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Abstract

In this paper, a variational framework is proposed for the constitutive update of thermomechanical constitutive models
in the special case where their input results from quantities directly updated by hyperbolic conservation laws. Both a
continuum and a consistent first order accurate discrete settings are derived. The originality of this work lies in that
the constitutive update is driven by the rates of some strain measure and the internal energy density in the continumm
setting, leading to a rate-type description of the local constitutive problem, and by the updated values at some discrete
time of these strain measure and internal energy density in the discrete setting. These quantities are updated by the
solution of a system of discrete conservation laws including the first principle of thermodynamics, ensuring that the
right shock speeds will be computed. This point is of crucial importance when simulating impact on structures for
instance. The proposed variational approach is illustrated for thermo-hyperelastic-viscoplastic solid media, especially
using the parameterization of the flow rule direction based on pseudo-stresses proposed by Mosler & co-workers.
The proposed discrete variational solver is then coupled with the second order accurate flux difference splitting finite
volume method, which permits to solve the set of conservation laws. Comparisons are performed on a set of test cases
with numerical solutions obtained with finite elements coupled to an explicit time-stepping and to a temperature-driven
variational constitutive update. They allow to show the good behavior of the proposed approach.

Keywords: Variational constitutive update, Hyperbolic conservation laws, Dissipative solid media,
Thermo-mechanics, Flux-difference splitting finite volume method, Thermo-hyper-elasto-viscoplasticity

1. Introduction

Many engineering applications require to perform numerical simulations of impact on structures involving dissipa-
tive solids. This is the case in a variety of important fields of application: crash, high-velocity impact such as ballistic
penetration, or high-speed forming processes. In these applications, the numerical simulations often involve the solu-
tion of both mechanical and thermal effects, generally in a coupled way. Different mechanisms of thermomechanical
coupling may occur, but the main one in the aforementioned applications results from large inelastic strains which
are generated and contribute to both the temperature rise and the drop of the mechanical strength due to thermal soft-
ening. Traditionally, authors prefer to solve thermal phenomena using the temperature T as main thermal unknown
[68], although the entropy is also sometimes used [2]. This is so mainly because the temperature is a measurable
quantity, and this has led to develop the modelling of thermal phenomena as a direct function of that quantity. Es-
pecially, thermomechanically coupled constitutive models are written for dissipative media in solid mechanics using
Helmholtz’s free energy [44, 83], which is a function of the temperature, while their constitutive updates are driven
with some strain measure and also the temperature [67, 68, 52], obtained from the solution of balance equations.
Generally, the latter consist of the heat equation and the linear momentum balance [68], whose weak forms are solved
using any discretization method for the spatial part like finite elements [6, 8] or particle methods [47], following either
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Lagrangian [17, 50, 3], Arbitrary-Lagrangian-Eulerian [7, 23, 26, 15] or Eulerian [41] descriptions, plus some explicit
time discretization scheme. In very fast processes, heat conduction effects can be neglected, then the heat equation
can be solved locally on the temperature increment.

However in simulations of impact phenomena, it is well known that the solution of the hyperbolic initial boundary
value problem may consist of both continuous and discontinuous waves [45, 76]. The accurate capturing of discon-
tinuous waves, especially shock waves, is of crucial importance to properly understand the mechanical phenomena
occuring within that medium. For solid-type media, a correct capturing of plastic waves will also allow for an ac-
curate assessment of the plastic strain field and hence that of residual stresses and distortions within the structure
[77, 53, 35, 37, 65]. But the heat equation traditionally solved when considering the temperature as main thermal un-
known is only valid for smooth solutions. When discontinuous solutions occur, a set of conservations laws including
the first principle of thermodynamics written on the total energy should rather be considered. This set of conservation
laws reduces to the well-known Rankine-Hugoniot jump conditions across any discontinuity [45], and ensures that the
right shock speeds will be computed once this system will have been discretized, while the use of the heat equation
does not ensure it. If the first principle of thermodynamics is to be used in place of the heat equation, the temperature
is not anymore the input variable of the thermomechanical constitutive update, and the design of such constitutive
update driven with quantities obtained from conservation laws should be considered.

The variational framework has emerged to be very convenient to build thermodynamically consistent and numer-
ically efficient constitutive updates, which are also known as variational constitutive updates [22, 60]. Following the
set of Standard dissipative solids [34], hence taking advantage of the description of the constitutive response through
both state and dissipation (pseudo-)potentials, the local constitutive problem was recast into an equivalent optimiza-
tion problem, from which many benefits can be exploited. Especially, the existence of solutions can be analyzed by
using the same tools originally designed for hyperelastic material models [4], well-developed optimization algorithms
can be reused, the Hessian matrix is now symmetric if a Newton scheme is used, and the minimum/maximum na-
ture of the optimal point of the functional can be used as an error indicator [57, 58, 61, 62] for adaptive methods.
Especially, Ortiz, Stainier and co-workers [82, 24, 72, 69, 70] introduced a variational formulation of the coupled
thermomechanical boundary-value problem for general dissipative solids. This principle relied on the one hand on a
two-field thermal formulation (an external temperature T , appearing in the heat equation, and an internal temperature
Θ obtained through a state law), whose equality is enforced as an internal constraint in the constitutive model, and
relaxed in state laws. On the other hand, an integration factor T/Θ weighting rate arguments of the pseudo-dissipation
potential was identified by considering a time rescaling of these quantities, that allowed to find a variational form to
the general thermomechanical rate problem, and recover the requisite symmetry of the strong form. The associated
incremental variational update was consistent with standard finite element codes, separating the local time-discrete
constitutive update performed pointwise at the integration points, from the solution of an incremental boundary value
problem giving the unknown deformation mapping and external temperature on a mesh. An extension of this work
to non-associated evolutions equations, especially to nonlinear kinematic hardening, and to any yield function being
positively homogeneous of degree one was then proposed by Mosler and co-workers [18, 5, 19]. Following former
works developed in the isothermal setting by these authors [55, 56, 54, 9], the potentially non-associative evolution
equations are a priori enforced by employing a suitable parameterization of the flow rule and the evolution equa-
tions using pseudo-stresses, yielding an unconstrained optimization problem. Such parameterization was also shown
to reduce the numerical complexity of variational constitutive update with respect to classical return-mapping algo-
rithms [9]. Besides, being thermodynamically consistent, these approaches allow to correctly model and compute the
non-constant partition of plastic work into heat and stored energy [38, 66, 72], in contrast with empirical approaches
inspired by the pioneering work of Taylor and Quinney [75], and followed in some other works [68, 81].

In the present work, we introduce a particular variational framework for the constitutive update of thermome-
chanical constitutive models which are driven by quantities directly updated by hyperbolic conservation laws. Both a
continuum and a consistent first order accurate discrete settings are derived. In the continuum setting, the constitutive
update is driven by the rates of some strain measure and the internal energy density, leading to a rate-type description
of the local constitutive problem. More precisely, a Lagrangian functional is built from the one initially considered
in [82, 70], and from the rate of the residual of the Legendre tranform of Helmholtz’free energy enforced to vanish
through a Lagrange multiplier. In the discrete setting, a first order accurate discrete variational constitutive update is
derived, whose update is driven by the increments of these strain measure and internal energy density. The parameter-
ization of the flow rule and evolution equations is performed with the concept of pseudo-stresses, following the work
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of Mosler and co-workers [9]. The proposed variational approach is illustrated with thermo-hyperelastic-viscoplastic
solid media, especially with the Johnson-Cook viscoplastic flow rule [39]. The main advantage of this new variational
formulation is that it is naturally compatible with any numerical scheme dedicated to the approximation of the solu-
tion of hyperbolic systems, like finite volumes [25, 48, 1], particle methods [29], Discontinuous Galerkin approaches
[20, 16], or finite element method [12], written in conservation form. Here, the second order accurate flux difference
splitting finite volume method [46, 36] is used, which permits to solve the set of conservation laws on examples in-
volving either small or large strains. Finally, a set of numerical tests are conducted to show the good behavior of
the proposed approach, especially comparisons are performed with numerical solutions obtained with classical finite
elements coupled with an explicit time-stepping and with a temperature-driven variational constitutive update [70, 71].

2. Thermo-mechanical initial boundary value problem

2.1. Conservation laws

2.1.1. Geometrical conservation law
We consider a continuum body Ω, whose motion is described by the mapping φ(X, t). This mapping relates the

position of a material point of coordinates X ∈ Ω0 in the initial configuration, to its current coordinates x ∈ Ω(t). In
the initial configuration, the domain Ω0 has a boundary denoted ∂Ω0, of outward unit normal N, while in the current
configuration, the domain Ω has a boundary denoted ∂Ω and n is the associated outward unit normal. Based on this
mapping, the rate of the deformation gradient two-point tensor Ḟ reads as the material gradient of the material velocity
vector v

Ḟ(X, t) = GRAD v ∀X ∈ Ω0, (1)

which can be rewritten as a geometrical conservation law [63, 77, 42]

Ḟ − DIV(v ⊗ 1) = 0. (2)

The material divergence DIV is computed with respect to initial coordinates X, and 1 is the identity of second order.
From Equation (1), it is evident that the material CURL of the deformation gradient F vanishes

CURL F = 0. (3)

Remark 1. The above system of conservation laws can be extended if required with conservation laws written on the
complementary minors of the deformation, as shown in the work of Bonet, Gil and co-workers [12, 29]. These minors
consist of the deformation gradient F, its cofactor H and the jacobian determinant J. Following the notations of these
authors, conservation laws associated with the two latter read

Ḣ − CURL(v × F) = 0 (4)

J̇ − DIV(HT · v) = 0. (5)

Such extension is interesting when considering nearly incompressible and truly incompressible materials [10, 30, 33]
governed by a polyconvex constitutive law [11]. The derivation of the variational principle in this work is not written
as a function of the three minors of the deformation, but only as a function of the deformation gradient. However, its
extension is straightforward and the formulation could thus be applied to the schemes proposed in [12, 29].

2.1.2. Other conservation laws
The conservations of the linear momentum and of the total energy (or first principle of thermodynamics) read in

their material form as

∂p
∂t
− DIV P = 0 (6)

Ė − DIV(PT · v) = 0 (7)
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where p = ρ0v denotes the density of linear momentum per unit undeformed volume, ρ0(X) = ρ(X, t = 0) is the
reference mass density, P denotes the first Piola-Kirchhoff stress tensor, and E is the total energy density defined as

E = E +
ρ0v2

2
(8)

where E refers to the internal energy density and K = ρ0v2/2 to the kinetic energy density. Equations (6) and (7)
are here written without any source term. Especially no heat flux density vector is considered in Equation (7), which
amounts to consider adiabatic transformations, and allows the whole system of equations to be hyperbolic. However,
this particular case has no consequences on the main purpose of this work.

2.1.3. First order system of conservation laws
Gathering Equations (2), (6) and (7) allows to form a system of conservation laws

∂U

∂t
+ DIVF = 0, (9)

where U and F denote the vector of conserved quantities and the flux vector respectively, defined as

U =


F
p
E

 ; F =


−v ⊗ 1
−P
−PT · v

 . (10)

System (9) also read in castesian coordinates as

∂U

∂t
+

3∑
α=1

∂Fα

∂Xα
= 0, (11)

with the flux vector Fα = F · Eα in the α-th material direction Eα, defined as

Fα =


−v ⊗ Eα

−P · Eα

−(PT · v) · Eα

 . (12)

It is important to note that System (9) reduces to the well-known Rankine-Hugoniot jump conditions across any
discontinuity of fields

S [U] = [F] · N, (13)

where the vectors U and F are defined by Equation (10), N is the material normal of the discontinuity surface moving
at speed S , and [•] denotes the jump of the quantity (•) across the discontinuity, such that [•] = (•)+ − (•)−. Clearly,
the discretization of System (9) with any conservative numerical scheme [45] will ensure that the right shock speeds
will be computed, since conditions (13) will be correctly approximated.

Regarding the flux vector (10), it is convenient to introduce the auxiliary vector

Q =


P
v
η

 (14)

of which the flux vector F(Q) is a function, and η denotes here the entropy density. The closure of the above system
of conservation laws (9) is performed by means of a set of constitutive equations, relating the vector of conserved
quantities U (10) to the auxiliary vector Q (14). Especially, stresses P involved in the auxiliary vector Q are functions
of both the deformation gradient F and the internal energy density E

P = G(F, E(F, η,Z)) (15)
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where G denotes some functional defining the constitutive response, and Z denote a set of internal variables describing
dissipative phenomena. The internal energy density E appearing as an argument of the functional G in Equation (15) is
deduced from Equation (8), provided the total energy density and the linear momentum density are updated from their
respective conservation laws (7) and (6). Besides, Systems (9) or (11) must also be supplemented with appropriate
initial and boundary conditions.

2.2. Constitutive laws for thermomechanical dissipative solids

2.2.1. General framework
Following the class of Generalized Standard Materials [34], we assume the existence of a Helmholtz free energy

density potential W(F,T,Z) which is a function of the deformation gradient F, the temperature T , and some internal
state variables Z describing dissipative phenomena. Following [28, 44], Helmholtz’s free energy W is a convex
function of F and Z, concave with respect to T , and contains the zero. It is also assumed the existence of a dissipation
pseudo-potential φ(Ḟ, Ż; F,Z,T ), which is a convex function of its arguments, positive, and vanishes at zero.

Thermodynamic forces consist of the first Piola-Kirchhoff stress tensor P conjugate to the deformation gradient
F, and of forces Y conjugate to internal variables Z. These thermodynamic forces can be additively decomposed into
reversible and irreversible components [83]:

P = Prev + Pirr

Y = Yrev + Yirr (16)

such that their reversible components are conjugate to state variables (F,Z) through Helmholtz’s free energy, and their
irreversible components are conjuguate to the rate of these state variables through the dissipation pseudo-potential:

Prev =
∂W
∂F

, Pirr =
∂φ

∂Ḟ

Yrev =
∂W
∂Z

, Yirr =
∂φ

∂Ż

(17)

Since internal variables should not produce any work, i.e. Y · Ż = 0, ∀Ż, it follows that

Yrev + Yirr = 0. (18)

Following (18), evolutions laws of internal variables are obtained as

∂W
∂Z

+
∂Φ

∂Ż
= 0, (19)

and from (16), the first Piola-Kirchchoff stress tensor P reads:

P = Prev + Pirr =
∂W
∂F

+
∂Φ

∂Ḟ
. (20)

Next, the local thermal equilibrium is assumed to be always verified. The consequence is that the entropy density η is
given by its sole reversible component:

η = −
∂W
∂T

, (21)

and is conjuguate to the temperature T through Helmholtz’s free energy. Finally, the second law of thermodynamics
is introduced, that reads in the absence of heat conduction as

Dint = P : Ḟ − (ηṪ + Ẇ) ≥ 0, (22)

where Dint denotes the mechanical dissipation that should be non-negative, which is caused by the dissipative forces
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Pirr and Yirr, as shown when combining with Equations (16) and (17):

Dint = Pirr : Ḟ + Yirr · Ż ≥ 0. (23)

3. Variational formulation of the thermomechanical local constitutive problem

Following the works of Ortiz, Stainier and co-workers [82, 70], we start with the following functional

D(Ḟ, η̇, Ż,T ; F, η,Z) = Ė(F, η,Z) − T η̇ + φ(Ḟ, Ż; F,Z,T ) (24)

where Ė, η̇ and φ are the rate of internal energy density, the rate of entropy density and the dissipation pseudo-potential
respectively. Since the reversible power per unit volume received by the system ẇτ can be defined as

ẇτ = Ė(F, η,Z) − T η̇ = Prev : Ḟ + Yrev : Ż, (25)

the functional (24) can thus be interpreted as the sum of the two homogeneous terms representing a power per unit
volume:

D(Ḟ, η̇, Ż,T ; F, η,Z) = ẇτ + φ. (26)

The first one is associated with reversible processes, the other is associated with irreversible processes [62]. Another
interpretation of the functional D (24) proposed by [18] in the case of finite elastoplasticity is that it corresponds to
the stress power P : Ḟ.

One way among others to combine the above functional with a description of the reversible part of the constitutive
response through Helmholtz’s free energy W(F,T,Z) is to introduce the residual of the rate of the associated Legendre
transform, enforced to vanish through a Lagrange multiplier. We are then led to introduce the following Lagrangian
functional

L(q̇, λ; q) = Ė − T η̇ + φ(Ḟ, Ż; F,Z,T ) + λ
d
dt

(Tη + W(F,T,Z) − E) (27)

where the following state vector q = {E,F, η,Z,T } has been introduced, which is assumed to be known and fixed
here, and λ denotes the Lagrange multiplier. Moreover, it is assumed that the values of both the rate of deformation
gradient Ḟ and the rate of internal energy density Ė are given and known from the set of conservation laws (9). The
optimization problem defined with this Lagrangian functional thus reads

W = stat
η̇,Ṫ ,λ

inf
Ż

L(q̇, λ; q) (28)

where the variable with respect to which the stationarity conditions are computed are the rate of entropy density η̇,
the temperature rate Ṫ , the Lagrange multiplier λ, and the rate of internal variables Ż. Stationarity conditions of this
Lagrangian functional yields

stat
η̇

L ⇔ −T + λT = 0 (29)

stat
Ṫ

L ⇔ λ

(
η +

∂W
∂T

)
= 0 (30)

stat
λ

L ⇔
d
dt

(Tη + W(F,T,Z) − E) = 0 (31)

inf
Ż

L ⇔
∂φ

∂Ż
+ λ

∂W
∂Z

= 0 (32)

The stationarity with respect to η̇ (29) gives the expected result of the Lagrange multiplier which is equal to unity
λ = 1. Substitution of Equation (29) into Equations (30) and (32), namely the stationarities with respect to the
temperature rate and the rate of internal variables, allows to recover the definition of the entropy (21) and that of the
evolution equations of internal variables (19) respectively. The optimization problem (28) is thus formulated as a
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rate-type problem, because only rate quantities appears in the optimization variables (apart the Lagrange multiplier),
and the state vector q is considered fixed.

Remark 2. Substitution of the solved Lagrange multiplier (λ = 1) into the Lagrangian functional (27) allows to
recover the functional initially considered in the works of Ortiz, Stainier and co-workers [82, 70]

L(λ = 1) = Ẇ + Ṫη + φ. (33)

The reason why this Lagrange multiplier is kept as an unknown of the optimization problem (28) will appear more
explicitly when deriving the incremental variational constitutive update in Section 4.

Remark 3. The stationarity equation with respect to the temperature rate (30) allows to recover the definition of the
entropy. This is made possible because the dissipation pseudo-potential φ(Ḟ, Ż; F,Z,T ) is not a function of Ṫ , but
only of the temperature T .

Remark 4. Previous variational principles of the coupled thermomechanical problem [82, 70, 18] relied on a two-
field temperature formulation, an external temperature arising in the heat equation plus some internal temperature
conjuguate to the entropy density through the thermodynamic potential. Equality of both was imposed as an internal
constraint weakly. Observe now that such two-field temperature formulation is not required anymore to recover the
sought state and evolution constitutive equations, thus it becomes useless.

Finally, the first Piola-Kirchhoff stresses are computed taking the partial derivative of the optimized functional
with respect to the rate of the deformation gradient Ḟ:

∂W

∂Ḟ
= λ

∂W
∂F

+
∂φ

∂Ḟ
= Prev + Pirr = P (34)

which is identical to [82, 70].

4. A first order accurate discrete variational constitutive update

From the previous continuous variational principle, we are now interested in deriving an incremental variational
constitutive update. Consider a discrete time increment [tn, tn+1], the material state vector qn = {En,Fn, ηn,Zn,Tn}

known at time tn, and data {E,F}n+1 known and updated at time tn+1 through the solution of the discrete conservation
laws. Then, an incremental functional I(qn+1, λn+1; qn) is sought in such a way that it approximates the integral of the
Lagrangian functional L (27) over the time increment ∆t:

I(qn+1, λn+1; qn) ≈
∫ tn+1

tn
L(q̇(τ), λ(τ); q(τ))dτ

= ∆E − Tn∆η + ∆tφ
(
∆F
∆t
,
∆Z
∆t

; Fn+α,Zn+α,Tn+α

)
+ λn+1∆(Tη + W(F,T,Z) − E)

(35)

where the operator ∆(·) = (·)n+1−(·)n denotes the finite difference between the values of the quantity (·) at times tn+1 and
tn. Parameter arguments of the dissipation pseudo-potential after the semi-colon are computed at time tn+α = tn + α∆t
such that (·)n+α = (1 − α)(·)n + α(·)n+1, α ∈ [0, 1]. Indeed, the most part of the numerical error performed in the
approximation (35) may come from the integral of the pseudo-potential φ. It has been shown in [14] that the evaluation
at some intermediate time of these parameter arguments may reduce this numerical error, the optimal value of α will
thus depend on the chosen material model and parameters. Due to that, but also regarding the temperature evaluated
at time tn in the second term of (35), the numerical scheme here derived thus appears to be semi-implicit.

The incremental variational update takes thus the following form

Wn+1 = stat
(η,T,λ)n+1

inf
Zn+1

I(qn+1, λn+1; qn) (36)
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where the incremental functional (35) is optimized with respect to the entropy density, the temperature, the Lagrange
multiplier and the set of internal variables, all evaluated at time tn+1. The stationarity conditions in the discrete case
thus read:

stat
ηn+1

I ⇔ −Tn + λn+1Tn+1 = 0 (37)

stat
Tn+1

I ⇔ ∆tα
∂φ

∂T

(
∆F
∆t
,
∆Z
∆t

; Fn+α,Zn+α,Tn+α

)
+ λn+1

(
ηn+1 +

∂W
∂T

∣∣∣∣∣
n+1

)
(38)

stat
λn+1

I ⇔ ∆(Tη + W(F,T,Z) − E) = 0 (39)

inf
Zn+1

I ⇔
∂φ

∂Ż

(
∆F
∆t
,
∆Z
∆t

; Fn+α,Zn+α,Tn+α

)
+ λn+1

∂W
∂Z

∣∣∣∣∣
n+1

= 0 (40)

The stationarity with respect to the entropy density (37) gives the updated value of the Lagrange multiplier

λn+1 =
Tn

Tn+1
, (41)

which is not equal to unity anymore, but is close to it, especially since the absolute temperatures are considered here.
Introducing the Lagrange multiplier (41) into stationarity equations (38) and (40) yields the discrete update of the
entropy density and of the discrete evolution equations of internal variables:

ηn+1 = −
∂W
∂T

∣∣∣∣∣
n+1
−

Tn+1

Tn
∆tα

∂φ

∂T

(
∆F
∆t
,
∆Z
∆t

; Fn+α,Zn+α,Tn+α

)
︸                                                  ︷︷                                                  ︸

O(∆t)

(42)

∂φ

∂Ż

(
∆F
∆t
,
∆Z
∆t

; Fn+α,Zn+α,Tn+α

)
+

Tn

Tn+1

∂W
∂Z

∣∣∣∣∣
n+1

= 0 (43)

Observe that the definition of the entropy density (21) is obtained in Equation (42) up to a term which is of the order
of ∆t, which is the signature of the first order accuracy of this variational integrator. This is an approximation, some
sort of numerical relaxation of the thermal equilibrium, but that tends to zero as ∆t goes to zero, hence ensuring the
consistency of the variational integrator. Next, the discrete evolution equations (43) are identical to these obtained in
[82, 70]. As the time step ∆t goes to zero, this expression also tends to its continuous counterpart (32).

The first Piola-Kirchhoff stresses are then computed taking the partial derivative of the optimized functional (35)
with respect to the updated deformation gradient Fn+1:

∂W

∂F

∣∣∣∣∣
n+1

=
Tn

Tn+1

∂W
∂F

∣∣∣∣∣
n+1

+
∂φ

∂Ḟ

(
∆F
∆t
,
∆Z
∆t

; Fn+α,Zn+α,Tn+α

)
(44)

= Prev
n+1 + Pirr

n+1 = Pn+1 (45)

where the Lagrange multiplier (41) weights the partial derivative of the free energy with respect to the deformation
gradient in the definition of reversible stresses in the discrete case, which is another consequence of the chosen
approximation (35) and of results of the continuous principle (34).

Remark 5. If the Lagrange multiplier λn+1 would have been set to unity, then the incremental functional (35) would
have reduced to that of [82, 70], up to a term of second order. However, this is not the case, the variational integrator
derived is therefore original, and different from that of these works. More precisely, the incremental functional (35)
expressed with the optimal value of the Lagrange multiplier reads

I

(
λ =

Tn

Tn+1

)
=

Tn

Tn+1
∆W + ∆E

∆T
Tn+1

+ ηn∆T
Tn

Tn+1
+ ∆tφ. (46)

Remark 6. A ratio of updated and previous values of the temperature appears here through the expression of the
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Lagrange multiplier (41), which is reminiscent of the one already appearing in the discrete integration factor of the
discrete incremental potential introduced in [82, 70]. However, this ratio serves different purposes in this work and in
that of these authors.

5. Application to thermo-hyperelastic-viscoplastic solid media

5.1. General form of Helmholtz’s free energy

We are interested in this work in the particular case of thermo-hyperelastic-viscoplastic solid media. After the
pioneering work of Lee [43], the kinematics of such media follows a multiplicative decomposition of the deformation
gradient into an elastic part Fe and a viscoplastic part Fp:

F = Fe · Fp, det Fe > 0, det Fp > 0. (47)

Next, from the elastic part of the deformation gradient, the elastic right Cauchy-Green strain tensor

Ce = (Fe)T · Fe (48)

is generally used to compute stresses, in order to satisfy to material frame indifference. The set of internal vari-
ables Z now consists of the viscoplastic part of the deformation gradient Fp, some strain-like second-order tensor αk

associated with kinematic hardening, and a scalar strain-like variable αi associated with isotropic hardening, hence
Z = {Fp,αk, αi}. From this, Helmholtz’s free energy is then defined by summing several contributions

W(F,T,Z) = We(Ce,T ) + W p(Fp,αk, αi,T ) + W th(T ) (49)

where We(Ce,T ) is the elastically stored energy (recoverable), W p(Fp,αk, αi,T ) is the plastically stored energy (not
recoverable), and W th(T ) is the thermally stored energy due to heat capacity. State laws associated with strain-like
hardening variables read as

Qk = −
∂W
∂αk

; Qi = −
∂W
∂αi

, (50)

where Qk and Qi are the thermodynamic forces associated with the kinematic and isotropic hardenings respectively.
The thermally stored energy W th(T ) is classically chosen after [68] as

W th(T ) = ρ0C0

(
(T − T0) − T ln

T
T0

)
, (51)

where ρ0C0 is some reference volumic heat capacity, and T0 refer to some reference temperature. Moreover, in order
to account for different material response of volumetric and isochoric parts, the isochoric elastic deformation gradient
and right Cauchy-Green strain tensors are introduced, such that

F̄e = (Je)−1/3Fe, Je = det Fe, det F̄e = 1 (52)

C̄e = (F̄e)T · F̄e (53)

The elastically stored energy is then decomposed additively into volumetric and isochoric parts

We(Ce,T ) = WH(Je,T ) + W̄e(C̄e,T ) (54)

where the volumetric part WH(Je,T ) depends on the elastic jacobian determinant Je and on the temperature T , while
the isochoric component W̄e(C̄e,T ) is a function of both the isochoric elastic Cauchy-Green strain tensor C̄e and the
temperature T .

Remark 7. In the sequel, it will be assumed for convenience that the plastic flow is isovolume, namely

J = Je, Jp = det Fp = 1, (55)
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hence WH(Je,T ) ≡ WH(J,T ).

5.2. Hyperelasticity

The isochoric component W̄e(C̄e,T ) describes hyperelastic distortions. A family of rank-one convex stored ener-
gies was proposed in [27], and reused in [13], which reads

W̄e(Ī1, Ī2,T ) =
µ(T )

4

[
−2a(Ī1 − 3) +

(1 + a)
3

(Ī2 − 9)
]

(56)

where a is an adjustable parameter, and invariants Ī1, Ī2 are defined such as

Ī1 = tr C̄e, Ī2 = tr [(C̄e)2]. (57)

The shear modulus µ(T ) may also depend on temperature, and is often described in terms of the Young modulus E
and Poisson’s ratio ν as

µ =
E

2(1 + ν)
. (58)

In the range a ∈
[
−1, 1

2

]
, the authors of [27] showed that the resulting first order system of equations is hyperbolic. In

the particular case where a = −1, a more classical neo-Hookean material is obtained, whose distortional free energy
reads

W̄e(Ī1,T ) =
µ(T )

2
(Ī1 − 3). (59)

Notice that polyconvex hyperelastic models (e.g. Mooney-Rivlin) can also be used. The isochoric elastic free energy
W̄e then becomes a function of the three minors of the elastic deformation, the system of conservation laws (9) is then
extended to the other deformation minors, Equations (4) and (5), and the resulting first order system of equations is
also shown to be hyperbolic [12].

5.3. Equation of state

The volumetric component WH(J,T ) allows to introduce an equation of state, which we shall always choose as
being convex to ensure hyperbolicity of the volumetric part of the first order system of equations. Moreover, this will
generate shock waves in the simulation. A well-known equation of state is that of Mie-Gruneı̈sen [51, 32], establishing
a nonlinear relationship between the pressure and the internal energy which is only a function of J:

J
dp
dE

∣∣∣∣∣
J=constant

= −Γ0Jq (60)

where Γ0 is the Grüneisen constant. Once this expression integrated, and following [12], the volumetric free energy

WH(J,T ) = U(J) − TηR(J) (61)

is expressed as a function of the volumetric part of the internal energy U(J) introducing thermoelastic effects

U(J) =
κ

2
(J − 1)2 + ρ0CΓ0T0(J − 1), (62)

where κ is the bulk modulus, and as a function of some reference entropy depending on J written after integration of
(60) as

−ηR(J) = ρ0CΓ0
(1 − Jq)

q
(63)

if q ∈]0, 1], or that reads as −ηR(J) = −ρ0CΓ0 ln J if q = 0, hence obtaining a response of fluid. From (61), the
hydrostatic pressure defined as

P =
∂WH

∂J
(64)
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reads
P = κ(J − 1) − ρ0CΓ0(T Jq−1 − T0), (65)

from which the effective bulk modulus including thermoelastic effects reads

κ̃ =
dp
dJ

∣∣∣∣∣
J=1

= κ + ρ0CT0Γ0(1 − q). (66)

Another simple expression of equation of state is the following

WH(J,T ) =
κ

2
(ln J)2 − ρ0CΓ0(T − T0) ln J, (67)

where the logarithm of the jacobian has appeared, leading to the following expression of the hydrostatic pressure

P = κ
ln J

J
−
ρ0CΓ0(T − T0)

J
. (68)

Such equation of state will be used in Section 7.3 for comparison purpose with finite element temperature-based
numerical solutions in the large strain framework.

5.4. Continuous variational formulation of the constitutive model

5.4.1. Kinematical approach
The viscoplastic velocity gradient Lp = Ḟp · (Fp)−1, defined in the intermediate configuration, is generally chosen

to write the viscoplastic flow rule
Lp = ṗM, (69)

where M is the viscoplastic flow direction, and ṗ denotes the effective viscoplastic strain rate or flow intensity. From
Equations (69), the set of internal variables Z = {Fp,αk, αi} considered for viscoplastic solids can be reduced to
consider only the following rate of internal variables Ż = { ṗ,M}, that is the effective viscoplastic strain rate and the
flow direction. Indeed, the latter enters the flow rule defining Fp by Equation (69), but is also part of that associated
with the kinematic strain variable αk, namely Hk(M). Such approach could be called a kinematical one, and was
followed in [24, 14, 70].

The stationarity conditions (32) is thus written with these two variables. The first one reads

∂L

∂ṗ
=
∂W
∂p

+
∂φ

∂ṗ
= 0. (70)

Since the deformation mapping is assumed to be constant during the constitutive update Ḟ = 0, the rate of the elastic
part of the deformation gradient (47) reads

Ḟe = −Fe · Lp, (71)

hence the differential of the elastic part of the free energy can be expressed (at fixed temperature T ) as

Ẇe
∣∣∣
Ṫ=0 =

∂We

∂Fe : Ḟe = −

[
(Fe)T ·

∂We

∂Fe

]
: Lp = −Σ : Lp, (72)

where Σ = (Fe)T · ∂We

∂Fe is the Mandel stress tensor. Combining Equations (69) and (72) yields the contribution of the
elastic part of the free energy to the first term of (70)

∂We

∂p
= −Σ : M. (73)

Considering state equations (50) for the contribution associated with the plastic part of the free energy, the stationarity
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condition (70) finally simplifies as

∂L

∂ṗ
= −Σ : M + Qi −Qk : Hk(M) +

∂φ

∂ṗ
= 0. (74)

The stationarity condition written with respect to the flow direction M then reads

∂L

∂M
=
∂Ẇ
∂M

= 0. (75)

However, the above minimization has to comply with physical constraints resulting on the one hand from the flow
rule (and det Fp > 0), and on the other hand from evolution equations relating stresses to the internal variables αk and
αi. For instance, for a von Mises-type yield criterion, the flow direction must satisfy the following constraints

M = MT , tr[M] = 0, M : M =
3
2
, (76)

which should be taken into account as equality-type constraints in the optimization problem infM L. This can be done
using a Lagrange multiplier approach, as it was shown analytically in the isothermal setting in [60]. More precisely,
an analytical treatment of this minimization was only found to be possible when identifying an additive structure
between the updated elastic strain and its elastic predictor, which is the case for the small strain framework, and can
be extended to the large strain one using Hencky hyperelasticity which relies on the logarithmic strain. Such approach
is restricted to associative plasticity, i.e. Hk = −M, the resulting flow rule direction reads in this case

M =

√
3
2

dev[Σ −Qk]
‖dev[Σ −Qk]‖

. (77)

The variational integrator was then identified to the well-known radial return algorithm [80]. To account for more
general hyperelastic laws, a spectral decomposition of the flow direction M in its principal values and directions was
proposed in [24]. The minimization is then performed numerically, then an integrator different from the radial return
is obtained.

5.4.2. Parameterization of the flow rule direction based on pseudo-stresses
In the work of Mosler and co-workers [55, 56, 9], another parameterization of the flow rule direction has been

introduced. Pseudo-stresses Σ̃ are introduced, which are a priori different from their physical counterparts, that is
Σ̃ , (Σ −Qk), and serve for the parameterization of the flow direction, namely

M = M(Σ̃). (78)

Such parameterization is compatible with the equivalent stress measure Σeq, defining the shape of the yield function,
which are positively homogeneous functions of degree one, satisfying

Σeq(cA) = cΣeq(A), ∀A, ∀c ∈ R+. (79)

A wide range of yield criteria can then be accounted for, especially anisotropic ones. In order to define the flow
direction (78), it is convenient to introduce some flow function g(Σ,Qk,Qi,T ), which is a function of thermodynamic
forces Y ≡ Yirr = {Σ,Qk,Qi} and whose purpose is to define the flow direction of the strain rate variables Ż =

{Lp, α̇k, α̇i}. More precisely, in the absence of irreversible stresses Pirr, a dual dissipation pseudo-potential of φ(Ż) can
be defined through the following Legendre transform

φ∗(Y) = sup
Ż

(Y · Ż − φ(Ż)), (80)
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such that the associated evolution equations can be written as

Ż =
∂φ∗

∂Y
. (81)

The dual dissipation pseudo-potential φ∗(Y) is a convex function of its arguments, and defines a family of equipotential
surfaces on which any point yields the same dissipation and effective viscoplastic strain rate. This potential may
depend on flux variables Y through the flow function g(Y,T ), so that the evolution laws read:

Ż =
∂φ∗

∂g
∂g
∂Y

= ṗ
∂g
∂Y

(82)

where
ṗ =

∂φ∗

∂g
(83)

denotes the effective viscoplastic strain rate and ∂g/∂Y is the flow direction, normal to the flow function g. It is usual
to consider such flow function g of the form [18]:

g(Σ,Qk,Qi,T ) = f (Σ,Qk,Qi,T ) + f̃ (Qk) (84)

to account for non-associativity of the kinematic hardening with respect to the yield function f (Σ,Qk,Qi,T ), of the
form

f (Σ,Qk,Qi,T ) = Σeq(Σ −Qk) − Qi(αi,T ) − σy(T ), (85)

where σy is the tensile yield stress. The yield function allows to define the space of elastic stresses:

CΣ = {(Σ,Qk,Qi,T )| f (Σ,Qk,Qi,T ) ≤ 0} (86)

Adopting pseudo-stresses to parameterize the flow direction (78), and accounting for the property (79), the dual
evolutions laws (82) are then written as

Lp = ṗ
∂g
∂Σ

∣∣∣∣∣
Σ̃

= ṗ
∂ f
∂Σ

∣∣∣∣∣
Σ̃

(87)

α̇k = ṗ
∂g
∂Qk

= −Lp + ṗ
∂ f̃
∂Qk

(88)

α̇i = ṗ
∂g
∂Qi

= −ṗ (89)

where the derivative ∂ f
∂Σ

∣∣∣∣
Σ̃

means it is evaluated with Σ = Σ̃. Accordingly, the stationarity equation (74) is rewritten as

∂L

∂ṗ
= −(Σ −Qk) :

∂ f
∂Σ

∣∣∣∣∣
Σ̃

+ Qi −Qk :
∂ f̃
∂Qk

+
∂φ

∂ṗ
= 0, (90)

and simplifies accounting for the formula Σeq = Σ : ∂ f
∂Σ

[55], resulting from the positive homogeneity of the equivalent
stress Σeq, as

− f − σy −Qk :
∂ f̃
∂Qk

+
∂φ

∂ṗ
= 0. (91)

For rate-independent elastoplasticity, the dissipation pseudo-potential φ identifies to the mechanical dissipation

Dint = ṗ
(
σy + Qk :

∂ f̃
∂Qk

)
≥ 0 (92)
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hence Equation (91) reads − f = 0, and ensures that the stress state lies on the boundary of the elastic convex during
plastic loading. It should then be added the consistency condition ḟ = 0, to determine the cumulated plastic strain p (or
plastic multiplier). In rate-dependent plasticity, or viscoplasticity, the expression of the dissipation pseudo-potential φ
allows the existence of viscous or overstresses, from which the viscoplastic flow follows.

The stationarity condition (90) should be supplemented with another one written on the pseudo-stresses Σ̃, which
in a sense, replaces Equation (75), such that

∂L

∂Σ̃
=
∂Ẇ
∂Σ̃

= − ṗ(Σ −Qk) :
∂2 f
∂Σ∂Σ

∣∣∣∣∣∣
Σ̃

= 0. (93)

Equation (75) enforces the correct flow direction, which is compatible with the stresses. Hence, with such parame-
terization, non-associative evolution equations are a priori prescribed, and it results in an unconstrained optimization
problem. However, the counterpart of this approach is that it requires to introduce the dual dissipation pseudo-potential
φ∗, and therefore the flow function g, in addition to the primal dissipation pseudo-potential φ. The former allows on
the one hand to account for constraints put on the flow direction for a certain range of yield functions by introducing
pseudo-stresses, and on the other hand ensure its compatibility with evolution equations. The latter permits to actually
introduce viscous (or viscoplastic) effects in the computation of the viscoplastic strain rate ṗ.

To complete the solution process, the stationarity condition (31) associated with the thermal part of the problem
should be added to Equations (90) and (93).

5.5. Discrete variational formulation of the constitutive model

Following the parameterization of Mosler and co-workers [55, 56, 9] with pseudo-stresses, the incremental func-
tional I (35) written with the expression of the Lagrange multiplier (41) can be expressed as

I(T,∆p, Σ̃) = ∆E − Tn∆η + ∆tφ
(
∆p
∆t
, pn+α,Tn+α

)
+

Tn

Tn+1
∆(Tη + W(Ce, p,T, Σ̃) − E) (94)

where the increment of internal energy density ∆E, and the updated deformation gradient Fn+1 are assumed fixed and
known from the solution of discrete conservation laws. The unknown vector at time tn+1 is defined as

qn+1 = {T,∆p, Σ̃}n+1. (95)

For the sake of simplicity, the functional (35) is here simplified for the sole isotropic hardening, the reader is referred
to [54] for the details about kinematic hardening. Taking the exponential update formula from [79] for the viscoplastic
part of the deformation

Fp
n+1 = exp

(
∆p

∂ f
∂Σ

∣∣∣∣∣
Σ̃n+1

)
· Fp

n (96)

permits to preserve the isochoric nature of the viscoplastic deformation. From Equation (96), the updated elastic part
of the deformation gradient reads

Fe
n+1 = Fe

trial · exp
(
−∆p

∂ f
∂Σ

∣∣∣∣∣
Σ̃n+1

)
, Fe

trial = Fn+1 · (Fp
n )−1. (97)

After Equation (40), the discrete stationarity equation of the incremental functional (94), with respect to the increment
of cumulated viscoplastic strain ∆p is written as

∂I

∂∆p
=

Tn

Tn+1

∂W
∂∆p

∣∣∣∣∣
n+1

+

[
∂φ

∂ṗ

(
∆p
∆t
, pn+α,Tn+α

)
+ α∆t

∂φ

∂p

(
∆p
∆t
, pn+α,Tn+α

)]
= 0. (98)
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The partial derivative of the free energy with respect to ∆p reads

∂W
∂∆p

∣∣∣∣∣
n+1

=
∂We

∂∆p

∣∣∣∣∣
n+1

+
∂W p

∂∆p

∣∣∣∣∣
n+1

(99)

∂We

∂∆p

∣∣∣∣∣
n+1

= −2
[
Ce

trial · exp
(
−∆p

∂ f
∂Σ

∣∣∣∣∣
Σ̃n+1

)
·
∂We

∂Ce

∣∣∣∣∣
n+1

]
: D exp

(
−∆p

∂ f
∂Σ

∣∣∣∣∣
Σ̃n+1

)
:
∂ f
∂Σ

∣∣∣∣∣
Σ̃n+1

(100)

∂W p

∂∆p

∣∣∣∣∣
n+1

= Qi (101)

where D exp(A) stands for the derivative of the exponential mapping of the matrix A, computed with standard proce-
dures [59]. The partial derivative ∂We

∂Ce is given after the splitting (54) between isochoric and volumetric contributions
as

∂We

∂Ce =
∂W̄e

∂Ce + P
J
2

(Ce)−1, (102)

where the hydrostatic pressure P is defined by Equation (64), and may follow the expressions given by the Mie-
Grüneisen equation of state (65) or by Equation (68).

The discrete stationarity equation of (94) with respect to the pseudo-stresses Σ̃n+1 gives

∂I

∂Σ̃n+1
=

∂We

∂Σ̃n+1
= −2∆p

[
Ce

trial · exp
(
−∆p

∂ f
∂Σ

∣∣∣∣∣
Σ̃n+1

)
·
∂We

∂Ce

∣∣∣∣∣
n+1

]
: D exp

(
−∆p

∂ f
∂Σ

∣∣∣∣∣
Σ̃n+1

)
:
∂2 f
∂Σ∂Σ

∣∣∣∣∣∣
Σ̃n+1

= 0. (103)

The consistency of the discrete equations (98) and (103) with respect to their continuous counterparts (90) and (93)
are shown in [56, 9], and are not repeated here. Again, the discrete scalar equation (39) should be added to Equations
(98) and (103) to obtain a balanced system of equations, solved on the unknown vector qn+1 (95). If a Newton method
is used, the following linear system of equations should be solved at each iteration k

K(k)δq(k) = −R(k), (104)

with δq(k) = q(k+1) − q(k), and with the Hessian matrix and the residual vector expressed as

K(k) =


∂2I
∂T 2

∂2I
∂T∂∆p

∂2I

∂T∂Σ̃
∂2I

∂∆p∂T
∂2I
∂∆p2

∂2I

∂∆p∂Σ̃
∂2I

∂Σ̃∂T
∂2I

∂Σ̃∂∆p
∂2I

∂Σ̃∂Σ̃

 , R(k) =


∂I
∂T
∂I
∂∆p
∂I
∂Σ̃


(k)

, (105)

the Hessian matrix being symmetric. The entries of the tangent matrix K(k) associated with unknowns {∆p, Σ̃} are
already detailed in [56, 9], and are not repeated here, while others involving partial derivative with respect to tem-
perature can be derived in a straightforward manner. Notice also that partitioned schemes can be adopted to solve
System (104), such as Gauss-Seidel, staggered or nested approaches [40]. Finally, it is convenient to parameterize the
pseudo-stresses Σ̃ in the solution process with spherical coordinates to enforce ‖Σ̃‖ = 1, as shown in [9], which allows
to eliminate any singularity of the Hessian matrix.

Since the dissipation pseudo-potential φ is not a smooth function for ∆p = 0, a prediction-correction scheme is
classically followed. A thermoelastic prediction is first performed by solving the discrete Legendre transform (39),
with the updated trial deformation gradient Fe

trial (97), and ∆p = 0. Next, the slope of the incremental potential ∂I
∂∆p

(98) is evaluated for ∆p = 0+. Since I is convex with respect to ∆p, if the slope ∂I
∂∆p < 0 is negative, the optimal ∆p is

positive. Actually, it amounts to check that f trial
n+1 > 0. Then, the system consisting of Equations (39), (98) and (103) is

solved, for instance through a Newton Method (104). If ∂I
∂∆p > 0, the optimal ∆p is zero, since negative values of ∆p

are prohibited as it would lead to an infinite dissipation.
Once the unknown vector qn+1 has been updated, the plastic part of the deformation gradient is updated with the

exponential formula (96), the elastic part of the deformation gradient and the elastic right Cauchy-Green strain tensor
are computed with Equations (47) and (48). Then, following Equation (44), the second Piola-Kirchhoff stress tensor
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is computed as follows

Sn+1 = 2
Tn

Tn+1

∂W
∂C

∣∣∣∣∣
n+1

= 2
Tn

Tn+1
(Fp

n+1)−1 ·
∂W
∂Ce

∣∣∣∣∣
n+1
· (Fp

n+1)−T , (106)

while the entropy density ηn+1 can be updated with Equation (42).

5.6. Fully isotropic constitutive models

If both the elastic response and the yield function are isotropic, on the one hand both the physical Mandel stresses
Σ and the pseudo-stresses Σ̃ tensors are symmetric, and on the other hand they share the same eigenbasis with the
elastic right Cauchy-Green updated Ce and the trial elastic strains Ce

trial:

Σ =

3∑
k=1

ΣkBtrial
k , Σ̃ =

3∑
k=1

Σ̃kBtrial
k

Ce =

3∑
k=1

λCe

k Btrial
k , Ce

trial =

3∑
k=1

λ
Ce

trial
k Btrial

k , Btrial
k = Ntrial

k ⊗ Ntrial
k

(107)

therefore only two unknowns are required to span all admissible flow directions if a parameterization with spherical
coordinates is used [9]. Next, the computation of the exponential mapping of a second order tensor (96) and its
derivative involved in Equations (100) and (103) can be avoided, which is quite convenient and computationally more
efficient.

For a von Mises-type yield function, the flow rule is traceless, hence it requires that the pseudo-stresses also do,
thus

tr[Σ̃] = 0. (108)

Following the parameterization introduced in [9]

Σ̃k(ψ) =

√
2
3

sin
[
2
3
πk − ψ

]
, k = 1, 2, 3 (109)

only one parameter ψ is sufficient to describe all flow directions, then the unknown vector consists now of only three
scalar unknowns qn+1 = {T,∆p, ψ}n+1, which is numerically very efficient. More precisely, in the stationarity equation
of the incremental functional with respect to ∆p (98), the partial derivative of the elastic part of the free energy (100)
is now simplified as

∂We

∂∆p

∣∣∣∣∣
n+1

= −2
3∑

k=1

λCe
trial

k
∂We

∂λCe

k

exp
(
−2∆p

∂ f
∂Σk

∣∣∣∣∣
Σ̃k(ψ)

)
∂ f
∂Σk

∣∣∣∣∣
Σ̃k(ψ)


n+1

, (110)

whereas the stationarity equation of the incremental functional with respect to pseudo-stresses (103) is now replaced
by the following scalar one

∂I

∂ψn+1
=

∂We

∂ψn+1
= −2∆p

3∑
k=1

3∑
l=1

λCe
trial

k
∂We

∂λCe

k

exp
(
−2∆p

∂ f
∂Σk

∣∣∣∣∣
Σ̃k(ψ)

)
∂2 f

∂Σk∂Σl

∣∣∣∣∣∣
Σ̃k(ψ)

∂Σ̃l

∂ψ


n+1

= 0. (111)

5.7. Simplifications for the linearized geometrical framework

First, Helmholtz’s free energy (49) can be simplified in the linearized geometrical framework, and accounting for
a sole isotropic hardening, as follows

W(εe, p,T ) = We(εe,T ) + W p(p,T ) + W th(T ) (112)

We(εe,T ) = µ(T )dev[εe] : dev[εe] +
κ

2
(tr εe)2 − ρCΓ0(T − T0)(tr εe) (113)

W th(T ) = −
ρC
2T0

(T − T0)2 − η0(T − T0) (114)
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where εe denotes the elastic strain, and the thermally stored energy W th(T ) (51) has been linearized to obtain the
quadratic form (114). The Grüneisen coefficient Γ0 = 3κα

ρC [12] can be linked to the dilatation coefficient α.
Next, as already mentioned in Section 5.4.1, for linear isotropic elasticity in the small strains framework, the

optimization problem infM L subject to constraints (76) yields the von Mises-type flow direction, and can be solved
analytically [60, 14]. The updated flow direction is shown to be equal to the trial one

Mn+1 = Mtrial
n+1 =

√
3
2

dev[σ]
‖dev[σ]‖

∣∣∣∣∣trial

n+1
, (115)

where σ is the Cauchy stress tensor, resulting in the well-known radial return algorithm [80]. Therefore, pseudo-
stresses are useless if a von Mises-type flow rule is retained; the unknown vector consists now of only two scalar
unknowns qn+1 = {T,∆p}n+1, namely the temperature and the increment of the cumulated viscoplastic strain, which
makes the integration algorithm even more efficient. Otherwise, for more complex yield functions, the description of
the flow direction through pseudo-stresses remains, and Equation (103) should be adapted and solved together with
Equations (98) and (39).

Since the small strain flow rule has now an additive structure in the linearized geometrical framework

εp
n+1 = εp

n + ∆pMtrial
n+1, (116)

and replaces the exponential formula (96), where εp stands for the plastic strain, the derivative of the elastic part of
the free energy (100) is now simplified as [60, 14]

∂We

∂∆p

∣∣∣∣∣
n+1

=
∂We

∂εp

∣∣∣∣∣
n+1

:
∂εp

∂∆p
= −σn+1 : Mtrial

n+1 = −σ
eq
n+1, (117)

which enters the stationarity condition with respect to ∆p, namely Equation (98). Once the unknown vector qn+1
computed, the Cauchy stresses are then updated as follows

σn+1 =
∂W

∂ε

∣∣∣∣∣
n+1

=
Tn

Tn+1

∂W
∂ε

∣∣∣∣∣
n+1

, (118)

where ε denotes the total strain.

5.8. The extended Johnson-Cook viscoplastic solid

In the rheological equation proposed by Johnson and Cook [39], the flow stress is assumed to be a function of the
cumulated viscoplastic strain p =

∫ t
0 ṗ(τ)dτ, of the effective viscoplastic strain rate ṗ, and of the temperature T :

σy(p, ṗ,T ) = (A + Bpm)(1 + C ln ṗ∗)(1 − θ
q
∗ ) (119)

where A, B, m, C and q are constitutive parameters. The dimensionless effective viscoplastic strain rate ṗ∗ =
ṗ
ṗ0

is also
introduced, involving some reference effective viscoplastic strain rate ṗ0. In practice, the flow stress (119) is valid for
ṗ > ṗ0, otherwise ṗ∗ = 1 can be used. Next, θ∗ refers to some dimensionless temperature, defined as

θ∗ =
T − Tt

Tmelt − Tt
(120)

where Tmelt and Tt refer to a melting temperature and a transition temperature respectively. If θ∗ ≤ 0, it is assumed that
no thermal softening occurs, then fth(T ) = (1 − θq∗ ) can be set to one. At the other end of the range, if the temperature
is greater than the melting temperature, yielding θ∗ ≥ 1, the flow stress vanishes and fth(T ) = 0.

This model was first recast in a consistent thermodynamical framework in [64]. Next, an extension of it was
also proposed in [73] and set into a variational framework. The viscoplastic free energy density and the dissipation
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pseudo-potential then reads:

W p(p,T ) =

(
As p +

Bs

m + 1
pm+1

)
(1 − θq∗ ) (121)

φ(ṗ; p,T ) = {[Ad + Bd pm]ṗ + [A + Bpm]Cṗ0( ṗ∗ ln( ṗ∗) − ṗ∗ + 1)} (1 − θq∗ ) (122)

where As, Ad, Bs, Bd are constitutive parameters associated with stored and dissipative contributions, coupled such that

A = As + Ad

B = Bs + Bd.
(123)

The Johnson-Cook flow stress (119) is then obtained by the stationarity condition (32) with respect to the effective
viscoplastic strain rate ṗ:

∂L

∂ṗ
=
∂W
∂p

+
∂φ

∂ṗ
= −Σeq(Σ −Qk) + (As + Bs pm)(1 − θq

∗) + [(Ad + Bd)pm) + (A + Bpm)C ln ṗ∗](1 − θ
q
∗ ) = 0

(124)

which gives the expected flow stress (119):

⇔ Σeq(Σ −Qk) = (A + Bpm)(1 + C ln( ṗ∗)(1 − θq∗ ) = σy(p, ṗ,T ) (125)

The interest of the split of parameters A and B into stored and dissipative components (123) lies in that it allows to
weight more either the stored or the dissipative energies in the thermomechanical response. The distribution in the
Johnson-Cook flow stress (119) considered in [64] is retrieved by setting As = 0 and Bd = 0.

In the discrete setting, the stationarity equation (98) is computed with the potentials (121) and (122) :

∂I

∂∆p
=

Tn

Tn+1

(
∂We

∂∆p
+ (As + Bs pm

n+1(1 − θq∗ )n+1

)
+

[
(Ad + Bd pm

n+α) + (A + Bpm
n+α)C ln

(
∆p

∆t ṗ0

)]
(1 − θq∗ )n+α

+ α∆t
[
mBd pm−1

n+α

∆p
∆t

+ mBpm−1
n+αCṗ0

(
∆p

∆t ṗ0
ln

(
∆p

∆t ṗ0

)
−

∆p
∆t ṗ0

− 1
)]

(1 − θq∗ )n+α = 0

(126)

where ∂We

∂∆p is given by Equation (100), or by Equation (110) in the fully isotropic case. The discrete equation (126) is
consistent with its continuous counterpart:

lim
∆t→0

∂I

∂∆p
= −Σn+1 :

∂ f
∂Σ

∣∣∣∣∣
Σ̃

+ (As + Bs pm
n+1)(1 − θq∗ )n+1

+

[
(Ad + Bd pm

n+1) + (A + Bpm
n+1)C ln

(
∆p

∆t ṗ0

)]
(1 − θq∗ )n+1

= −Σ
eq
n+1 + (A + Bpm

n+1)(1 + C ln( ṗ∗)(1 − θq∗ )n+1 = 0

(127)

which is identical to Equation (124).

6. The Flux-difference splitting Finite Volume Method

6.1. Decomposition of interface fluxes into waves and fluctuations
The finite volume method, like other mesh-based methods, is based on the subdivision of the computational

domain into elementary cells. In cell-centered versions of finite volume methods, an approximation UI of the vector
of the conserved quantities U (10) is defined in each cell I by integral averaging. If we consider the quadrangular grid
cell I shown in Figure 1, of area |AI |, each edge s (1 ≤ s ≤ 4) of outward unit normal ns and of length Ls joins the
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points Ps and Ps+1. The integration of the system of conservation laws (9) over the grid cell I yields the following
system of ordinary differential equations: (

dU
dt

)
I

= −
1
|AI |

N∑
s=1

LsFs (128)

where Fs, 1 ≤ s ≤ N, denote the numerical fluxes defined at cell interfaces. The order of accuracy, the physical content
but also the computation cost of the finite volume method essentially result from the definition of these numerical
fluxes. Commonly, the approach consists in defining a Riemann problem at each cell interface, whose approximate

e1

e2
Ps

Ps+1

ns

I L R

Figure 1: Quadrangular finite volume

e1

e2

n1

A+
1 ∆U1

A−1 ∆U1

A+
3 ∆U3 (1)

(2)

(3)

(4)

A+
2 ∆U2

A+
4 ∆U4

n2

n3

n4

I

Figure 2: Fluctuations defined at each cell interface

solution allows to compute these fluxes. For instance, when they are computed with the stationary solution (x/t = 0)
of the Riemann problem, the well known Godunov’s method [31] is obtained. The latter is also retrieved by the
flux-difference splitting formulation, introduced by Leveque [46, 45], which splits the interface numerical fluxes into
fluctuations, hence accounting for waves contributions. These fluctuations are denoted by the operators A±k ∆Uk, and
the weighted sum of numerical fluxes expresses as a function of them as:

N∑
s=1

LsFs =

P∑
k=1

LkA
+
k ∆Uk +

Q∑
l=1

LlA
−
l ∆Ul (129)

where P + Q = N, N being the number of edges of grid cell I. This summation is performed on negative fluctuations
for the Q edges having an outward unit normal, and on positive fluctuations for the P edges having an inward unit
normal. These fluctuations provide the contribution of first order numerical fluxes to grid cell I.

Assuming that the edge k of unit normal nk has left (L) and right (R) states known in adjacent grid cells (see Figure
1), rightward (+) and leftward (−) fluctuations defined in the local frame of edge k read

A+
k ∆Uk = (F(UR) −F(U∗)) · nk

A−k ∆Uk = (F(U∗) −F(UL)) · nk
(130)

where U∗ denotes the stationary solution (given for x/t = 0) of the Riemann problem, which can be computed after
having projected the jump of the (averaged) conserved vector ∆Uk = (UR−UL)k across the edge k onto the considered
characteristic basis R(p)

k ≡ R(p)(nk)

∆Uk =

Mw∑
p=1

W
(p)
k =

Mw∑
p=1

α
(p)
k R(p)

k = Rkαk, (131)

where Mw is the number of waves, then determining the coefficients α(p)
k the wave strengths W

(p)
k , 1 ≤ p ≤ Mw,

consist of.
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6.2. High order fluxes

The class of total variation non-increasing methods [46, 45] represents one way to improve the above first order
scheme, and allows to meet both a high order of accuracy in areas where the solution is regular together with a high
resolution of discontinuities without spurious numerical oscillations when they occur. This class of methods can be
implemented by adding high order fluxes to first order ones, which are limited so that a non-increasing total variation
of the numerical solution be satisfied at each time step. These second order numerical fluxes read

F̃HO
k =

1
2

Mw∑
p=1

|λ
(p)
k |

(
1 −

∆t
∆sk
|λ

(p)
k |

)
W̃

(p)
k , (132)

where ∆sk refers to the distance between barycenters of grid cells sharing edge k, as shown in Figure 3, and W̃
(p)
k =

α̃
(p)
k R(p)

k denotes the limited wave strength. Waves are limited based on an upwind ratio θ(p)
k defined for the wave p at

e1

e2

nk
L

R

(k) (l) if λ(p)
k < 0

(l) if λ(p)
k > 0

nl

nl

+
GL

+
GR

∆sk

Figure 3: Illustration of upwind edges of edge k for wave comparison purpose

the edge k as:

θ
(p)
k =

W
(p)
l (nk) ·W(p)

k

‖W
(p)
k ‖

2
(133)

where l denotes the upwind edge, or more precisely either the opposed edge of grid cell L to edge k if λ(p)
k > 0, or

the opposed edge of grid cell R to edge k if λ(p)
k < 0, see Figure 3. The upwind ratio (133) can be understood as a

certain measure of the local regularity of the solution. For noncartesian quadrangles, upwind and downwind edges do
not necessarily share the same normal. Following [36], the computation of the upwind ratio (133) is performed with
wave strengths recomputed in the same local reference frame of edge k. The weighting coefficients α(p)

l of the wave
strengths W(p)

l express in the local frame of edge k as:

αl(nk) = R−1(nk) · ∆Ul (134)

where ∆Ul is the jump across edge l of the conserved vector. The wave strengths associated with edge l are then
corrected when expressed in the frame of edge k as:

Wl(nk) = diag (αl(nk)) · R(nk) =
[
diag ([K(nk)]−1 · ∆Ul)

]
· R(nk) (135)

where Wl(nk) is the matrix whose columns are wave strength vectors W(p)
l , 1 ≤ p ≤ Mw.

The wave strength W̃
(p)
k of wave p associated with edge k is limited using some classical limiting function φ̃(θ(p)

k )
applied to wave coefficients such as:

α̃
(p)
k = φ̃(θ(p)

k )α(p)
k , (136)

many of which permit to obtain different known finite volume schemes [74]. Here, the classical minmod limiter is
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used [78]:
φ̃(θ) = max(0,min(1, θ)). (137)

6.3. Transverse fluxes

Transverse numerical fluxes can also be added to first and second order ones to improve the stability of the
numerical scheme and increase the time step, so that the Courant number can theoretically be set at unity. These fluxes
permit to account for information travelling in bias with respect to the considered grid cell, through the neighbour cell
only sharing a node (but not an edge) with it. This method is known after [21] as the Corner Transport Upwind (CTU)
method. For elastic media, these fluxes permit to significantly improve the maximum allowable Courant number since
elasticity couples strain components through Poisson’s effect.
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k ∆Uk

A−k ∆Uk

L R
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(k)
(i)

( j)

(l)

(m)

B+
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−
k ∆Uk

B+
j A
−
k ∆Uk

B+
mA

+
k ∆Uk

B+
l A

+
k ∆Uk

ni

n j

nm

nl

Figure 4: Normal and transverse fluctuations defined from edge k.

Consider the patch of grid cells shown in Figure 4, which share the common edge (k) of unit normal nk. The
normal fluctuations A+

k ∆Uk and A−k ∆Uk contributing respectively to grid cells R and L can be split into transverse
fluctuations contributing to neighboring cells of cell L across the edges (i) and ( j) , and across edges (l) and (m)
for cell R. These normal fluctuations are first projected on the characteristic basis computed with the approximate
Riemann solvers defined on the adjacent edges. The negative normal fluctuation is for instance decomposed on the
characteristic basis associated with edge (i) as

A−k ∆Uk =

Mw∑
p=1

βpR(p)
i = Riβ (138)

where Ri accounts here for the normal ni of edge (i), but also of different material properties between grid cells L and
T . For plane strain linear elasticity for example, the coefficients βp can be determined analytically. The transverse
fluctuations are then computed with the positive operator B+, more precisely only waves with positive characteristic
speeds in the local frame of the edge will contribute to this transverse fluctuation

B+
i A
−
k ∆Uk =

Mw∑
p=1

λ+
pβpR(p)

i , (139)

from which the additional numerical transverse flux is built as:

F̃tran
i =

∆t
2∆si

B+
i A
−
k ∆Uk (140)

which contributes to grid cell T .
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6.4. Explicit time integration

Gathering first order fluctuations and additional numerical fluxes, and considering an explicit Euler time integra-
tion, the state of grid cell i is updated at time tn+1 with the following formula:

Un+1
I = Un

I −
∆t
|AI |

 P∑
k=1

LkA
+
k ∆Uk +

Q∑
l=1

LlA
−
l ∆Ul

 − ∆t
|AI |

 P∑
k=1

LkF̃out
k −

Q∑
l=1

LlF̃in
l

 (141)

where F̃in
l and F̃out

k refer to inward and outward additional numerical fluxes, respectively associated with the Q and P
edges having either an outward or inward normal relative to grid cell I. These additional numerical fluxes sum both
second order and transverse ones

F̃in
l = F̃HO

l + F̃tran
l . (142)

7. Numerical examples

7.1. Test cases at one material point

At first, elementary loading paths are investigated at the scale of one material point. Since the discrete constitutive
update is driven by updated values of the internal energy density En+1 and the deformation gradient Fn+1 at time tn+1,
a certain consistency between both should be enforced to provide the material point with some physically compatible
loading paths. This is performed at each loading step by solving the local discrete constitutive problem (36) with input
data satisfying the discrete balance of internal energy written between times tn and tn+1, still considering adiabatic
conditions

∆E = P : ∆F, (143)

from which the stresses P are computed so that

P =
∂

∂F

[
W

(
∆E,

∆F
∆t

)]∣∣∣∣∣∣
n+1

. (144)

The stresses (144) are computed by means of a fixed point loop, until the balance of internal energy (143) is satisfied.
Notice that Equation (143) is only valid for smooth solutions, assumed here for the purpose of carrying out test cases
on one material point, while the conservation of the total energy (7) is rather solved through some discrete conservative
scheme when considering a whole domain, which is valid whatever the smoothness of the solution. Each loading path
is computed with a constant strain rate ‖∆F‖/∆t and a constant time step ∆t.

7.1.1. One-dimensional strain test
Let’s start with a one-dimensional strain test, whose deformation gradient is of the form

F = F11e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3, (145)

simulating the kinematics of a plane wave. The longitudinal stretch F11 is driven so that to achieve a cycle. The
Mie-Grüneisen equation of state (60), the neo-Hookean shear elastic energy (59), the Mises strength criterion and the
Johnson-Cook flow stress with the original distribution between stored energy and dissipated heat (i.e. As = 0, Bd = 0)
are used. The values of material parameters considered for this test are gathered in Table 1. Moreover, a constant
stretch rate of Ḟ11 = 103s−1 is considered during the loading cycle.

Elasticity parameters E = 200 GPa ν = 0.3 ρ0 = 7800 m3 a = −1
Thermal parameters C = 452 J/(kg.K) α = 12 × 10−6 K−1 q = 1 T0 = 293 K

Johnson-Cook A = 400 MPa B = 770 MPa m = 0.557 C = 5 × 10−3

q = 1 Tt = 290 K Tmelt = 1800 K ṗ0 = 10−3 s−1

Table 1: Material parameters for the convergence tests at one material point.
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Figure 5: Plots of the evolution of different quantities as a function of the stretch F11 over a loading cycle performed at one material point in the
case of a one-dimensional strain test.

Figure 5 shows different quantities plotted as a function of this longitudinal stretch during the cycle of loading.
The longitudinal Cauchy stress component shows the effect of the pressure, while its deviatoric part follows a clas-
sical elastic-plastic open cycle due to isotropic hardening. Both the entropy density and the cumulated viscoplastic
strain follow a monotonic increasing evolution along the loading cycle, while the convex nature of both internal and
free energies are shown. The temperature evolution results from both the thermoelastic effects (thermal dilatation)
computed through the equation of state, and from the work generated by viscoplasticity. At last, the values reached by
the incremental energy are also shown, and lie at several orders of magnitude below these of internal and free energy
densities.

Next, Figure 6 shows convergence curves of the solution extracted at the end of the cycle as a function of the time
step ∆t, plotted for the different quantities. Relative errors are computed with respect to a numerical solution obtained
with a finer time step. Very little effect of the parameter α (see Section 4) is actually observed for the Johnson-Cook
dissipation pseudo-potential as the three convergence curves are superposed. As expected from the first order accurate
incremental variational update (36), a convergence rate of about one is observed for all plotted quantities.

7.1.2. Pure shear test
A pure shear test is then considered, with a deformation gradient of the form

F = 1 + F12e1 ⊗ e2. (146)

The slip F12 is also driven so that to achieve a cycle. The same equation of state, shear elastic energy, strength
criterion and energy distribution in the Johnson-Cook flow stress are still used, as well as the corresponding set of
material parameters shown in Table 1. Moreover, a constant slip rate of Ḟ12 = 103s−1 is also imposed during the
loading cycle.

Figure 7 shows different quantities plotted as a function of the shear component F12 of the deformation gradient
during the cycle of loading. Both the shear Cauchy stress component and its deviatoric part follow a classical elastic-
plastic open cycle due to isotropic hardening. The entropy density and the cumulated viscoplastic strain still follow a
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Figure 7: Plots of different quantities as a function of the slip F12 over a loading cycle performed at one material point in the case of a shear test.
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of the convergence curves.

monotonic increasing evolution along the loading cycle. The temperature now rises along the cycle due to the work
generated by viscoplasticity.

Figure 6 shows similar convergence curves of some relative errors of different quantities for the shear test, com-
puted with the solution extracted at the end of the cycle. The same comments apply where a convergence rate of about
one is observed for all plotted quantities. The parameter α now shows some small differences on convergence curves,
although very limited.

The partition of viscoplastic work into dissipated heat and stored energy is also naturally computed with the vari-
ational framework [82, 72, 18] through the definition of the plastic part of the free energy (121) and the dissipation
pseudo-potential (122). Such partition is known to be non-constant [38, 66]. It can be computed for a given con-
stitutive model. More precisely, the mechanical dissipation (23) can be expressed for the Johnson-Cook viscoplastic
constitutive model as

Dint = −
∂W
∂p

ṗ =

[
σy −

∂W p

∂p

]
ṗ, (147)

with the flow stress σy given by Equation (119). According to the expression of the plastic part of the free energy
(121), it simplifies as

Dint =
[
σy − (As + Bs pm)(1 − θq∗ )

]
ṗ ≡ βσy ṗ, (148)

where the Taylor-Quinney coefficient β appears as the fraction of viscoplastic power density converted into heat,
which reads as

β = 1 −
(As + Bs pm)(1 − θq∗ )

σy
. (149)

Its expression actually depends on the effective viscoplastic strain rate ṗ, the cumulated viscoplastic strain p and the
temperature T . Figure 9 shows several plots of its evolution along the shear loading cycle for different distributions
between stored energy and dissipated heat. More precisely, the first case considered is the original distribution of
Johnson-Cook, As = 0 leads to that the density of plastic power associated with the initial and isothermal yield thresh-
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Figure 9: Taylor-Quinney coefficient computed with the Johnson-Cook viscoplastic constitutive model along the shear loading cycle, with different
distributions between stored energy and dissipated heat.

old A contributes completely to the dissipated heat, while Bd = 0 assigns the whole effect of the isotropic hardening
to the stored energy. Since on the one hand the cumulated viscoplastic strain p is a monotonic increasing function
of the loading (see Figure 7), and on the other hand the effective viscoplastic strain rate ṗ is almost constant (apart
during the elastic loading-unloading-reloading parts of the cycle) because the slip rate Ḟ12 is imposed constant, then
the Taylor-Quinney coefficient is a monotonic decreasing function during the loading cycle (apart the aforementioned
areas). The second case considers that a given fraction (arbitrarily set so that As/Ad = 0.5 here) of the density of
plastic power associated with the initial and isothermal yield threshold A contributes to the stored energy. As could
be expected, the Taylor-Quinney coefficient is lower than in the previous case, because the density of plastic power
contributes less to the dissipated heat. The evolution of the coefficient appears as translated to the lower values, con-
sistently with Equation (149). The third case considers that the effect of isotropic hardening partly contributes to the
dissipated heat (arbitrarily set so that Bd/Bs = 0.5 here). Consequently, the dissipated heat is given more contribution
with respect to the first case, and the Taylor-Quinney coefficient becomes greater. The fourth and last case combines
the second and the third ones.

7.2. Sudden velocity loading and unloading of a heterogeneous volume
Generalizing the test case introduced in [36], we consider a two-dimensional numerical simulation carried out

on a heterogeneous volume, that consists of a circular inclusion of radius R, which is associated a thermo-elastic-
viscoplastic constitutive response, centered in a square matrix of side length 2a whose constitutive response is ther-
moelastic. This volume is initially in a natural state. It is suddenly loaded on its left side at time t = 0 with a constant
rightward velocity v̄. After time tu, the applied velocity is unloaded to zero. Symmetry conditions are set at the top
and bottom sides of the volume, while transmissive boundary conditions have been set on the right side. Due to the
symmetry condition, the computational domain only consists of one half of the whole volume, as shown in Figure 10.

The analysis is carried out in the two-dimensional plane strain case, and within the linearized geometrical frame-
work. The elastic and thermal potentials (113) and (114) are used. In the inclusion, the Mises criterion, the Johnson-
Cook plastic potential (121) and the dissipation pseudo-potential (122) are also employed with the original distribution
between stored energy and dissipated heat (i.e. As = 0, Bd = 0). The numerical values of parameters considered for
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Figure 10: Half of a heterogeneous volume that consists of a circular inclusion centered in a matrix, suddenly loaded then unloaded after a time tu
on its left side by a prescribed velocity v̄.

this test, associated with the geometry, the loading and the materials are gathered in Table 2. The numerical simula-

Geometry a = 10−3 m R = 5 × 10−4 m
Loading v̄ = 50 m.s−1 tu = 7 × 10−8s

Inclusion Material parameters
Elasticity parameters E = 200 GPa ν = 0.3 ρ = 7800 m3

Thermal parameters C = 452 J/(kg.K) α = 12 × 10−6 K−1 T0 = 293 K

Matrix Material parameters
Elasticity parameters E = 70 GPa ν = 0.34 ρ0 = 2700 m3

Thermal parameters C = 875 J/(kg.K) α = 25 × 10−6 K−1 T0 = 293 K

Johnson-Cook A = 350 MPa B = 770 MPa m = 0.557 C = 5 × 10−3

q = 1 Tt = 290 K Tmelt = 1800 K ṗ0 = 1 s−1

Table 2: Parameters for the heterogeneous volume test case.

tion is conducted with the finite volume method which has been recalled in Section 6, and using a CFL number set at
0.8. It is compared with a numerical solution computed with the finite element method [6] with Q1 finite elements,
coupled with an explicit central difference time integrator, and to a variational constitutive update driven in both strain
ε and temperature T [71]. The details of such formulation can be found in [70]. The same elastic, plastic and thermal
potentials as well as the dissipation pseudo-potential are also used.

Figures 11(a) and 11(b) show some comparison between finite element and finite volume numerical solutions at
two different times of computation. The temperature map is shown on the left part of each subfigure, while graphs on
their right parts show the superposed plots along the symmetry line of the temperature and of the normal stress compo-
nent σ11. The solution basically consists of a compression slot travelling rightward in the volume. Wave interactions
are generated at the matrix/inclusion interface due to their mismatch of elastic impedance. Finite element and finite
volume numerical solutions are globally in agreement, althought the prescribed discontinuity of velocity imposed by
the loading introduces some spurious numerical oscillations in the finite element one. These oscillations do not appear
in the finite volume solution thanks to the use of limiters which prevents from their appearance, enforcing here a TVD
criterion [45].

Figures 12(a) and 12(b) show the maps and the superposed plot along the symmetry line of the cumulated vis-
coplastic strain in the inclusion at two different instants, computed with the two methods. Right after the compressive
wave has gone through the matrix/inclusion interface, the cumulated viscoplastic strain rises in the inclusion. It is
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slightly overestimated in the finite element solution due to the appearance of spurious oscillations, while both solu-
tions reach the same level once the plastic wave has travelled over a sufficient length in the inclusion. The circular
geometry of the inclusion generates a convergent profile at its rear side that the compression slot follows, which gen-
erates a net increase of cumulated viscoplastic strain and temperature. Especially, the cumulated viscoplastic strain
rises in a quite narrow band, whose distribution is computed a little differently in the two numerical solutions.

(a) Time t = 1.63838 × 10−7 seconds.

(b) Time t = 2.88355 × 10−7 seconds.

Figure 11: Comparison of the numerical solutions computed with the finite volume method (FVM) and the finite element method (FEM). Maps on
the left part of each subfigure show the temperature fields computed with the two methods. Graphs on their right parts show the superposed plots
for the two solutions of the temperature and of the longitudinal stress component σ11, both plotted along the symmetry line.
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(a) Time t = 1.63838 × 10−7 seconds.

(b) Time t = 2.88355 × 10−7 seconds.

Figure 12: Comparison of the numerical solutions computed with the finite volume method (FVM) and the finite element method (FEM). Maps on
the left part of each subfigure show the cumulated plastic strain fields in the circular inclusion computed with the two methods. Graphs on their
right parts show its superposed plots along the symmetry line for the two solutions.

Figure 13 shows the time evolutions of the kinetic energy, the internal energy, and of the total energy of the
volume during the numerical simulation conducted with the finite volume and finite element solvers. After a first rise
of energies due to external energy introduced in the system through the non-zero velocity prescribed at the left side
of the volume during time tu, the total energy is conserved. Its level reached in the two solutions slightly differs. The
finite element solution appears to be slightly more diffusive that the finite volume one as shown in Figure 14, through
the time evolution of the global entropy. The latter starts to really increase as soon as the compression slot reaches the
matrix/inclusion interface, and that viscoplasticity starts to develop within the inclusion. Its time slope decreases as
the compression slot has almost crossed the inclusion.

7.3. Impacted bidimensional rectangular specimen

We consider now a bidimensional rectangular specimen, infinite in the third direction, whose half square computa-
tional domain of side length l = 3 m is sketched in Figure 15. The specimen is initially animated of a uniform leftward
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Figure 13: Time evolutions of the global kinetic, internal and total
energies integrated on the half of the heterogeneous volume during
the finite volume (FVM) and the finite element (FEM) numerical
simulations.
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Figure 14: Time evolution of the global entropy of the half of the
heterogeneous volume during the finite volume (FVM) and finite
element (FEM) numerical simulations.

velocity −v̄e1, v̄ = 200 m.s−1, and hits a rigid plane (without friction) on its left side, while a symmetry condition is
accounted for on the bottom side of the square domain. The problem is treated in the plane strain case, and within the
large strain framework. The specimen is assigned a thermo-hyperelastic-viscoplastic constitutive response.

l

l v(X, t = 0) = −v̄e1

e1

e2

Figure 15: Sketch of the bidimensional square computational domain.

As for the heterogenous volume, two numerical simulations are computed in this example with the finite volume
and the finite element solvers. Since large plastic incompressible strains (due to Mises criterion) occur in this ex-
ample, some treatment is required to avoid volumetric locking in the two numerical solutions. On the one hand, the
conservation law written on the jacobian determinant (5) is included in the first order system of conservation laws (9)
when computing the finite volume numerical solution. The volumetric part of the free energy (49), and more precisely
here Equation (67), is then computed with the jacobian updated through the associated conservation law. On the other
hand, finite elements with selective reduced integration of the volumetric part of the constitutive response (constant
pressure in the finite element) are employed [49]. The CFL number is set at 0.4 for the computation of the two numer-
ical solutions. The variational constitutive update coupled with finite elements is driven with the deformation gradient
F and the temperature T [71, 70]. The two numerical solutions are computed with the same volumetric (67) and
thermal energies (51), and with the same Johnson-Cook plastic potential (121) and dissipation pseudo-potential (122),
still employed with the same distribution between stored and dissipated heat (i.e. As = 0, Bd = 0). The numerical
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values employed for the material parameters are the same than these defined in Table 1, except the definition of q
which does not exist here since the pressure is here defined with Equation (68).
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Figure 16: Time evolutions of the global kinetic, internal and to-
tal energies integrated on the impacted bidimensional specimen
during the finite volume (FVM) and the finite element (FEM) nu-
merical simulations.
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Figure 17: Time evolutions of the global entropy integrated over
the square computational domain during the finite volume (FVM)
and finite element (FEM) numerical simulations.

Figure 18: Maps of the stress component P11, the cumulated plastic strain p and the temperature T plotted in the reference configuration of the
bidimensional specimen, computed with the finite volume method (FVM) and the finite element method (FEM) at time t = 1 × 10−3 seconds.

A Neo-Hookean hyperelastic shear energy (59) is used for the finite volume solution, whereas the variational
constitutive update coupled with finite elements uses a Hencky hyperelastic isochoric component of the elastic energy,

31



S
tr

e
ss

 (
P

a
)

-1e+9

0

1e+9

2e+9

3e+9

4e+9

5e+9

6e+9

x (m)
0 0.5 1 1.5 2 2.5 3

(a) Stress component P11

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x (m)
0 0.5 1 1.5 2 2.5 3

Cumulated plastic strain FVM

Cumulated plastic strain FEM

(b) Cumulated plastic strain p

T
e

m
p

e
ra

tu
re

 (
K

)

280

285

290

295

300

305

310

x (m)
0 0.5 1 1.5 2 2.5 3

Temperature FVM

Temperature FEM

(c) Temperature T

Figure 19: Superposed plots at time t = 1 × 10−3 seconds along the bottom of the square computational domain of finite volume method (FVM)
and finite element method (FEM) numerical solutions.

Figure 20: Maps of the temperature and the cumulated plastic strains plotted in the current configuration of the bidimensional specimen at time
t = 1 × 10−3 seconds, computed with the finite volume method (FVM) and the finite element method (FEM).

which read with some logarithmic elastic strain

W̄e(Ce) = µ(dev[εe] : dev[εe]), (150)

with εe = 1
2 ln[Ce], that may give slightly different results than these obtained with the Neo-Hookean energy (59)

employed for the finite volume solution. As noted in Section 5.4.1, the Hencky hyperelastic shear energy (150) was at
first implemented in that variational constitutive update [71, 70] since the logarithmic elastic strain allows to recover
an additive structure between the updated elastic strain and its elastic predictor as in the case of small strain framework,
which permits to solve the stationarity condition (75) analytically.

Similarly to the previous example, Figure 16 shows the time evolutions of the kinetic energy, the internal energy,
and of the total energy of the computational domain during the numerical simulation conducted with the finite volume
and finite element solvers. The total energy is perfectly conserved in the finite volume solution here since the loading
comes from the initial velocity. That computed with the finite elements is very close to the finite volume one although
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Figure 21: Maps of the temperature and the cumulated plastic strains plotted in the current configuration of the bidimensional specimen at time
t = 3 × 10−3 seconds, computed with the finite volume method (FVM) and the finite element method (FEM).

the heat equation is solved locally rather than the conservation of the total energy, and may be due to the variational
solver. In this test case, the finite volume solution appears slightly more diffusive than the finite element one (i.e. the
converse of the previous example), as shown by the time evolutions of the internal and kinetic energies, oscillations
being associated with wave round trips in the specimen during the time interval. This dissipative behaviour is also
shown in Figure 17 by the time evolutions of the global entropy of the system, which is a monotonic increasing
function of time as expected. The difference between finite volume and finite element solutions here essentially
comes from the limiters used in the former one. Only pressure waves are here limited in the finite volume solver,
which allows to keep stability in large strains at the price of more numerical viscosity. Once the first wave round trip
performed, the limiters are not active anymore and the differences between time evolutions of the internal and kinetic
energies and the entropy do not continue to grow.

Figure 18 shows the maps of the stress component P11, the cumulated plastic strain p and the temperature T ,
here plotted at time t = 1 × 10−3 seconds in the initial configuration of the bidimensional specimen, which is the one
where the two solutions are computed. Row outputs consist of cell data for the finite volume solver and nodal data
for the finite element one. The two solutions are in qualitative agreement, although some differences appear at the top
left corner on the temperature and the cumulated plastic strain fields. Figure 19 shows superposed graphs of the two
solutions at the same time plotted along the bottom line of the square computational domain. The profiles shown of
the stress component P11, the cumulated plastic strain p and the temperature T computed with the two methods are
globally in agreement.

At last, Figures 20 and 21 show the maps of the cumulated plastic strain p and the temperature at two different
times of the deformation process, here plotted in the current configuration of the bidimensional specimen. For vi-
sualization purpose and comparison with the finite element solution, cell data extracted from the cell-centered finite
volume solution are averaged at nodes to compute the deformed shape. The two solutions are qualitatively in agree-
ment, although some differences appear here and there, especially close to the bead formed at the top left corner of
the specimen. The temperature, the cumulated plastic strain and the deformed shape slightly differ in that area, which
may come from the different spatial discretizations (having different numerical viscosities), the different variational
constitutive updates, and the different expressions of the shear part of the hyperelastic free energy.
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7.4. Multi-holed elementary cell

A last example involving large strains consider a multi-holed elementary cell submitted to some impact loading.
The considered computational domain with associated boundary conditions is sketched in Figure 22. It is drilled with
several circular holes where free boundary conditions are considered. The domain is initially in a natural state. A
constant leftward velocity −v̄e1 is suddenly applied at its right side at time t=0, until it is released to zero at time tu.

e1

e2

L

H

R

r1

r2

r3

−v̄e1

Figure 22: Sketch of the computational domain of the multi-holed elementary cell. Holes 1, 2, 3 of radii r = r1 = r2 = r3 are centered at locations
(w, 3w), (3w,w) and

(
4w, 7w

2

)
respectively, where w ∈

]
R
3 ,min

(
2
7 (H − r), (L−r)

4

)[
is a parameter.

As in Section 7.3, the problem is treated in the plane strain case within the large strain framework. The same
formulations are adopted for the finite volume and the finite element solvers, as well as for the constitutive response
whose values of material parameters are gathered in Table 1. Table 3 summarizes the numerical values of geometrical
and loading parameters of this test case.

Geometry R = 8 × 10−3 m r = 4 × 10−3 m w = 5 × 10−3 m L =
11w

2
H =

9w
2

Loading v̄ = 200 m.s−1 tu = 1 × 10−5 s

Table 3: Geometrical and loading parameters for the multi-holed medium test case.

Figure 23 shows the maps of the jacobian, the cumulated plastic strain and the temperature plotted in the initial
configuration of the multi-holed cell at time t = 4 × 10−6 seconds. The two solutions are in qualitative agreement,
although one can observe that the finite volume solution predicts sligthly higher temperatures and lower cumulated
plastic strains that these computed with finite elements. The jacobian J is computed from the solution of its associated
conservation law (5) in the finite volume solution, whereas it is computed as the determinant of the deformation
gradient JF = det F in the finite element one.

Next, Figures 24 and 25 show the maps of the cumulated plastic strain p and the temperature at two different
times of the deformation process, here plotted in the current configuration of the multi-holed elementary cell. The two
solutions are qualitatively in agreement, although the same tendency of the finite volume solution to predict sligthly
higher temperatures and lower cumulated plastic strains that these computed with finite elements still appear. Figure
24 shows the multi-holed cell after a continuous compression on its right side during the first 1 × 10−5 seconds, just
before the prescribed velocity is set at zero. The contour of the deformed holes computed with the two solutions look
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Figure 23: Maps of the jacobian, the cumulated plastic strain and the temperature plotted in the initial configuration of the multi-holed elementary
cell at time t = 4 × 10−6 seconds, computed with the finite volume method (FVM) and the finite element method (FEM).

Figure 24: Maps of the cumulated plastic strain and the temperature plotted in the current configuration of the multi-holed elementary cell at time
t = 1 × 10−5 seconds (just before the unloading), computed with the finite volume method (FVM) and the finite element method (FEM).

in agreement. After the unloading of the applied velocity, the two rightmost holes show a slightly re-increased volume
in Figure 25, whereas the two leftmost ones have been compressed.

Finally, Figure 26 shows the time evolutions of the different energies of the system during the numerical simu-
lations conducted with the finite volume and finite element solvers. The prescribed velocity at the right side of the
cell makes the total energy evolving in time as for the inclusion test case (either increasing or decreasing according to
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Figure 25: Maps of the cumulated plastic strain and the temperature plotted in the current configuration of the multi-holed elementary cell at time
t = 1.4 × 10−5 seconds, computed with the finite volume method (FVM) and the finite element method (FEM).

wave round trips in the computational domain), while it becomes constant as soon as the velocity is set at zero. Figure
27 shows the associated time evolutions of the global entropy of the cell, which still follows a monotonic increasing
trend in time.
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Figure 26: Time evolutions of the global kinetic, internal and total
energies integrated on the multi-holed cell during the finite volume
(FVM) and the finite element (FEM) numerical simulations.
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Figure 27: Time evolution of the global entropy of the multi-holed
cell during the finite volume (FVM) and finite element (FEM) nu-
merical simulations.

8. Conclusion

A variational framework has been proposed in this work for the constitutive update of thermomechanical con-
stitutive models when coupled with a set of hyperbolic conservation laws. Both a continuum and a consistent first
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order accurate discrete settings were derived. More precisely, the constitutive update is driven by the rates values of
some strain measure and the internal energy density in the continumm setting, and by the updated values at some
discrete time of these strain measure and internal energy density in the discrete setting. This is achieved by defining
a Lagrangian functional enforcing the rate of the residual of the Legendre transform of Helmholtz’s free energy to
vanish through a Lagrange multiplier. Contrary to other thermomechanical formulations, the temperature is not part
of the input data of the constitutive update, although it appears as one of the unknown of the solution process. Doing
so, the two-field temperature formulation introduced in [82] becomes now useless.

The main interest of such formulation lies in that it is naturally compatible with the writing of a set of conserva-
tions laws, which reduce to the well-known Rankine-Hugoniot jump conditions across discontinuities of the fields.
Hence in the discrete setting, the use of any conservative numerical scheme will ensure that the right shock speeds
will be computed, while the proposed variational constitutive update will permit to account for dissipative and ther-
momechanically coupled constitutive reponse. In addition, the total energy will be conserved in the discrete setting
since the associated conservation law is solved.

The proposed variational approach is illustrated in this work with a thermo-hyperelastic-viscoplastic constitutive
response. The elastic energy consists of a volumetric component related to some equation of state, and of some
hyperelastic model for the shear component. The flow rule direction is parameterized with pseudo-stresses as proposed
by Mosler & co-workers, resulting in the solution of an unconstrained optimization problem. For a fully isotropic
medium, the discrete stationarity conditions consist in solving a system of three scalar nonlinear equations. The
proposed discrete variational solver is coupled with the second order accurate flux difference splitting finite volume
method for the solution of the set of conservation laws. A set of numerical test then show on the one hand the
convergence of the discrete variational constitutive update on test cases conducted at one material point, and on the
other hand some numerical solutions which are in agreement with these obtained with with finite elements coupled to
an explicit time-stepping and to a temperature-driven variational constitutive update.
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[35] Heuzé, T., 2017. Lax–Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on

elastic–plastic solids. Journal of Computational Physics 346, 369–388.
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