaranteed to be a viscosity

supersolution to (1.2), see Lemma 5.21. From this point the proof of Theorem 5.12 is similar to the one of
Theorem 5.11, although the rigorous proof of the inequality

∫︀
𝜕𝑢(𝐸)

𝑔(𝑦) d𝑦 ≤
∫︀

𝐸
𝑓(𝑥) d𝑥, for Borel sets 𝐸 ⊂ 𝑋,

is a bit more technical than its counterpart in the setting of Theorem 5.11 and involves Lemma 5.22 in addition
to Propositions 5.8 and 5.24.

Let us now turn to the intermediary results needed in the proof of Theorems 5.11 and 5.12
We will need the following comparison principle for equation (1.2). The assumptions that we make on the

function 𝐵 are more restrictive than in the rest of the paper, but this does not affect the generality of our
main results since we will only need to apply this comparison principle to the case of a constant function 𝐵, see
Lemma 5.22.

Proposition 5.15 (Comparison principle). Assume that 𝐵1/𝑑 is continuous, in addition to being Lipschitz
continuous with respect to its second variable, uniformly with respect to its first variable. Then there exists 𝑟 > 0
such that the following holds: for any open subset 𝐸 of 𝑋 such that diam(𝐸) ≤ 𝑟 and for any respectively upper
and lower semicontinuous functions 𝑢, 𝑢 : 𝐸 → R, if 𝑢 and 𝑢 are respectively a viscosity subsolution and a
viscosity supersolution to

𝐹MA

(︀
𝑥,𝐷𝑢(𝑥), 𝐷2𝑢(𝑥)

)︀
= 0 in 𝐸,

and if 𝑢 ≤ 𝑢 on 𝜕𝐸, then 𝑢 ≤ 𝑢 in 𝐸.

Proof. Let 𝑥0 ∈ 𝐸. For any 𝜀 > 0, let 𝑢𝜀 : 𝐸 → R be defined by

𝑢𝜀(𝑥) := 𝑢(𝑥) +
𝜀

2
|𝑥− 𝑥0|2 −

𝜀

2
diam(𝐸)2,

so that 𝑢𝜀 ≤ 𝑢 ≤ 𝑢 on 𝜕𝐸. Let 𝑥1 ∈ 𝐸, 𝜙 ∈ 𝐶2(𝐸), and 𝜙𝜀 := 𝜙+ (𝜀/2)| ·−𝑥0|2. Then 𝑥1 is a local maximum of
𝑢𝜀 − 𝜙𝜀 if and only if it is a local maximum of 𝑢− 𝜙. For some constant 𝐶 > 0 and for 𝑟 = 1/(2𝐶), using that
|𝐷𝜙𝜀(𝑥1)−𝐷𝜙(𝑥1)| ≤ 𝑟𝜀 and 𝐷2𝜙𝜀(𝑥1) = 𝐷2𝜙(𝑥1) + 𝜀𝐼𝑑, it holds for any 𝒟 ∈ 𝒮+

𝑑 satisfying Tr(𝒟) = 1 that

𝐿𝒟
(︀
𝐵(𝑥,𝐷𝜙𝜀(𝑥)), 𝐷2𝜙𝜀(𝑥)−𝐴(𝑥,𝐷𝜙𝜀(𝑥))

)︀
= 𝑑𝐵(𝑥,𝐷𝜙𝜀(𝑥))1/𝑑(det𝒟)1/𝑑 −

⟨︀
𝒟, 𝐷2𝜙𝜀(𝑥)−𝐴(𝑥,𝐷𝜙𝜀(𝑥))

⟩︀
≤ 𝑑𝐵(𝑥,𝐷𝜙(𝑥))1/𝑑(det𝒟)1/𝑑 −

⟨︀
𝒟, 𝐷2𝜙(𝑥)−𝐴(𝑥,𝐷𝜙(𝑥))

⟩︀
+ 𝐶𝑟𝜀− 𝜀

= 𝐿𝒟
(︀
𝐵(𝑥,𝐷𝜙(𝑥)), 𝐷2𝜙(𝑥)−𝐴(𝑥,𝐷𝜙(𝑥))

)︀
+ 𝐶𝑟𝜀− 𝜀

≤ 𝐿𝒟
(︀
𝐵(𝑥,𝐷𝜙(𝑥)), 𝐷2𝜙(𝑥)−𝐴(𝑥,𝐷𝜙(𝑥))

)︀
− 𝜀/2.

Thus if 𝑥1 is a local maximum of 𝑢𝜀 − 𝜙𝜀,

𝐹MA

(︀
𝑥1, 𝐷𝜙𝜀(𝑥1), 𝐷2𝜙𝜀(𝑥1)

)︀
≤ 𝐹MA

(︀
𝑥1, 𝐷𝜙(𝑥1), 𝐷2𝜙(𝑥1)

)︀
− 𝜀/2 ≤ −𝜀/2.

Then by Theorem 3.3 and Section 5.C of [16], 𝑢𝜀 ≤ 𝑢 in 𝐸, and we conclude by letting 𝜀 approach zero. �
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Notice that we did not need to assume (5.6); however, if (5.6) holds, it may be shown that the assumption
that diam(𝐸) ≤ 𝑟 is not necessary, see Theorem V.2 of [32] for the argument.

We will also need the following lemmas.

Lemma 5.16. Assume (5.4) and (5.6). If 𝑢 : 𝑋 → R is a viscosity subsolution to (1.2), then it is convex.

Proof. Let 𝜙 ∈ 𝐶2(𝑋) and 𝑥0 be a local maximum of 𝑢− 𝜙 in 𝑋. Then, using that 𝑢 is a viscosity subsolution
and choosing 𝒟 = 𝑒⊗ 𝑒 in the maximum in the definition of 𝐹MA,

0 ≥ (𝐹MA)*(𝑥0, 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)) ≥ − min
|𝑒|=1

⟨︀
𝑒,𝐷2𝜙(𝑥0)𝑒

⟩︀
.

Thus 𝑢 is a viscosity subsolution to

− min
|𝑒|=1

⟨︀
𝑒,𝐷2𝑢(𝑥0)𝑒

⟩︀
= 0 in 𝑋.

By Theorem 1 of [41], it follows that 𝑢 is convex. �

Lemma 5.17. Assume (5.4) and (5.7). If 𝑢 : 𝑋 → R is a convex viscosity subsolution to (1.26), then 𝜕𝑢(𝑋) ⊂
𝑌 .

The proof of Lemma 5.17 is a direct transposition to our setting to the one of Lemma 2.5 from [26], so we
do not reproduce it here.

Lemma 5.18. Assume (5.5), i.e. that 𝑋 is strongly convex. Then for any 𝑥0 ∈ 𝜕𝑋 and 𝐶, 𝜀 > 0, there exists
a convex function 𝜓 ∈ 𝐶2(𝑋) such that 𝑥0 is a local maximum of 𝜓 and |𝐷𝜓(𝑥0)| ≤ 𝜀, det𝐷2𝜓(𝑥0) ≥ 𝐶.

Proof. Since 𝑋 is strongly convex, there exists 𝑟 > 0 and a unit vector 𝑒 ∈ R𝑑, |𝑒| = 1, such that 𝑋 ⊂
𝐵𝑑(𝑥0 − 𝑟𝑒, 𝑟). Then for any 𝑥 ∈ 𝑋, one has |𝑥 − (𝑥0 − 𝑟𝑒)|2 ≤ 𝑟2. Since |𝑥 − (𝑥0 − 𝑟𝑒)|2 = |𝑥 − 𝑥0 + 𝑟𝑒|2 =
|𝑥 − 𝑥0|2 + 2𝑟⟨𝑒, 𝑥− 𝑥0⟩ + 𝑟2, we deduce that |𝑥 − 𝑥0|2 + 2𝑟⟨𝑒, 𝑥− 𝑥0⟩ ≤ 0. Thus 𝑥0 is a local maximum of
| · −𝑥0|2 + 2𝑟⟨𝑒, · − 𝑥0⟩ in 𝑋. Therefore, using that ⟨𝑒, 𝑥− 𝑥0⟩ ≤ −|𝑥− 𝑥0|2/(2𝑟) < 0 for any 𝑥 ∈ 𝑋, 𝑥0 is also
a local maximum in 𝑋 of the convex function 𝜓 ∈ 𝐶2(𝑋) defined by

𝜓(𝑥) :=
𝜀

4𝑟
|𝑥− 𝑥0|2 + 𝜀⟨𝑒, 𝑥− 𝑥0⟩+ 𝐶⟨𝑒, 𝑥− 𝑥0⟩2

=
𝜀

4𝑟
(︀
|𝑥− 𝑥0|2 + 2𝑟⟨𝑒, 𝑥− 𝑥0⟩

)︀
+
𝜀

2
⟨𝑒, 𝑥− 𝑥0⟩+ 𝐶⟨𝑒, 𝑥− 𝑥0⟩2,

where 𝐶 ∈ R is an arbitrary constant. We compute that |𝐷𝜓(𝑥0)| = 𝜀 and det𝐷2𝜓(𝑥0) = (𝜀/(2𝑟))𝑑−1(𝜀/(2𝑟) +
2𝐶). Choosing 𝐶 := (𝐶/2)(2𝑟/𝜀)𝑑−1, we conclude the proof. �

Lemma 5.19. Assume (5.5)–(5.7). If 𝑢 : 𝑋 → R is a viscosity supersolution to (3.2) with 𝛼 ≤ 0, then 𝑌 ⊂
𝜕𝑢𝑐𝑐

𝑌 (𝑋) ⊂ 𝑌 .

Proof. By definition of 𝑢𝑐𝑐
𝑌 , one has 𝜕𝑢𝑐𝑐

𝑌 (𝑋) ⊂ 𝑌 , and more precisely 𝜕𝑢𝑐𝑐
𝑌 (𝑋) = 𝜕𝑢𝑐𝑐(𝑋) ∩ 𝑌 . Therefore, it

suffices to prove that 𝑌 ⊂ 𝜕𝑢𝑐𝑐(𝑋).
Let 𝑦0 ∈ 𝑌 . Since 𝑢 is lower semicontinuous, there exists 𝑥0 ∈ 𝑋 such that 𝑦0 ∈ 𝜕𝑢𝑐𝑐(𝑥0) (meaning that 𝑥0

is a local minimum of 𝑢𝑐𝑐 − ⟨·, 𝑦0⟩) and 𝑢𝑐𝑐(𝑥0) = 𝑢(𝑥0). Let us show that 𝑥0 ∈ 𝑋.
Since 𝑢𝑐𝑐 ≤ 𝑢 in 𝑋, 𝑥0 is a local minimum of 𝑢− ⟨·, 𝑦0⟩. If 𝑥0 ∈ 𝜕𝑋, then for any 𝜀 > 0, we may build using

Lemma 5.18 a convex function 𝜙𝜀 ∈ 𝐶2(𝑋) such that 𝑥0 is a local minimum of 𝑢− 𝜙𝜀 and

|𝐷𝜙𝜀(𝑥0)− 𝑦0| ≤ 𝜀, det𝐷2𝜙𝜀(𝑥0) > sup
𝑦∈R𝑑

𝑓*(𝑥0)
𝑔(𝑦)

≥ 𝑓*(𝑥0)
𝑔(𝐷𝜙𝜀(𝑥0))
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(choose 𝜙𝜀 = ⟨·, 𝑦0⟩+ 𝜓 where 𝜓 is from Lem. 5.18). Then by Proposition 5.8,

(𝐹MA)*
(︀
𝑥0, 𝐷𝜙𝜀(𝑥0), 𝐷2𝜙𝜀(𝑥0)

)︀
< 0.

We may choose 𝜀 small enough so that 𝐷𝜙𝜀(𝑥0) ∈ 𝑌 , and thus 𝐹BV2(𝑥0, 𝐷𝜙𝜀(𝑥0)) < 0. Then

(𝐹𝛼
MABV2)*

(︀
𝑥0, 𝐷𝜙𝜀(𝑥0), 𝐷2𝜙𝜀(𝑥0)

)︀
< 0,

which is impossible since 𝑢 is a viscosity supersolution to (3.2). Therefore 𝑥0 may not belong to 𝜕𝑋. �

Lemma 5.20. Assume (5.4). Let 𝑢 : 𝑋 → R be a convex function satisfying 𝜕𝑢(𝑋) ⊂ 𝑌 , and let 𝜙 ∈ 𝐶2(𝑋).
If 𝑥0 is a local minimum of 𝑢− 𝜙 in 𝑋 and if 𝐷2𝜙(𝑥0) is positive definite, then 𝐷𝜙(𝑥0) ∈ 𝑌 .

Proof. Let 𝑒 ∈ R𝑑 be a unit vector and let 𝑡 > 0 be small enough so that 𝑢(𝑥0)−𝜙(𝑥0) ≤ 𝑢(𝑥0 + 𝑡𝑒)−𝜙(𝑥0 + 𝑡𝑒)
and 𝜙(𝑥0 + 𝑡𝑒) > 𝜙(𝑥0) + 𝑡⟨𝑒,𝐷𝜙(𝑥0)⟩. Combining those two inequalities, we get 𝑢(𝑥0)− 𝜙(𝑥0) < 𝑢(𝑥0 + 𝑡𝑒)−
𝜙(𝑥0)− 𝑡⟨𝑒,𝐷𝜙(𝑥0)⟩, which simplifies to ⟨𝑒,𝐷𝜙(𝑥0)⟩ < (𝑢(𝑥0 + 𝑡𝑒)− 𝑢(𝑥0))/𝑡.

Let 𝑦 ∈ 𝜕𝑢(𝑥0 + 𝑡𝑒). By definition of 𝜕𝑢(𝑥0 + 𝑡𝑒), one has 𝑢(𝑥0) ≥ 𝑢(𝑥0 + 𝑡𝑒) − 𝑡⟨𝑒, 𝑦⟩. Therefore ⟨𝑒, 𝑦⟩ ≥
(𝑢(𝑥0 + 𝑡𝑒)− 𝑢(𝑥0))/𝑡 > ⟨𝑒,𝐷𝜙(𝑥0)⟩.

Since 𝜕𝑢(𝑋) ⊂ 𝑌 , one has 𝑦 ∈ 𝑌 . Thus we showed that for any unit vector 𝑒 ∈ R𝑑, there exists 𝑦 ∈ 𝑌 such
that ⟨𝑒, 𝑦⟩ > ⟨𝑒,𝐷𝜙(𝑥0)⟩. Since 𝑌 is convex, it follows that 𝐷𝜙(𝑥0) ∈ 𝑌 . �

Lemma 5.21. Assume (5.4), (5.6) and (5.7). If 𝑢 : 𝑋 → R is a viscosity supersolution to (3.2) with 𝛼 ≤ 0,
then 𝑢𝑐𝑐

𝑌 is a viscosity supersolution to (1.2). Moreover, if 𝛼 < 0, 𝜙 ∈ 𝐶2(𝑋), 𝑥0 is a local minimum of 𝑢𝑐𝑐
𝑌 −𝜙

in 𝑋, and 𝑓*(𝑥0) > 0, then
(𝐹MA)*

(︀
𝑥0, 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)

)︀
> 0.

Proof. Let 𝜙 ∈ 𝐶2(𝑋), and let 𝑥0 be a local minimum of 𝑢𝑐𝑐
𝑌 − 𝜙 in 𝑋. Note that 𝐷𝜙(𝑥0) ∈ 𝜕𝑢𝑐𝑐

𝑌 (𝑥0) ⊂ 𝑌 .
First we consider the case where 𝑢𝑐𝑐

𝑌 (𝑥0) = 𝑢(𝑥0) and 𝐷𝜙(𝑥0) ∈ 𝑌 . Since 𝑢𝑐𝑐
𝑌 ≤ 𝑢 in 𝑋, 𝑥0 is a local minimum

of 𝑢− 𝜙 in 𝑋. Thus
(𝐹𝛼

MABV2)*
(︀
𝑥0, 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)

)︀
≥ 0.

Since 𝐷𝜙(𝑥0) ∈ 𝑌 , one has
𝐹BV2(𝑥0, 𝐷𝜙(𝑥0)) < 0.

It follows that
(𝐹MA)*

(︀
𝑥0, 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)

)︀
≥ 0,

with a strict inequality if 𝛼 < 0.
Now we consider the case where either 𝑢𝑐𝑐

𝑌 (𝑥0) < 𝑢(𝑥0) or 𝐷𝜙(𝑥0) ∈ 𝜕𝑌 . In this case, there exists a unit
vector 𝑒 ∈ R𝑑 such that

⟨︀
𝑒,𝐷2𝜙(𝑥)𝑒

⟩︀
≤ 0 (using Lem. 5.20 for the case 𝐷𝜙(𝑥0) ∈ 𝜕𝑌 ). Choosing 𝒟 =

(1− 𝜀)𝑒⊗ 𝑒+ (𝜀/𝑑)𝐼𝑑 in the definition of 𝐹MA yields

(𝐹MA)*
(︀
𝑥0, 𝐷𝜙(𝑥0), 𝐷2𝜙(𝑥0)

)︀
≥ 𝑑

𝑓*(𝑥0)1/𝑑

𝑔(𝐷𝜙(𝑥0))1/𝑑

(︂
1− 𝑑− 1

𝑑
𝜀

)︂1/𝑑

𝜀(𝑑−1)/𝑑 − 𝜀

𝑑
Tr
(︀
𝐷2𝜙(𝑥0)

)︀
.

If 𝑓*(𝑥0) > 0, we conclude by choosing 𝜀 small enough so that the right-hand side is positive. If 𝑓*(𝑥0) = 0, we
conclude by letting 𝜀 approach zero. �

Lemma 5.22. Assume (5.4) and (5.6). If 𝑢 : 𝑋 → R is a convex viscosity supersolution to (1.2), then for any
Borel subset 𝐸 of 𝑋 of Lebesgue measure zero, 𝜕𝑢(𝐸) has Lebesgue measure zero.
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Proof. Let 𝐾 > 0, and let 𝐸 be a subset of 𝑋 of Lebesgue measure zero. Then for any 𝜀 > 0, there exists an
open set 𝐺 ⊂ 𝑋 such that 𝐸 ⊂ 𝐺 and ℒ𝑑(𝐺) ≤ 𝜀. For any 𝑥 ∈ 𝐺, let 𝑟(𝑥) > 0 and 𝑆(𝑥) := 𝐵𝑑(𝑥, 𝑟(𝑥)), choosing
𝑟(𝑥) small enough so that 𝑆(𝑥) ⊂ 𝐺. By Theorem 5.7, there exists an Aleksandrov solution 𝑣 ∈ 𝐶(𝑆(𝑥)) to{︃

det+𝐷2𝑣(𝑥) = 𝐾 in 𝑆(𝑥),
𝑣(𝑥) = 𝑢(𝑥) on 𝜕𝑆(𝑥).

By Proposition 5.9, 𝑣 is a viscosity solution to (1.2) with 𝐴(𝑥, 𝑝) replaced by zero, 𝐵(𝑥, 𝑝) replaced by 𝐾, and
𝑋 replaced by 𝐸. Choosing 𝐾 large enough, it is easily verified that 𝑢 is a viscosity supersolution to (1.2) with
the same parameters. Then by Proposition 5.15, up to choosing 𝑟(𝑥) smaller, 𝑣 ≤ 𝑢 in 𝑆(𝑥). Since 𝑢 = 𝑣 on
𝜕𝑆(𝑥), Lemma 5.10 shows that 𝜕𝑢(𝑆(𝑥)) ⊂ 𝜕𝑣(𝑆(𝑥)). Thus

ℒ𝑑(𝜕𝑢(𝑆(𝑥))) ≤ ℒ𝑑(𝜕𝑣(𝑆(𝑥))) = 𝐾ℒ𝑑(𝑆(𝑥)).

Let 𝛿 < 1/5 (for instance 𝛿 = 1/6) and for any 𝑥 ∈ 𝐺, let 𝑆𝛿(𝑥) ⊂ 𝐺 be defined by 𝑆𝛿(𝑥) := 𝐵𝑑(𝑥, 𝛿𝑟(𝑥)). Then
by Vitali’s covering theorem ([22], Thm. 1.5.1), there exists a countable family (𝑥𝑖)𝑖∈N of points of 𝐺 such that⋃︀

𝑥∈𝐺 𝑆𝛿(𝑥) ⊂
⋃︀

𝑖∈N 𝑆(𝑥𝑖) and balls of the family (𝑆𝛿(𝑥𝑖))𝑖∈N are all disjoint. Since 𝐸 ⊂ 𝐺 =
⋃︀

𝑥∈𝐺 𝑆𝛿(𝑥), we
deduce that 𝜕𝑢(𝐸) ⊂

⋃︀
𝑖∈N 𝜕𝑢(𝑆(𝑥𝑖)) and thus

ℒ𝑑(𝜕𝑢(𝐸)) ≤
∑︁
𝑖∈N

ℒ𝑑(𝜕𝑢(𝑆(𝑥𝑖))) ≤ 𝐾
∑︁
𝑖∈N

ℒ𝑑(𝑆(𝑥𝑖)) = 𝐾𝛿−𝑑
∑︁
𝑖∈N

ℒ𝑑(𝑆𝛿(𝑥𝑖)) ≤ 𝐾𝛿−𝑑ℒ𝑑(𝐺)

≤ 𝐾𝛿−𝑑𝜀.

We conclude by letting 𝜀 approach zero that ℒ𝑑(𝜕𝑢(𝐸)) = 0. �

Lemma 5.23. Assume (5.4). If 𝑢 : 𝑋 → R is convex, then the set{︀
𝑦 ∈ R𝑑 | ∃𝑥1, 𝑥2 ∈ 𝑋, 𝑥1 ̸= 𝑥2 and 𝑦 ∈ 𝜕𝑢(𝑥1) ∩ 𝜕𝑢(𝑥2)

}︀
has Lebesgue measure zero.

Proof. This standard result follows directly from the facts that 𝑢𝑐 is not twice differentiable at points of this
set (since {𝑥1, 𝑥2} ⊂ 𝜕𝑢𝑐(𝑦)) and that 𝑢𝑐, as a convex, hence locally Lipschitz function, is differentiable almost
everywhere, by Rademacher’s theorem ([22], Thm. 3.1.2). �

In the lemma below, the right-hand side in (5.17) is to be understood as the integral of function which
coincides almost everywhere with 𝑔(𝐷𝑢(·)) det𝐷2𝑢(·). Indeed, the convex function 𝑢 is twice differentiable
almost everywhere by Aleksandrov’s theorem ([22], Thm. 6.4.1). In particular, points where 𝑢 is not twice
differentiable do not contribute to the integral in the right-hand side, while they do contribute to the one in the
left-hand side.

Lemma 5.24. Assume (5.4). If 𝑢 : 𝑋 → R is convex, then for any Borel subset 𝐸 of 𝑋,∫︁
𝜕𝑢(𝐸)

𝑔(𝑦) d𝑦 ≥
∫︁

𝐸

𝑔(𝐷𝑢(𝑥)) det𝐷2𝑢(𝑥) d𝑥. (5.17)

If moreover 𝜕𝑢(𝐸′) has Lebesgue measure zero for any subset 𝐸′ of 𝑋 of Lebesgue measure zero, then the above
inequality is an equality.

Proof. Since 𝑢 is convex, its gradient 𝐷𝑢 belongs to BVloc(𝑋; R𝑑), see Theorem 6.3.3 of [22]. By Theorem 6.6.2
of [22], for any 𝑘 ∈ N*, there exists a subset 𝐸𝑘 of 𝐸 such that 𝐷𝑢 is Lipschitz continuous in 𝐸𝑘 and ℒ𝑑(𝐸∖𝐸𝑘) ≤
1/𝑘. We define 𝐸̃ :=

⋃︀∞
𝑘=1𝐸𝑘 and, for any 𝑘 ∈ N*, 𝐸̃𝑘 := 𝐸𝑘 ∖

(︁⋃︀𝑘−1
𝑖=1 𝐸𝑖

)︁
.
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Using Lemma 5.23,∫︁
𝜕𝑢(𝐸)

𝑔(𝑦) d𝑦 ≥
∫︁

𝜕𝑢(𝐸̃)
𝑔(𝑦) d𝑦 =

∞∑︁
𝑘=1

∫︁
𝜕𝑢(𝐸̃𝑘)

𝑔(𝑦) d𝑦 =
∞∑︁

𝑘=1

∫︁
𝐷𝑢(𝐸̃𝑘)

𝑔(𝑦) d𝑦

=
∞∑︁

𝑘=1

∫︁
R𝑑

⎡⎣ ∑︁
𝑥∈(𝐷𝑢)−1({𝑦})

1𝐸̃𝑘(𝑥)𝑔(𝐷𝑢(𝑥))

⎤⎦d𝑦

(here (𝐷𝑢)−1({𝑦}) is a singleton for almost every 𝑦), with equality if 𝜕𝑢(𝐸 ∖ 𝐸̃) has Lebesgue measure zero
(note that 𝐸 ∖ 𝐸̃ always has Lebesgue measure zero).

By the change of variables formula ([22], Thm. 3.3.2) which is a corollary of the area formula of geometric
measure theory, for any 𝑘 ∈ N*,

∫︁
R𝑑

⎡⎣ ∑︁
𝑥∈(𝐷𝑢)−1({𝑦})

1𝐸̃𝑘(𝑥)𝑔(𝐷𝑢(𝑥))

⎤⎦d𝑦 =
∫︁

𝐸̃𝑘

𝑔(𝐷𝑢(𝑥)) det𝐷2𝑢(𝑥) d𝑥.

It follows that ∫︁
𝜕𝑢(𝐸̃)

𝑔(𝑦) d𝑦 =
∞∑︁

𝑘=1

∫︁
𝐸̃𝑘

𝑔(𝐷𝑢(𝑥)) det𝐷2𝑢(𝑥) d𝑥 =
∫︁

𝐸

𝑔(𝐷𝑢(𝑥)) det𝐷2𝑢(𝑥) d𝑥,

which concludes the proof. �

Let us now prove the main Theorems 5.11 and 5.12.

Proof of Theorem 5.11. If 𝑢 : 𝑋 → R is a viscosity subsolution to (3.2) with 𝛼 ≥ 0, it is both a viscosity
subsolution to (1.2) and (1.26). Thus by Lemmas 5.16 and 5.17, it is convex in 𝑋 and 𝜕𝑢(𝑋) ⊂ 𝑌 .

By Aleksandrov’s theorem ([22], Thm. 6.4.1), 𝑢 is twice differentiable almost everywhere. Thus it is almost
everywhere a classical subsolution to (3.2). It follows that for almost every 𝑥 ∈ 𝑋, 𝐹MA

(︀
𝑥,𝐷𝑢(𝑥), 𝐷2𝑢(𝑥)

)︀
≤ 0,

with a strict inequality if 𝛼 > 0. Then, using Proposition 5.8, for any Borel subset 𝐸 of 𝑋,∫︁
𝐸

𝑓(𝑥) d𝑥 ≤
∫︁

𝐸

𝑔(𝐷𝑢(𝑥)) det𝐷2𝑢(𝑥) d𝑥,

with a strict inequality if 𝛼 > 0 and 𝐸 has positive Lebesgue measure.
By Lemma 5.24, we deduce that ∫︁

𝐸

𝑓(𝑥) d𝑥 ≤
∫︁

𝜕𝑢(𝐸)

𝑔(𝑦) d𝑦,

with a strict inequality if 𝛼 > 0 and 𝐸 has positive Lebesgue measure. The same is true when replacing 𝐸 by
𝑋 ∖ 𝐸, and by Lemma 5.23, 𝜕𝑢(𝐸) ∩ 𝜕𝑢(𝑋 ∖ 𝐸) has Lebesgue measure zero. Thus∫︁

𝑋

𝑓(𝑥) d𝑥 =
∫︁

𝐸

𝑓(𝑥) d𝑥+
∫︁

𝑋∖𝐸
𝑓(𝑥) d𝑋 ≤

∫︁
𝜕𝑢(𝐸)

𝑔(𝑦) d𝑦 +
∫︁

𝜕𝑢(𝑋∖𝐸)

𝑔(𝑦) d𝑦 =
∫︁

𝜕𝑢(𝑋)

𝑔(𝑦) d𝑦,

with a strict inequality if 𝛼 > 0, since at least one of the sets 𝐸 and 𝑋 ∖𝐸 has positive Lebesgue measure. On
the other hand, since 𝜕𝑢(𝑋) ⊂ 𝑌 , one has the converse inequality∫︁

𝜕𝑢(𝑋)

𝑔(𝑦) d𝑦 ≤
∫︁

𝑌

𝑔(𝑦) d𝑦 =
∫︁

𝑋

𝑓(𝑥) d𝑥.
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Therefore the case 𝛼 > 0 cannot happen, and moreover∫︁
𝐸

𝑓(𝑥) d𝑥 =
∫︁

𝜕𝑢(𝐸)

𝑔(𝑦) d𝑦,
∫︁

𝑋∖𝐸
𝑓(𝑥) d𝑥 =

∫︁
𝜕𝑢(𝑋∖𝐸)

𝑔(𝑦) d𝑦,

from which it follows that 𝑢 is a minimal Aleksandrov solution to (1.1) and (1.24). �

Proof of Theorem 5.12. When applicable, we follow the same sketch of proof as for Theorem 5.11. Let 𝑢 : 𝑋 → R
be a viscosity supersolution to (3.2) with 𝛼 ≤ 0. By Aleksandrov’s theorem ([22], Thm. 6.4.1), 𝑢𝑐𝑐

𝑌 is twice differ-
entiable almost everywhere. Then by Lemma 5.21, for almost every 𝑥 ∈ 𝑋, one has 𝐹MA

(︀
𝑥,𝐷𝑢𝑐𝑐

𝑌 (𝑥), 𝐷2𝑢𝑐𝑐
𝑌 (𝑥)

)︀
≥

0, with a strict inequality if 𝛼 < 0 and 𝑓(𝑥) > 0. Using Proposition 5.8, for any Borel subset 𝐸 of 𝑋,∫︁
𝐸

𝑓(𝑥) d𝑥 ≥
∫︁

𝐸

𝑔(𝐷𝑢𝑐𝑐
𝑌 (𝑥)) det𝐷2𝑢𝑐𝑐

𝑌 (𝑥) d𝑥,

with a strict inequality if 𝛼 < 0 and ℒ𝑑({𝑥 ∈ 𝐸 | 𝑓(𝑥) > 0}) > 0.
By Lemmas 5.22 and 5.24, we deduce that∫︁

𝐸

𝑓(𝑥) d𝑥 ≥
∫︁

𝜕𝑢𝑐𝑐
𝑌 (𝐸)

𝑔(𝑦) d𝑦,

with a strict inequality if 𝛼 < 0 and ℒ𝑑({𝑥 ∈ 𝐸 | 𝑓(𝑥) > 0}) > 0. The same is true when replacing 𝐸 by 𝑋 ∖𝐸,
thus ∫︁

𝑋

𝑓(𝑥) d𝑥 =
∫︁

𝐸

𝑓(𝑥) d𝑥+
∫︁

𝑋∖𝐸
𝑓(𝑥) d𝑋 ≥

∫︁
𝜕𝑢𝑐𝑐

𝑌 (𝐸)

𝑔(𝑦) d𝑦 +
∫︁

𝜕𝑢𝑐𝑐
𝑌 (𝑋∖𝐸)

𝑔(𝑦) d𝑦 ≥
∫︁

𝜕𝑢𝑐𝑐
𝑌 (𝑋)

𝑔(𝑦) d𝑦.

Also note that at least one of the two conditions ℒ𝑑({𝑥 ∈ 𝐸 | 𝑓(𝑥) > 0}) > 0 and ℒ𝑑({𝑥 ∈ 𝑋 ∖ 𝐸 | 𝑓(𝑥) > 0}) > 0
is satisfied, thus one has a strict inequality if 𝛼 < 0. On the other hand, since by Lemma 5.19 𝑌 ⊂ 𝜕𝑢𝑐𝑐

𝑌 (𝑋) ⊂ 𝑌 ,
one has the equality ∫︁

𝜕𝑢𝑐𝑐
𝑌 (𝑋)

𝑔(𝑦) d𝑦 =
∫︁

𝑌

𝑔(𝑦) d𝑦 =
∫︁

𝑋

𝑓(𝑥)d𝑥.

Therefore the case 𝛼 < 0 cannot happen, and moreover∫︁
𝐸

𝑓(𝑥) d𝑥 =
∫︁

𝜕𝑢𝑐𝑐
𝑌 (𝐸)

𝑔(𝑦) d𝑦,
∫︁

𝑋∖𝐸
𝑓(𝑥) d𝑥 =

∫︁
𝜕𝑢𝑐𝑐

𝑌 (𝑋∖𝐸)

𝑔(𝑦) d𝑦,

from which it follows that 𝑢𝑐𝑐
𝑌 is a minimal Aleksandrov solution to (1.1) and (1.24). �

5.4. Convergence

We are now able to prove convergence of a family of numerical schemes (which includes the scheme (1.30),
see Sect. 3) for the Monge–Ampère equation, in the setting of quadratic optimal transport.

Theorem 5.25 (Convergence). Assume (5.5)–(5.7). If the scheme (2.8) is monotone, consistent with equation
(3.2), and equicontinuously stable (in the sense of Def. 2.12), and if for any small ℎ > 0, there exists a solution
(𝛼ℎ, 𝑢ℎ) ∈ R×R𝒢ℎ to (2.8) satisfying 𝑢ℎ[0] = 0, then as ℎ approaches zero, 𝛼ℎ converges to zero and 𝑢ℎ converges
uniformly to the unique minimal Aleksandrov solution (or equivalently minimal Brenier solution) 𝑢 : 𝑋 → R to
(1.1) and (1.24) satisfying 𝑢(0) = 0.

Proof. Let (ℎ𝑛)𝑛∈N be a sequence of small discretization steps ℎ𝑛 > 0 converging to zero. Since (2.8) is equicon-
tinuously stable, the sequence (𝛼ℎ𝑛

)𝑛∈N is bounded, and (𝑢ℎ𝑛
)𝑛∈N is uniformly bounded and uniformly equicon-

tinuous. Then by the Arzelà–Ascoli theorem, up to extracting a subsequence, 𝛼ℎ𝑛 converges to some 𝛼 ∈ R and
𝑢ℎ𝑛

converges uniformly to some continuous function 𝑢 : 𝑋 → R, satisfying 𝑢(0) = 0. By Corollary 2.13, 𝑢 is
a viscosity solution to (3.2). By Corollary 5.13, 𝛼 = 0 and 𝑢 is the minimal Aleksandrov solution to (1.1) and
(1.24), which concludes the proof. �
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Figure 1. Image of a Cartesian grid by the approximated optimal transport maps, for the
quadratic optimal transport problem with some given source and target densities.

6. Numerical experiments

6.1. Approximation of optimal transport maps for some quadratic optimal transport
problems

We apply the scheme (1.30) to the numerical resolution of some problems of the form (5.2), see Figure 1.
The problems considered are inspired by the numerical experiments in [3]. The source and target domains 𝑋
and 𝑌 are chosen as the unit disk 𝐵2(0, 1). The source density 𝑓 : 𝐵2(0, 1) → R+ is chosen among the ones
depicted in the top row of Figure 1 and may have a non-convex or non-connected support, while the target
density 𝑔 : 𝐵2(0, 1) → R*+ (extended to all of R2 for numerical purposes, as explained in Sect. 5.1) is either the
uniform density 𝑔 : 𝑦 ↦→ 1/𝜋 or the following combination of Gaussian densities and of a small uniform density:

𝑔 : 𝑦 ↦→
𝜌+

∑︀3
𝑖=1 exp

(︁
− |𝑦−𝑦𝑖|2

2𝜎2

)︁
∫︀

𝐵2(0,1)
𝜌+

∑︀3
𝑖=1 exp

(︁
− |𝑦−𝑦𝑖|2

2𝜎2

)︁
d𝑦
, (6.1)

where 𝜌 := 0.1, 𝜎 := 0.1, 𝑦1 := (0, 0.6), 𝑦2 := (−0.6,−0.1), and 𝑦3 := (0.6,−0.1).
In all our numerical experiments, we choose the discretization step ℎ > 0 as ℎ = 2/𝑁 , for some 𝑁 ∈ 2N*,

so that the Cartesian grid [−1, 1]2 ∩ ℎZ2 contains exactly (𝑁 + 1)2 points. We define the Cartesian grid 𝒢ℎ :=
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𝑋 ∩ ℎZ2, as well as the smaller grid

𝒢ℎ := {𝑥 ∈ 𝒢ℎ | ∀𝑖 ∈ {1, 2}, 𝑥+ ℎ𝑒𝑖 ∈ 𝒢ℎ and 𝑥− ℎ𝑒𝑖 ∈ 𝒢ℎ}.

In Figure 1, we choose 𝑁 = 128. Following Appendix B and in particular Table B.1, we choose 𝑉ℎ = 𝑉 𝜇 with
𝜇 = 2 +

√
5 ≈ 4.236. We solve the numerical scheme (1.30) on the grid 𝒢ℎ, in the setting described by (5.6) and

(5.7), and we denote by (𝛼ℎ, 𝑢ℎ) ∈ R×R𝒢ℎ the solution to the scheme. We approximate the optimal transport
map 𝑇 : 𝑋 → 𝑌 by 𝐷ℎ𝑢ℎ : 𝒢ℎ → R𝑑, where 𝐷ℎ is the centered finite difference operator defined in (1.13). The
grids displayed in Figure 1 are the image of 𝒢ℎ (coarsened for readability) by the approximate transport map
𝐷ℎ𝑢ℎ in each of the settings considered.

Remark 6.1 (Difference between the theoretical and experimental settings). In the definitions (1.17) and (1.18)
of the discrete operators 𝐴𝑒

ℎ and 𝐵ℎ, the scheme (1.30) involves some parameters 𝑎min ≤ 0 and 𝑎LF, 𝑏LF ≥ 0.
Although they do not fit in the theoretical setting, we use in all our experiments the values 𝑎min = −∞ and
𝑎LF = 𝑏LF = 0, which simplify the expression of the scheme and improve its consistency, see Remark 3.4. We
did not observe any practical difficulties related to this choice in the experiments that we considered.

Remark 6.2 (Solving the numerical scheme). We solve the scheme (1.30) using the Newton method. In practice,
in all our numerical experiments instead of solving

𝑆ℎ,𝛼
MA𝑢[𝑥] ∨ 𝑆ℎ

BV2𝑢[𝑥] = 0 in 𝒢ℎ,

we solve the equivalent scheme
𝑆ℎ,𝛼

MA𝑢[𝑥] ∨ 𝜅𝑆ℎ
BV2𝑢[𝑥] = 0 in 𝒢ℎ

with 𝜅 = 20, since we observe that better convergence of the Newton method tends to be achieved when rescaling
the contribution of the discretization of the optimal transport boundary condition with respect to the one of the
discretization of the Monge–Ampère equation. The Newton method is applied to finding a zero of the function
(𝛼, 𝑢) ↦→ 𝑆ℎ,𝛼

MA𝑢[𝑥] ∨ 𝜅𝑆ℎ
BV2𝑢[𝑥] over the hyperplane

{︀
(𝛼, 𝑢) ∈ R× R𝒢ℎ | 𝑢[0] = 0

}︀
. In Figure 1, we display the

number of iterations required in order to achieve convergence of the Newton method for each of the problems
considered, with initialization 𝑢[𝑥] = |𝑥|2 and with the stopping criterion

max
𝑥∈𝒢ℎ

⃒⃒⃒
𝑆ℎ,𝛼

MA𝑢[𝑥] ∨ 𝜅𝑆ℎ
BV2𝑢[𝑥]

⃒⃒⃒
< 10−8.

We observe that more iterations seem to be required when the size of the support of the source density 𝑓 is
small comparatively to the source domain 𝑋.

6.2. Numerical convergence analysis

In Figures 2 and 3, we display the approximation errors obtained when using the recommended scheme in
order to solve some Monge–Ampère problems whose solution 𝑢 : 𝑋 → R is known exactly.

According to Remark 3.4, the discretization of the Monge–Ampère operator by the operator 𝑆ℎ
MA defined

in (1.23) is expected to achieve second-order consistency in favorable cases. However, consistency to an order
higher than one cannot be expected for the whole scheme (1.30) due to the fact that the discretization (1.28) of
the optimal transport boundary condition is only first-order consistent. In order to study separately the errors
stemming from the discretizations of the Monge–Ampère operator and of the optimal transport boundary
condition, we consider both the second and the first boundary value problems for the Monge–Ampère equation.
We use the scheme (1.30) in order to approximate the solution to the second boundary value problem. The first
boundary value problem involves a Dirichlet boundary condition; the variant (C.1) of our numerical scheme
devoted to this setting is described in Appendix C.
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Figure 2. Numerical approximation error with respect to the grid size, with the optimal
transport boundary condition.

Figure 3. Numerical approximation error with respect to the grid size, with the Dirichlet
boundary condition.

We design our test cases by first choosing the domain 𝑋 and the exact solution 𝑢 as follows:

(Quartic problem) 𝑋 := 𝐵2(0, 1), 𝑢(𝑥) :=
|𝑥|4

4
,

(𝐶1 problem) 𝑋 := 𝐵2(0, 1), 𝑢(𝑥) := (0 ∨ (|𝑥| − 1/2))2,

(Singular problem) 𝑋 := 𝑅𝜋/3]− 1, 1[2, 𝑢(𝑥) := −
√︀

2− |𝑥|2,

where 𝑅𝜃 :=
(︀

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)︀
. The quartic problem is inspired by the numerical experiments in [23], while the 𝐶1

and singular problems are inspired by the ones in [25]. The role of the rotation 𝑅𝜋/3 is to prevent the domain of
the singular problem from being axis-aligned, which otherwise provides an unfair advantage to schemes defined
on Cartesian grids such as ours.

We only consider Monge–Ampère equations whose coefficients are in the form (5.6), as in the quadratic
optimal transport problem. We choose the target density 𝑔 : R2 → R*+ according to (6.1), and we choose
the other parameters of each of the problems considered (the source density 𝑓 : 𝑋 → R+ and the function
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𝜓 : 𝜕𝑋 → R in the case of the Dirichlet boundary condition; the source density 𝑓 : 𝑋 → R+ and the target
domain 𝑌 ⊂ R2 in (5.7) in the case of the optimal transport boundary condition) appropriately so that the
function 𝑢 is the solution to the problem. For the quartic and 𝐶1 problem, the target domain is 𝑌 = 𝐵2(0, 1).
For the singular problem, we only consider the Dirichlet boundary condition, since with the optimal transport
boundary condition the target domain 𝑌 would be unbounded and non-convex, which does not fit in our
framework.

We define the 𝑙∞ approximation error between the exact solution 𝑢 and the numerical solution 𝑢ℎ as

‖𝑢ℎ − 𝑢‖∞,ℎ := max
𝑥∈𝒢ℎ

|𝑢ℎ[𝑥]− 𝑢(𝑥)|.

We also display the error
‖𝐷ℎ𝑢ℎ −𝐷𝑢‖∞,ℎ := max

𝑥∈𝒢ℎ

|𝐷ℎ𝑢ℎ[𝑥]−𝐷𝑢(𝑥)|

between 𝐷𝑢 and its approximation obtained by applying to 𝑢ℎ the centered finite difference operator 𝐷ℎ defined
in (1.13).

It may be of practical interest to approximate 𝐷𝑢 by 𝐷ℎ𝑢ℎ since, at least in the setting of the second boundary
value problem, 𝐷𝑢 coincides with the optimal transport map for the associated optimal transport problem, see
Section 5.1. Note however that theoretical guarantees on the convergence of 𝐷ℎ𝑢ℎ towards 𝐷𝑢 are unreachable
using the techniques developed in this paper.

In the case of the singular problem, convergence of 𝐷ℎ𝑢ℎ towards 𝐷𝑢 is not observed in the 𝑙∞ norm, which
is expected since 𝐷𝑢 is unbounded in 𝑋. For this reason, we display instead the 𝑙1 error

‖𝐷ℎ𝑢ℎ −𝐷𝑢‖1,ℎ := ℎ2
∑︁

𝑥∈𝒢ℎ

|𝐷ℎ𝑢ℎ[𝑥]−𝐷𝑢(𝑥)|.

According to Appendix B and Table B.1, we choose the set of superbases 𝑉ℎ in (1.23) as 𝑉ℎ = 𝑉 𝜇 for some
𝜇 > 1. In Figure 2, we use the value 𝜇 = 1 +

√
2. According to Proposition B.8 larger values of 𝜇 may need to

be used for small discretization steps ℎ in order to observe convergence. This is illustrated in Figure 3, where
the values 𝜇 = 2 +

√
5 and 𝜇 = 3 +

√
10 are also considered.

6.3. Effect of the set of superbases on the pointwise approximation error

In order to describe more visually the effect of the choice of the parameter 𝜇 on the numerical solution to
the Monge–Ampère problem, we display in Figure 4 the solution to the scheme (C.1), used with 𝑁 = 128 and
𝑉ℎ = 𝑉 𝜇, for several choices of 𝜇, in order to approximate the solution 𝑢 : 𝑥 ↦→ |⟨𝑒, 𝑥⟩| to the Dirichlet problem{︃

det+𝐷2𝑢(𝑥) = 0 in 𝐵2(0, 1),
𝑢(𝑥) = |⟨𝑒, 𝑥⟩| on 𝜕𝐵2(0, 1),

with 𝑒 := (1, 1/
√

10). We observe as expected that the solution is better reconstructed, especially near its
singularity, for larger values of 𝜇, which correspond to wider finite difference stencils.

6.4. Comparison between the recommended scheme and the MA-LBR scheme

We study the behavior of the Newton method applied to the resolution of the recommended scheme (C.1)
and the MA-LBR scheme (C.2), in the setting of the Dirichlet problem{︃

det+𝐷2𝑢(𝑥) = 1 in 𝑋,

𝑢(𝑥) = 0 on 𝜕𝑋,



854 G. BONNET AND J.-M. MIREBEAU

Figure 4. Effect of the choice of the parameter 𝜇 on the reconstruction of 𝑢(𝑥) = |⟨𝑒, 𝑥⟩|,
where 𝑒 :=

(︀
1, 1/

√
10
)︀
. Top: finite difference stencil. Bottom: numerical solution.

on domains 𝑋 = 𝐵2(0, 1)∪]− 1, 1[2 and 𝑋 = 𝐵2(0, 1) ∖ [−1, 1]2. While the second of those domains does not fit
in standard theoretical frameworks for the Monge–Ampère equation due to being non-convex, this choice has
to be considered as a stress test for the considered numerical methods.

Let us denote by 𝑢0 : 𝒢ℎ → R our initial guess in the Newton method. The iterates of the Newton method are
defined as 𝑢𝑛 := 𝑢𝑛−1 + 2−𝑘𝑛𝑑𝑛, where 𝑑𝑛 is the Newton descent direction and 𝑘𝑛 ∈ N is a damping parameter.
In the case of the recommended scheme (C.1), no damping is required, so we always choose 𝑘𝑛 = 0. In the case
of the MA-LBR scheme (C.2), one has to use damping so that the constraint (C.3) remains satisfied along the
iterates, as discussed in Section 1.3. More precisely, let us introduce the following quantitative variant of the
constraint (C.3):

Λ̃ℎ𝑢𝑛[𝑥] ≥ 𝐵̃ℎ𝑢𝑛[𝑥]/2, ∀𝑥 ∈ 𝒢ℎ (6.2)

(in the setting of our experiments, one has 𝐵̃ℎ𝑢[𝑥]/2 = 1/2). Following [5, 39], and in the spirit of [33], we
assume that (6.2) is satisfied for 𝑢0 and at each iteration we let 𝑘𝑛 be the smallest natural number such that
(6.2) holds.

We use the grid size 𝑁 = 120 and the set of superbases 𝑉ℎ = 𝑉 𝜇, 𝜇 = 2 +
√

5. We initialize the Newton
method with 𝑢0[𝑥] := |𝑥|2 − 2 (since the simpler initialization 𝑢0[𝑥] := |𝑥|2 does not satisfy (6.2) close to 𝜕𝑋,
in view of the boundary condition 𝑢 = 0 on 𝜕𝑋) and we use the stopping criterion

max
𝑥∈𝒢ℎ

⃒⃒
𝑆ℎ𝑢[𝑥]

⃒⃒
< 10−8,
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Figure 5. The far field refractor problem. In practice only the shape of the upper interface of
the lens has to be approximated numerically. The lower interface, represented by the dashed
curve, can be chosen as a portion of a sphere so that it does not refract light rays emanating
from the origin.

where either 𝑆ℎ = 𝑆ℎ
MABV1 or 𝑆ℎ = 𝑆ℎ

MA-LBR-BV1 as appropriate.
On the domain 𝑋 = 𝐵2(0, 1)∪]− 1, 1[2, the Newton method for the recommended scheme (C.1) converges in

9 iterations without damping. The Newton method for the MA-LBR scheme converges in 47 iterations and the
largest observed value for 𝑘𝑛 is 𝑘𝑛 = 4, corresponding to a damping step 2−𝑘𝑛 = 0.0625.

On the domain 𝑋 = 𝐵2(0, 1) ∖ [−1, 1]2, the Newton method for the recommended scheme converges in 7
iterations without damping. The Newton method for the MA-LBR scheme converges in 52 iterations and the
largest observed value for 𝑘𝑛 is 𝑘𝑛 = 5, corresponding to a damping step 2−𝑘𝑛 = 0.03125.

6.5. Application of the scheme to the far field refractor problem in nonimaging optics

We apply the scheme (1.30) to the far field refractor problem [30] in nonimaging optics. Various numerical
methods for solving this problem, and some of its variants such as the reflector problem, have been previously
studied in the literature [6, 11, 18, 19, 28]. We illustrate the refractor problem in Figure 5. Light rays emanate
from a point source of light located at the origin, in directions belonging to some subset of the upper hemisphere{︀
𝑥 ∈ 𝑆2 | 𝑥3 > 0

}︀
of the unit sphere 𝑆2. In our experiments we assume that the intensity of those light rays is

constant with respect to their direction. The rays propagate in the ambient medium, whose index of refraction
we denote by 𝑛1 > 0, until they hit a lens, which is located at distance ℓ0 from the origin and whose index of
refraction we denote by 𝑛2 > 0. The rays are refracted by the lens, then continue to propagate in the ambient
medium until they hit a screen, represented by the plane R2 × {ℓ}, where ℓ > ℓ0 denotes the distance from the
screen to the origin. The aim is to find a suitable shape for the lens that refracts the light rays so that a given
target image is reconstructed on the screen.

The far field refractor problem is studied in the limit ℓ → ∞. In this limit, it has been shown [30] to be
equivalent to an optimal transport problem with a specific, non-quadratic cost, and thus to reduce to the second
boundary value problem for the Monge–Ampère equation (1.1) with coefficients of the form (5.10) to (5.12) (as
opposed to (5.6) and (5.7)). In the above-mentioned optimal transport problem, the source and target densities,
which may be exchanged up to an appropriate transformation of the transport map, are the density describing
the image that has to be reconstructed in the refractor problem and the one describing the intensity of light
rays depending on their initial direction of emission.



856 G. BONNET AND J.-M. MIREBEAU

Figure 6. Top left: target image in the far field refractor problem. Bottom left: approximation
of the height field 𝑣. Bottom right: approximation of the pointwise Gaussian curvature of 𝑣. Top
right: simulation of the scene (for ℓ large but finite), using the appleseed R○ rendering engine
and the shape computed numerically for the lens.

Remark 6.3. The problem with finite ℓ is called the near field refractor problem and has been shown [31] to
reduce to a generated Jacobian equation of the form

det+
(︀
𝐷2𝑢(𝑥)−𝐴(𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))

)︀
= 𝐵(𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) in 𝑋. (6.3)

The difference between (6.3) and (1.1) is that in (6.3) the coefficients 𝐴 and 𝐵 depend on the values of the
function 𝑢 and not only on its derivatives. The study of the extension of the scheme (1.30) to generated Jacobian
equations is outside the scope of this paper and is an opportunity for future research.

We approximate the solution to the far field refractor problem by solving the scheme (1.30) on the unit
disk 𝑋 = 𝐵2(0, 1), choosing as the source density 𝑓 the one describing the target image in the problem. We
use the grid size 𝑁 = 120 and the set of superbases 𝑉ℎ = 𝑉 𝜇, 𝜇 = 2 +

√
5 (see Tab. B.1). We choose the

indices of refraction 𝑛1 = 1 and 𝑛2 = 1.5, corresponding to a glass-air interface. Eleven iterations of the Newton
method are needed in order to solve the scheme. Up to an appropriate postprocessing of the solution to the
scheme (1.30), we obtain an approximation of the height map 𝑣 : 𝐵2(0, 𝑟) → R+ describing the upper interface
{(𝑥, 𝑣(𝑥)) | 𝑥 ∈ 𝐵2(0, 𝑟)} of the lens, where 𝑟 > 0 denotes the radius of the lens.

We display our numerical results in Figure 6. On the representation of the approximation of the pointwise
curvature of 𝑣, we observe that the parts of the refractor corresponding to dark areas of the image have a
small area, compared to the ones corresponding to bright areas. This is consistent with the fact that the total
intensity of the light traversing them should be low, in order for the image to be properly reconstructed. In
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order to validate our results, we inject the shape that we obtain for the lens in a simulation of the scene that
we perform using the appleseed R○2 rendering engine.

7. Conclusion and perspectives

We were able to adapt Perron’s method in order to prove the existence of solutions to a class of monotone
numerical schemes whose sets of solutions are stable by addition of a constant. We designed a finite difference
scheme for the Monge–Ampère equation that belongs to this class, and proved convergence of the scheme
in the setting of quadratic optimal transport. We showed that in dimension two, the discretization of the
Monge–Ampère operator admits a closed-form formulation, and thus yields a particularly efficient numerical
method, when carefully choosing its parameters using Selling’s formula. We validated the method by numerical
experiments in the context of the far field refractor problem in nonimaging optics.

A natural perspective is the adaptation of the proof of convergence of the scheme to the setting of more
general optimal transport problems. The extension of the scheme to generated Jacobian equations such as (6.3)
could also be studied. This would require adapting both the proof of convergence and the one of existence of
solutions to the scheme, since the invariance in the set of solutions would not be the same in this case.

Another perspective is the extension of this work to higher dimensions. While our existence and convergence
results are valid in any dimension, the closed-form formula that we obtain for the maximum in the discretized
Monge–Ampère operator is specific to the dimension two. In higher dimensions, this maximum could be approx-
imated either by sampling the parameter set or by resorting to a numerical optimization procedure, since (1.23)
is an instance of a semidefinite program. We expect the second approach to be more efficient, but developing
such an optimization procedure is still an open research direction. The design of this procedure could be made
easier by an appropriate choice of the set 𝑉ℎ in (1.23). In dimension three, one could choose it as a set of
superbases of Z3, benefiting from the fact that Selling’s formula (described in Prop. 4.2 in dimension two) also
holds in dimension three; in this case, which superbases exactly the set 𝑉ℎ should contain is an open question,
since the selection criterion based on the Stern–Brocot tree and presented in Appendix B is two-dimensional
only. In dimensions four and higher, one could resort to Voronoi’s first reduction of quadratic forms [15], which
generalizes Selling’s formula to those dimensions.

Appendix A. Relation to the MA-LBR scheme

The MA-LBR scheme, introduced in [5], is a discretization of the two-dimensional Monge–Ampère equation.
Its natural extension to the generalized equation (1.1) may be described by a discrete operator 𝑆ℎ

MA-LBR : R𝒢ℎ →
R𝒢ℎ , which is an alternative to the operator 𝑆ℎ

MA defined in (1.23). The operator 𝑆ℎ
MA-LBR is defined as follows:

𝑆ℎ
MA-LBR𝑢[𝑥] := 𝐵ℎ𝑢[𝑥]− Λℎ𝑢[𝑥], (A.1)

where

Λℎ𝑢[𝑥] := min
𝑣∈𝑉ℎ

𝐺(∆𝑣
ℎ𝑢[𝑥]−𝐴𝑣

ℎ𝑢[𝑥]). (A.2)

We denoted by 𝑉ℎ a given set of superbases of Z2, by ∆𝑣
ℎ the second order finite differences defined in (1.13)

and (1.19), and by 𝐴𝑣
ℎ and 𝐵ℎ the first order finite difference operators defined in (1.17)–(1.19). Finally, for any

𝑚 ∈ (R ∪ {+∞})3,

𝐺(𝑚) := 𝐺0((0 ∨𝑚1, 0 ∨𝑚2, 0 ∨𝑚3)),

2https://appleseedhq.net/.

https://appleseedhq.net/
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𝐺0(𝑚̃) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑚̃2𝑚̃3 if 𝑚̃1 ≥ 𝑚̃2 + 𝑚̃3,

𝑚̃1𝑚̃3 if 𝑚̃2 ≥ 𝑚̃1 + 𝑚̃3,

𝑚̃1𝑚̃2 if 𝑚̃3 ≥ 𝑚̃1 + 𝑚̃2,
1
2 (𝑚̃1𝑚̃2 + 𝑚̃1𝑚̃3 + 𝑚̃2𝑚̃3)

− 1
4

(︀
𝑚̃2

1 + 𝑚̃2
2 + 𝑚̃2

3

)︀
else.

(A.3)

Contrary to the operator 𝑆ℎ
MA, the operator 𝑆ℎ

MA-LBR is only intended to be applied to functions 𝑢 : 𝒢ℎ → R
satisfying the constraint

Λℎ𝑢[𝑥] > 0, ∀𝑥 ∈ 𝒢ℎ, (A.4)

which is a discrete counterpart to the strict variant of the admissibility constraint (1.4). If this condition fails,
then the Jacobian matrix of the scheme is not invertible [39], which breaks the Newton method relied upon.

Lemma A.1. Let 𝑢 : 𝒢ℎ → R be a function satisfying (A.4). Then for any 𝑥 ∈ 𝒢ℎ and 𝑣 ∈ 𝑉ℎ, letting 𝑚 :=
∆𝑣

ℎ𝑢[𝑥]−𝐴𝑣
ℎ𝑢[𝑥], one has 𝐺(𝑚) = 𝐺0(𝑚) > 0 and 𝑚 > 0 elementwise.

Proof. Let 𝑚̃ := (0 ∨ 𝑚1, 0 ∨ 𝑚2, 0 ∨ 𝑚3), so that 𝐺(𝑚) = 𝐺0(𝑚̃). By (A.4), one has 𝐺(𝑚) > 0. Thus
𝐺0(𝑚̃) = 𝐺(𝑚) > 0, from which it is easy to deduce that 𝑚̃ > 0 elementwise. Therefore 𝑚 = 𝑚̃, hence 𝑚 > 0
elementwise and 𝐺(𝑚) = 𝐺0(𝑚). �

Recall that, for any superbase 𝑣 ∈ 𝑉ℎ and any 𝛾 ∈ R3, one has 𝒟𝑣(𝛾) :=
∑︀3

𝑖=1 𝛾𝑖𝑣𝑖 ⊗ 𝑣𝑖. The following
proposition shows that the MA-LBR scheme may be seen as a discretization of the reformulation (1.6) of the
Monge–Ampère equation:

Proposition A.2. Let 𝑢 : 𝒢ℎ → R be a function satisfying (A.4). Then for any 𝑥 ∈ 𝒢ℎ,

𝑆ℎ
MA-LBR𝑢[𝑥] = 𝐵ℎ𝑢[𝑥]− min

𝑣∈𝑉ℎ

inf
𝛾∈R3

+
det𝒟𝑣(𝛾)=1

⟨𝛾,∆𝑣
ℎ𝑢[𝑥]−𝐴𝑣

ℎ𝑢[𝑥]⟩2

4
·

Proof. It suffices to show that for any superbase 𝑣 ∈ 𝑉ℎ, if 𝑚 := ⟨𝛾,∆𝑣
ℎ𝑢[𝑥]−𝐴𝑣

ℎ𝑢[𝑥]⟩, then

𝐺(𝑚) = inf
𝛾∈R3

+
det𝒟𝑣(𝛾)=1

⟨𝛾,𝑚⟩2

4
·

By Lemma A.1, one has 𝐺(𝑚) = 𝐺0(𝑚) and 𝑚 > 0 elementwise. Using that 𝑣 is a superbase of Z2, and that
therefore det(𝑣𝑖, 𝑣𝑗) = ±1 for any 1 ≤ 𝑖 < 𝑗 ≤ 3, one can compute that for any 𝛾 ∈ R3

+,

det𝒟𝑣(𝛾) =

(︃
3∑︁

𝑖=1

𝛾𝑖𝑣
2
𝑖,1

)︃(︃
3∑︁

𝑖=1

𝛾𝑖𝑣
2
𝑖,2

)︃
−

(︃
3∑︁

𝑖=1

𝛾𝑖𝑣𝑖,1𝑣𝑖,2

)︃2

=
3∑︁

𝑖=1

3∑︁
𝑗=1

𝛾𝑖𝛾𝑗𝑣
2
𝑖,1𝑣

2
𝑗,2 −

3∑︁
𝑖=1

3∑︁
𝑗=1

𝛾𝑖𝛾𝑗𝑣𝑖,1𝑣𝑖,2𝑣𝑗,1𝑣𝑗,2

=
3∑︁

𝑖=1

3∑︁
𝑗=1

𝛾𝑖𝛾𝑗𝑣𝑖,1𝑣𝑗,2 det(𝑣𝑖, 𝑣𝑗)

=
∑︁

1≤𝑖<𝑗≤3

𝛾𝑖𝛾𝑗𝑣𝑖,1𝑣𝑗,2 det(𝑣𝑖, 𝑣𝑗) +
∑︁

1≤𝑖<𝑗≤3

𝛾𝑗𝛾𝑖𝑣𝑗,1𝑣𝑖,2 det(𝑣𝑗 , 𝑣𝑖)

=
∑︁

1≤𝑖<𝑗≤3

𝛾𝑖𝛾𝑗 det(𝑣𝑖, 𝑣𝑗)2
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=
∑︁

1≤𝑖<𝑗≤3

𝛾𝑖𝛾𝑗 .

Thus it remains to prove that

𝐺0(𝑚) = inf
𝛾∈R3

+
𝛾1𝛾2+𝛾1𝛾3+𝛾2𝛾3=1

⟨𝛾,𝑚⟩2

4
,

or equivalently that
inf

𝛾∈R3
+

𝛾1𝛾2+𝛾1𝛾3+𝛾2𝛾3=1

⟨𝛾,𝑚⟩ = 2
√︀
𝐺0(𝑚). (A.5)

The infimum in (A.5) is attained at some 𝛾 ∈ R3
+, fixed in the following, since the objective function

𝛾 ↦→ ⟨𝛾,𝑚⟩ is coercive in R3
+ and since the constraint 𝛾1𝛾2 + 𝛾1𝛾3 + 𝛾2𝛾3 = 1 is closed.

If 𝛾3 = 0, then by elimination of 𝛾2 = 1/𝛾1, the optimization problem becomes min{𝑚1𝛾1 +𝑚2/𝛾1 | 𝛾1 ≥ 0},
whose solution is 2

√
𝑚1𝑚2 attained for 𝛾1 =

√︀
𝑚2/𝑚1, consistently with (A.3) and (A.5). Likewise if 𝛾1 = 0

or 𝛾2 = 0 instead of 𝛾3 = 0.
Consider now the case where 𝛾 > 0 elementwise. Then by the KKT conditions for the optimization problem in

the left-hand side of (A.5), there exists a Lagrange multiplier 𝜆 ≥ 0 such that 𝑚 = (𝜆/2)(𝛾2+𝛾3, 𝛾1+𝛾3, 𝛾1+𝛾2).
Equivalently,

𝜆𝛾 = (𝑚2 +𝑚3 −𝑚1,𝑚1 +𝑚3 −𝑚2,𝑚1 +𝑚2 −𝑚3). (A.6)

In particular, we obtain that the elementwise positiveness of 𝛾 cannot hold if 𝑚1 ≥ 𝑚2 +𝑚3, 𝑚2 ≥ 𝑚1 +𝑚3, or
𝑚3 ≥ 𝑚1 +𝑚2, as announced in the expression (A.3) of 𝐺0. Replacing the elements of 𝛾 with their expressions
in terms of 𝜆 and of the elements of 𝑚, see (A.6), and performing straightforward simplifications, we obtain
new expressions of the objective and the constraint of the optimization problem in (A.5):

⟨𝛾,𝑚⟩ = ∆/𝜆, 1 = 𝛾1𝛾2 + 𝛾1𝛾3 + 𝛾2𝛾3 = ∆/𝜆2,

where ∆ := 2(𝑚1𝑚2 +𝑚1𝑚3 +𝑚2𝑚3) −
(︀
𝑚2

1 +𝑚2
2 +𝑚2

3

)︀
. The constraint yields 𝜆 =

√
∆, and the objective

value is thus ∆/𝜆 =
√

∆ = 2
√︀
𝐺0(𝑚) as announced. �

Appendix B. Choosing the set of superbases in dimension two

In this appendix, we explain how one may choose, in dimension 𝑑 = 2 and for any ℎ > 0, a finite set 𝑉ℎ of
superbases of Z2 satisfying (1.20)–(1.22). The motivation is to use this set 𝑉ℎ in (1.23). The construction of
𝑉ℎ is based on the Stern–Brocot tree of bases of Z2 (see [7] for a similar approach in the setting of Hamilton–
Jacobi–Bellman equations):

Definition B.1. A pair (𝑢, 𝑣) of vectors of Z2 is a direct basis of Z2 if det(𝑢, 𝑣) = 1.

Definition B.2. The Stern–Brocot tree 𝒯 is the collection of direct bases of Z2 defined inductively as follows:
(i) the canonical basis belongs to 𝒯 , and (ii) for any (𝑢, 𝑣) ∈ 𝒯 , one has (𝑢, 𝑢+ 𝑣) ∈ 𝒯 and (𝑢+ 𝑣, 𝑣) ∈ 𝒯 .

Remark B.3. In classical descriptions of the Stern–Brocot tree, the vector 𝑢 = (𝑝, 𝑞) is often identified with
the ratio 𝑝/𝑞, which is a nonnegative rational, or with +∞, and likewise for 𝑣 = (𝑟, 𝑠) (note that 𝑝 and 𝑞 are
nonnegative and coprime by construction).

For any (𝑢, 𝑣) ∈ 𝒯 , the scalar product ⟨𝑢, 𝑣⟩ is a nonnegative integer, as follows from an immediate induction.
The set 𝒯𝑠 := {(𝑢, 𝑣) ∈ 𝒯 ; ⟨𝑢, 𝑣⟩ < 𝑠} is a finite subtree which can be generated by exploration with the obvious
stopping criterion, since min{⟨𝑢, 𝑢+ 𝑣⟩, ⟨𝑢+ 𝑣, 𝑣⟩} = ⟨𝑢, 𝑣⟩+ min

{︀⃒⃒
𝑢2
⃒⃒
, |𝑣|2

}︀
≥ ⟨𝑢, 𝑣⟩+ 1.



860 G. BONNET AND J.-M. MIREBEAU

Lemma B.4. Let 𝜇 > 1 and (𝑢, 𝑣) ∈ 𝒯(𝜇−𝜇−1)/2. Then

max{|𝑢|, |𝑣|} < 𝜇+ 𝜇−1

2
< 𝜇.

Proof. It holds that

|𝑢|2 ≤ |𝑢|2|𝑣|2 = det(𝑢, 𝑣)2 + ⟨𝑢, 𝑣⟩2 < 1 +
(︂
𝜇− 𝜇−1

2

)︂2

=
𝜇2 + 𝜇−2 + 2

4
=
(︂
𝜇+ 𝜇−1

2

)︂2

,

and similarly for 𝑣. �

For any 𝒟 ∈ 𝒮++
2 , we define

𝜇(𝒟) :=
√︀
|𝒟||𝒟−1|, 𝑠(𝒟) :=

1
2
(︀
𝜇(𝒟)− 𝜇(𝒟)−1

)︀
.

Note that 𝜇(𝒟) is the square root of the condition number of 𝒟.

Lemma B.5. Let (𝑢, 𝑣) ∈ 𝒯 and 𝒟 ∈ 𝒮++
2 . If ⟨𝑢, 𝑣⟩ ≥ 𝑠(𝒟), then ⟨𝑢,𝒟𝑣⟩ ≥ 0.

Proof. Denote by ^(𝑢, 𝑣) ∈ [0, 𝜋] the unoriented angle between two vectors, defined by

cos^(𝑢, 𝑣) :=
⟨𝑢, 𝑣⟩
|𝑢||𝑣|

·

On the one hand one has

sin^(𝑢, 𝑣) =
det(𝑢, 𝑣)√︁

⟨𝑢, 𝑣⟩2 + det(𝑢, 𝑣)2
=
(︁

1 + ⟨𝑢, 𝑣⟩2
)︁−1/2

.

On the other hand on can show ([21], Cor. B.4) that for any vector 𝑣,(︀
𝜇(𝒟) + 𝜇(𝒟)−1

)︀
cos^(𝑣,𝒟𝑣) ≥ 2.

If ⟨𝑢, 𝑣⟩ ≥
(︀
𝜇(𝒟)− 𝜇(𝒟)−1

)︀
/2, then one obtains sin^(𝑢, 𝑣) ≤ cos^(𝑣,𝒟𝑣), and therefore ^(𝑢, 𝑣) + ^(𝑣,𝒟𝑣) ≤

𝜋/2. By subadditivity of angles, ^(𝑢,𝒟𝑣) ≤ 𝜋/2, which is the announced result. �

Definition B.6. Let 𝒟 ∈ 𝒮+
2 . A superbase 𝑣 = (𝑣1, 𝑣2, 𝑣3) of Z2 is 𝒟-obtuse if ⟨𝑣𝑖,𝒟𝑣𝑗⟩ ≤ 0, for any 1 ≤ 𝑖 <

𝑗 ≤ 3.

Corollary B.7. For any 𝒟 ∈ 𝒮++
2 , there exists (𝑢, 𝑣) ∈ 𝒯 such that ⟨𝑢, 𝑣⟩ ≤ 𝑠(𝒟) and, denoting 𝑢̃ := (𝑢1,−𝑢2)

and 𝑣 := (𝑣1,−𝑣2), either (𝑢, 𝑣,−𝑢− 𝑣) or (𝑢̃, 𝑣,−𝑢̃− 𝑣) is a 𝒟-obtuse superbase.

Proof. We can assume that the nondiagonal coefficient of 𝒟 is negative, up to reversing the orientation of one
axis, and removing the trivial case of diagonal matrices. Let (𝑢, 𝑣) ∈ 𝒯 be such that ⟨𝑢,𝒟𝑣⟩ < 0 and ⟨𝑢, 𝑣⟩
is maximal. Such an element exists since the canonical basis obeys the condition ⟨𝑢,𝒟𝑣⟩ < 0, since ⟨𝑢, 𝑣⟩
is a nonnegative integer, and since ⟨𝑢,𝒟𝑣⟩ ≥ 0 when ⟨𝑢, 𝑣⟩ ≥ 𝑠(𝒟), by Lemma B.5. Then, by construction,
⟨𝑢,𝒟(𝑢+ 𝑣)⟩ ≥ 0 and ⟨𝑢+ 𝑣,𝒟𝑣⟩ ≥ 0, which shows that (𝑢, 𝑣,−𝑢− 𝑣) is a 𝒟-obtuse superbase. �

For any 𝜇 > 1, we define

𝑉 𝜇 :=
⋃︁

(𝑢,𝑣)∈𝒯(𝜇−𝜇−1)/2

{︀(︀
−𝑢⊥,−𝑣⊥, 𝑢⊥ + 𝑣⊥

)︀
,
(︀
−𝑢̃⊥,−𝑣⊥, 𝑢̃⊥ + 𝑣⊥

)︀}︀
,



MONOTONE DISCRETIZATION OF THE MONGE–AMPÈRE EQUATION 861

Table B.1. Properties of 𝑉 𝜇 for 𝜇 ≤ 5 +
√

26. In the rightmost column, we display for each 𝑛
the elements of a set of superbases 𝑉𝑛 such that 𝑉 𝜇𝑛 =

⋃︀
1≤𝑖≤𝑛

⋃︀
𝑣∈𝑉𝑖

{︁
(𝑣1, 𝑣2, 𝑣3),

(︀
𝑣⊥2 , 𝑣

⊥
1 , 𝑣

⊥
3

)︀
,(︀

𝑣⊥2 , 𝑣
⊥
1 , 𝑣

⊥
3

)︀
, (−𝑣1,−𝑣2,−𝑣3)

}︁
, where 𝑒 := (𝑒1,−𝑒2) denotes the reflection with respect to the

horizontal axis, as in Corollary B.7. For the first three values of 𝑛, the points of the finite
difference stencils

⋃︀
𝑣∈𝑉 𝜇𝑛

⋃︀
𝑒∈𝑣{±𝑒} are displayed in Figure 4.

𝑛 𝜇𝑛 𝜇2
𝑛 #(𝑉 𝜇𝑛) max𝑣∈𝑉 𝜇𝑛 max𝑒∈𝑣 |𝑒| additional superbases

(up to transformations)

1 1 +
√

2 ≈ 2.414 ≈ 5.828 2
√

2 ≈ 1.414
(︀(︀

0
−1

)︀
, (−1

0 ), ( 1
1 )
)︀

2 2 +
√

5 ≈ 4.236 ≈ 17.944 6
√

5 ≈ 2.236
(︀(︀

0
−1

)︀
,
(︀−1
−1

)︀
, ( 1

2 )
)︀

3 3 +
√

10 ≈ 6.162 ≈ 37.974 10
√

10 ≈ 3.162
(︀(︀

0
−1

)︀
,
(︀−1
−2

)︀
, ( 1

3 )
)︀

4 4 +
√

17 ≈ 8.123 ≈ 65.985 18
√

17 ≈ 4.123
(︀(︀

0
−1

)︀
,
(︀−1
−3

)︀
, ( 1

4 )
)︀
,(︀(︀−1

−2

)︀
,
(︀−1
−1

)︀
, ( 2

3 )
)︀

5 5 +
√

26 ≈ 10.099 ≈ 101.99 22
√

26 ≈ 5.099
(︀(︀

0
−1

)︀
,
(︀−1
−4

)︀
, ( 1

5 )
)︀

where 𝑢̃ := (𝑢1,−𝑢2) and 𝑣 := (𝑣1,−𝑣2). The construction of the set 𝑉 𝜇 is motivated by the following obser-
vation: if 𝒟 ∈ 𝒮++

𝑑 obeys 𝜇(𝒟) < 𝜇, then, using Corollary B.7 and that 𝑠(𝒟) <
(︀
𝜇− 𝜇−1

)︀
/2, there exists a

superbase 𝑣 = (𝑣1, 𝑣2, 𝑣3) ∈ 𝑉 𝜇 such that
(︀
𝑣⊥1 , 𝑣

⊥
2 , 𝑣

⊥
3

)︀
is 𝒟-obtuse.

Note that by construction, there exist countably many values 1 = 𝜇0 < 𝜇1 < 𝜇2 < · · · such that the map
𝜇 ↦→ 𝑉 𝜇, defined on (1,+∞), is constant on each interval (𝜇𝑛, 𝜇𝑛+1], 𝑛 ∈ N, and satisfies 𝑉 𝜇𝑛 ( 𝑉 𝜇𝑛+1 , for any
𝑛 ∈ N*. We display in Table B.1 the values of 𝜇𝑛 for small 𝑛 ∈ N*, as well as some properties of the associated
sets of superbases 𝑉 𝜇𝑛 .

One may choose a sequence (𝜇ℎ)ℎ>0 of parameters 𝜇ℎ > 1, and let 𝑉ℎ = 𝑉 𝜇ℎ .

Proposition B.8. For any ℎ > 0, let 𝜇ℎ > 1 be such that

lim
ℎ→0

𝜇ℎ = +∞, lim
ℎ→0

ℎ𝜇ℎ = 0,

and let 𝑉ℎ = 𝑉 𝜇ℎ . Then (1.20)–(1.22) are satisfied.

Proof. For fixed ℎ > 0, let 𝒟 ∈ 𝒮++
2 be such that 𝜇(𝒟) < 𝜇ℎ. Then there exists a superbase 𝑣 = (𝑣1, 𝑣2, 𝑣3) ∈

𝑉ℎ = 𝑉 𝜇ℎ such that
(︀
𝑣⊥1 , 𝑣

⊥
2 , 𝑣

⊥
3

)︀
is 𝒟-obtuse. By Selling’s formula Proposition 4.2, there exists 𝛾 ∈ R3

+ such
that 𝒟 = 𝒟𝑣(𝛾) (choose 𝛾 = 𝛾𝑣(𝒟)). It follows that{︀

𝒟 ∈ 𝒮++
2 | Tr(𝒟) = 1, 𝜇(𝒟) < 𝜇ℎ

}︀
⊂
{︀
𝒟𝑣(𝛾) | 𝑣 ∈ 𝑉ℎ, 𝛾 ∈ R3

+, Tr(𝒟𝑣(𝛾)) = 1
}︀
.

Therefore

lim
ℎ→0

𝑑H

(︀{︀
𝒟𝑣(𝛾) | 𝑣 ∈ 𝑉ℎ, 𝛾 ∈ R3

+, Tr(𝒟𝑣(𝛾)) = 1
}︀
,
{︀
𝒟 ∈ 𝒮+

2 | Tr(𝒟) = 1
}︀)︀

≤ lim
ℎ→0

𝑑H

(︀{︀
𝒟 ∈ 𝒮++

2 | Tr(𝒟) = 1, 𝜇(𝒟) ≤ 𝜇ℎ

}︀
,
{︀
𝒟 ∈ 𝒮+

2 | Tr(𝒟) = 1
}︀)︀

= 0,

which proves (1.20).
Let 𝑣 = (𝑣1, 𝑣2, 𝑣3) be a superbase belonging to 𝑉ℎ. By Lemma B.4, max1≤𝑖≤3|𝑣𝑖| ≤ 2𝜇ℎ, and (1.21) follows.
Finally, (1.22) is satisfied since the subtree 𝒯(𝜇ℎ−𝜇−1

ℎ )/2 always contains the canonical basis (𝑒1, 𝑒2), hence

(−𝑒2, 𝑒1, 𝑒2 − 𝑒1) =
(︀
−𝑒⊥1 ,−𝑒⊥2 , 𝑒⊥1 + 𝑒⊥2

)︀
∈ 𝑉ℎ. �
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Remark B.9. Let 𝑐 > 0, 𝑟 ∈ (0, 1), and, for sufficiently small ℎ > 0, choose 𝑉ℎ = 𝑉 𝜇ℎ where 𝜇ℎ := 𝑐ℎ−𝑟. Then
the proof of Proposition B.8 yields the following refinements of (1.20) and (1.21):

𝑑H

(︀{︀
𝒟𝑣(𝛾) | 𝑣 ∈ 𝑉ℎ, 𝛾 ∈ R3

+, Tr(𝒟𝑣(𝛾)) = 1
}︀
,
{︀
𝒟 ∈ 𝒮+

2 | Tr(𝒟) = 1
}︀)︀

= 𝑂(ℎ2𝑟),
max
𝑣∈𝑉ℎ

max
𝑒∈𝑣

|𝑒| = 𝑂(ℎ−𝑟),

where the exponent in the first formula may be obtained by rewriting the relevant part of (4.4) as 1 − |𝜌| =
2/(Cond(D(𝜌))− 1) = 2/(𝜇(D(𝜌))2 − 1) = 𝑂(𝜇(D(𝜌)))−2.

Let us give the following upper bound on the cardinal of the set 𝑉 𝜇:

Proposition B.10. There exists 𝐶 > 0 such that for any 𝜇 > 1, one has #(𝑉 𝜇) ≤ 𝐶𝜇(1 + log 𝜇).

Proof. By Lemma 2.7 of [38], there exists 𝐶 > 0 such that for any 𝑠 > 1, one has #(𝒯𝑠) ≤ 𝐶𝑠(1 + log 𝑠). The
stated result follows, since #(𝑉 𝜇) = 2#(𝒯(𝜇−𝜇−1)/2) and 𝒯(𝜇−𝜇−1)/2 ⊂ 𝒯𝜇. �

Appendix C. Scheme for the Dirichlet problem

In some numerical experiments of Sections 6.2–6.4, we consider the Monge–Ampère problem equipped with
the Dirichlet boundary condition (5.13), instead of the optimal transport boundary condition. Let us describe
how we adapt the scheme (1.30), or at least the discretization (1.23) of the Monge–Ampère operator, to this
setting.

The function 𝜓 : 𝜕𝑋 → R defining the Dirichlet boundary condition is assumed to be given. For any 𝑥 ∈ 𝒢ℎ

and 𝑒 ∈ Z𝑑 ∖ {0}, we define
ℎ𝑒(𝑥) := min{ℎ′ > 0 | 𝑥+ ℎ′𝑒 ∈ 𝒢ℎ ∩ 𝜕𝑋}.

Similarly to (1.11), we define the translation operator 𝑇 𝑒
ℎ : R𝒢ℎ → R𝒢ℎ , applied to a function 𝑢 : 𝒢ℎ → R, by

𝑇 𝑒
ℎ𝑢[𝑥] :=

{︃
𝑢[𝑥+ ℎ𝑒] if 𝑥+ ℎ𝑒 ∈ 𝒢ℎ and ℎ𝑒(𝑥) = ℎ,

𝜓(𝑥+ ℎ𝑒(𝑥)) else.

We then define the first- and second-order finite difference operators

𝛿𝑒
ℎ𝑢[𝑥] :=

𝑇 𝑒
ℎ𝑢[𝑥]− 𝑢[𝑥]
ℎ𝑒(𝑥)

, ∆̃𝑒
ℎ𝑢[𝑥] :=

2
ℎ𝑒(𝑥) + ℎ−𝑒(𝑥)

(︁
𝛿𝑒
ℎ𝑢[𝑥] + 𝛿−𝑒

ℎ 𝑢[𝑥]
)︁
,

as well as the approximations of the Laplacian and of the gradient

∆̃ℎ𝑢[𝑥] :=
𝑑∑︁

𝑖=1

∆̃𝑒𝑖

ℎ 𝑢[𝑥], 𝐷̃ℎ𝑢[𝑥] :=

(︃
𝛿𝑒𝑖

ℎ 𝑢[𝑥]− 𝛿−𝑒𝑖

ℎ 𝑢[𝑥]
2

)︃
1≤𝑖≤𝑑

.

Note that, under the assumption (1.10), the operators 𝑇 𝑒
ℎ , 𝛿𝑒

ℎ, ∆̃𝑒
ℎ, ∆̃ℎ, and 𝐷̃ℎ reduce respectively to the

operators 𝑇 𝑒
ℎ , 𝛿𝑒

ℎ, ∆𝑒
ℎ, ∆ℎ, and 𝐷ℎ defined in (1.11)–(1.13) at all points 𝑥 that are far enough from 𝜕𝑋. We

previously used the same construction for finite difference operators near the boundary of the considered domain
in [8, 9].

Similarly to (1.17)–(1.19), we define

𝐴𝑒
ℎ𝑢[𝑥] := 𝑎min|𝑒|2 ∨

(︂⟨
𝑒,𝐴

(︁
𝑥, 𝐷̃ℎ𝑢[𝑥]

)︁
𝑒
⟩
− ℎ

2
𝑎LF|𝑒|2∆̃ℎ𝑢[𝑥]

)︂
,

𝐵̃ℎ𝑢[𝑥] := 0 ∨
(︂
𝐵
(︁
𝑥, 𝐷̃ℎ𝑢[𝑥]

)︁1/𝑑

− ℎ

2
𝑏LF∆̃ℎ𝑢[𝑥]

)︂𝑑

,
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and, for any family 𝑣 of vectors of Z𝑑 ∖ {0},

∆̃𝑣
ℎ𝑢[𝑥] :=

(︁
∆̃𝑒

ℎ𝑢[𝑥]
)︁

𝑒∈𝑣
, 𝐴𝑣

ℎ𝑢[𝑥] :=
(︁
𝐴𝑒

ℎ𝑢[𝑥]
)︁

𝑒∈𝑣
.

Then the scheme that we use for the Dirichlet problem may be written as

𝑆ℎ
MABV1𝑢[𝑥] = 0 in 𝒢ℎ, (C.1)

where
𝑆ℎ

MABV1𝑢[𝑥] := max
𝑣∈𝑉ℎ

max
𝛾∈R𝑑(𝑑+1)/2

+
Tr(𝒟𝑣(𝛾))=1

𝐿𝑣,𝛾

(︁
𝐵̃ℎ𝑢[𝑥], ∆̃𝑣

ℎ𝑢[𝑥]−𝐴𝑣
ℎ𝑢[𝑥]

)︁
.

The complete study of the theoretical properties of this scheme, such as monotonicity and convergence, is outside
the scope of this paper.

In Section 6.4, we also apply the MA-LBR scheme, see Appendix A, to the Dirichlet problem. The scheme
The MA-LBR scheme in this setting may be written as

𝑆ℎ
MA-LBR-BV1𝑢[𝑥] = 0 in 𝒢ℎ, (C.2)

where we defined, similarly to (A.1) and (A.2),

𝑆ℎ
MA-LBR-BV1𝑢[𝑥] := 𝐵̃ℎ𝑢[𝑥]− Λ̃ℎ𝑢[𝑥], Λ̃ℎ𝑢[𝑥] := min

𝑣∈𝑉ℎ

𝐺
(︁

∆̃𝑣
ℎ𝑢[𝑥]−𝐴𝑣

ℎ𝑢[𝑥]
)︁
.

The operator 𝑆ℎ
MA-LBR-BV1 is intended to be applied to functions 𝑢 : 𝒢ℎ → R satisfying the admissibility con-

straint
Λ̃ℎ𝑢[𝑥] > 0, ∀𝑥 ∈ 𝒢ℎ, (C.3)

which is the natural counterpart to (A.4) in the Dirichlet setting.
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