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We study the orientational and translational dynamics of spherical microswimmers
trapped at fluid interfaces in terms of the force dipole and source dipole components of
their flow field. Using numerical simulations and analytical calculations, we show that the
force dipole exerts a torque, orienting pushers parallel to the interface and pullers in the
normal direction. The source dipole results in particle rotation only for a finite viscosity
contrast between the two fluids, in agreement with previous studies. The superposition of
these two contributions leads to a rotational dynamics with a steady-state orientation that
depends on the relative magnitudes of the force and source dipoles. In the general case,
swimmers with weak force dipoles and strong pullers are observed to align perpendicular
to the interface and become stationary, while strong pushers have a finite inclination angle
toward the lower viscosity fluid and swim along the interface.

DOI: 10.1103/PhysRevFluids.7.L042001

Introduction. Microscopic active particles, such as bacteria (e.g., E. coli) and algae (e.g., Chlamy-
domonas), are often found in confined environments near solid-fluid and fluid-fluid interfaces [1],
and surface interactions can affect their dynamics. For example, E. coli swims in a clockwise
circular motion near a no-slip surface [2] and anticlockwise close to the air-liquid interface [3].
In the past two decades, researchers have synthesized artificial microswimmers (e.g., active Janus
particles) [4]. These artificial swimmers have potential for applications, such as drug delivery [5]
and environmental remediation [6–9]. For example, active Janus particles have been used to collect
oil droplets using seawater as a fuel [7]. Understanding the dynamics of these particles at interfaces
is crucial for designing such applications.

The dynamics of microswimmers in the vicinity of an interface is governed by the hydrodynamic
stresses created by the particles [10,11], and it has been studied both experimentally [3,12–19] and
theoretically [20–24]. Previous investigations mainly considered microswimmers near interfaces.
Less is known of particles straddling a clean interface between two fluids, where they can be
thermodynamically trapped due to a Pickering effect [25]. The hydrodynamic boundary condition
at the contact line between the two fluids and the particle surface can play a role both in the linear
and orientational dynamics of the swimmer [26]. Simulations of self-diffusiophoretic colloids at
the fluid-fluid interface predicted an emergence of an aligning torque on a particle at an interface
between two fluids with equal viscosities [27].

In general, the two fluids have different viscosities, characterized by the ratio λ = η2/η1. The
effects of viscosity stratification on the dynamics (translational and rotational) of microswimmers
have been studied both experimentally and numerically [28–35], where reorientation toward neg-
ative gradients (toward the less viscous fluid) is typically observed in fluids with the viscosity
changing over a lengthscale considerably larger than the particle size. This negative viscotaxis has
also been predicted by simulations of catalytic swimmers [36] and observed in recent experiments
of bacteria [33,34] in sharp viscosity gradients.

In this work, we use lattice Boltzmann simulations to study the dynamics of a spherical swimmer
trapped at a clean interface separating two fluids. We consider the experimentally most relevant case
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FIG. 1. (a),(b) Slip flows at the particle surface corresponding to (a) source and (b) force dipoles, inclined
at an angle φ with respect to the interface.

of low Reynolds and capillary numbers, where inertial effects and interface deformation are small.
Both the viscosity contrast and the hydrodynamic boundary condition are described in terms of a
Ginzburg-Landau functional for an interface of finite thickness. The swimmer is described by the
squirmer model [37], the flow field of which consists of two components: a source dipole resulting
from a sink and a source flow, and a force dipole corresponding to the rotational flow of a pair of
opposite point forces (Fig. 1).

We find that both flow-field components contribute to the reorientation dynamics of the swimmer,
albeit in a rather different manner. We demonstrate that the torque exerted by the force dipole
depends crucially on the squirmer characteristics (pusher or puller). On the other hand, the torque
arising from the source dipole term (neutral squirmer) has been predicted to be proportional to the
viscosity difference [33,36]. Our simulations agree with this. We show that these two contributions
are independent of each other.

We take into account both the source [Fig. 1(a)] and the force dipole contributions [Fig. 1(b)]
as well as the viscosity ratio λ, and we construct a state diagram for the steady-state orientation.
We observe that in the steady state, weak swimmers, dominated by the source-dipole contribution,
become stationary and orient perpendicular to the interface pointing toward the lower viscosity
fluid. Further, we show that the force dipoles are insensitive to the viscosity contrast, but the
hydrodynamic boundary condition at the interface leads to a reorienting torque. Strong pullers are
observed to turn perpendicular to the interface and become immobile, while strong pushers swim
along the interface, pointing toward the lower viscosity fluid with a finite angle with respect to the
interface normal.

Computational model and parameters. To simulate the finite-size squirmers [38,39], we impose
a slip velocity at the particle surface [40,41],

vs = B1 sin θ + B2 sin θ cos θ, (1)

where θ is the polar angle with respect to the particle axis e. The first term corresponds to a
source dipole, which is responsible for the bulk swimming speed U0 = 2

3 B1 along the axis e, and it
generates a far-field varying as B1r−3 with the distance r from the particle center [42]. The second
term arises from a force dipole, with a far-field component ∝ B2r−2 that is at the origin of long-range
hydrodynamic interactions. The ratio of their amplitudes defines a squirming parameter β = B2/B1,
which characterizes the swimmer type: pullers (pushers) correspond to β > 0 (β < 0), while β = 0
is a neutral swimmer.

The fluid-fluid interface is realized in terms of a Ginzburg-Landau free-energy functional [43],

F [c] =
∫

dV

(
−A

2
c2 + B

4
c4 + κ

2
|∇c|2

)
, (2)
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FIG. 2. (a) Schematic representation of an active squirmer radius R and swimming speed U0 at an interface
separating two fluids with viscosities η1 and η2. The orientation angle φ is defined as the angle measured
between the squirmer orientation and fluid-fluid interface, and θ is the polar angle. (b) Temporal evolution of
the orientation φ(t ) for B2 < 0 and B2 > 0 for η1 = η2. (c) The measured angular velocity �(φ) as a function
of the angle φ. The blue (red) corresponds to B2 > 0 (B2 < 0), and dotted lines are fits to �̂F sin(2φ). (d) The
prefactor �̂F as a function of the force dipole strength B2.

where −A = B > 0 and κ are constants, and c is the phase composition, where c∗ = ±1 are the
equilibrium compositions. The temporal evolution of the phase field variable c is governed by
a Cahn-Hilliard advection-diffusion equation, and the fluid velocity is obtained by solving the
incompressible Navier-Stokes equation (for more details of the model, see, e.g., [43,44]). The
coupled equations are solved using a hybrid finite-difference lattice Boltzmann scheme detailed
in [43,44]. The phase-dependent viscosities are implemented through the relation [45]

η(r) = η
1+c

2
1 η

1−c
2

2 , (3)

where the viscosity takes the values η1,2 well above or below the interface where c = ±1. This law
expresses the fact that the viscosity of liquid mixtures varies exponentially with the concentrations of
their components, ln η = c1 ln η1 + c2 ln η2, as first proposed by Arrhenius in 1887 [46]. In physical
terms, it is related to the fact that in many liquids the viscous motion arises from activated jumps,
such that ln ηi is a measure of the free enthalpy barrier of molecular component i.

Unless otherwise mentioned, we set U0 = 2
3 B1 = 10−3, and we vary B2 to study the relative

contributions between source and force dipole flows. We consider a particle with radius R = 12 in
a simulation domain 160 × 160 × 160 with periodic boundary conditions. The lattice spacing 	x,
time step 	t , and density ρ are set to unity. The binary fluid parameters are chosen as B = −A =
0.0258, surface penalty κ = 0.04, and mobility M = 0.5. This leads to a flat interface at c = 0 with
an interfacial width χ0 = √

2κ/|A| ≈ 1.76 and interfacial tension σ =
√

8κ|A|3/9B2 ≈ 0.03 [43].
The relevant nondimensional quantities are the capillary number Ca = η1U0/σ , which compares

viscous stresses with interfacial tension, and the Reynolds number Re = ρRU0/η1, which is the
ratio of inertial and viscous forces. With the above parameters, we find Re ∼ 10−2 and Ca ∼ 10−2,
which means that inertial and interfacial deformation effects are negligibly small.

Using physical parameters of water, and a particle radius ∼1 μm, Re ∼ 10−2 corresponds to
U0 ∼ 10−2 m/s. We can map a single length and time unit as 	x ∼ 0.1 μm and 	t ∼ 10−5 s.

Results. A neutrally wetting particle placed at the interface adopts a symmetrical position
[Fig. 2(a)] [44]. We start with the case B1 = 0, where the particle has zero linear velocity yet is
subject to a force dipole B2 [Fig. 1(b)]. In the bulk, such a “shaker particle” does not move yet it
produces long-range flow-field components proportional to r−2 and r−4 [42]. When trapped at an
interface, however, the particle shows rotational motion with respect to the interface (Fig. 2). The
final stable orientation depends on its squirmer characteristics: A puller (B2 > 0) turns its axis e
toward the interface normal, and a pusher (B2 < 0) parallel to the interface [Fig. 2(b)].

L042001-3



GIDITURI, SHEN, WÜRGER, AND LINTUVUORI

(a) (b) (c)

FIG. 3. (a) Decomposition of the force dipole at an angle φ with respect to a rigid interface with slip
boundary conditions. The second term exerts a torque on the particle. The boundary conditions at the particle
surface and fluid interface require additional higher multipoles [47]. (b) Slip velocity vs at the contact line.
(c) The interface imposes a discontinuity of vs and an intricate flow profile in the vicinity of the contact line.

We have measured the reorientation velocity �F resulting from a force dipole, as a function of
the angle φ between particle axis and interface, and we find a sinusoidal dependence

�F = �̂F sin(2φ), (4)

as shown by the symbols in Fig. 2(c). The prefactor is proportional to the squirmer parameter,
�̂F ∝ B2 [Fig. 2(d)].

The source dipole slip-flow is symmetric at the interface [see, e.g., Fig. 1(a)]. Thus, the rota-
tional motion can only result from the coupling of the interface to the force dipole [Fig. 1(b)],
f± = ±e f0δ(r ∓ ae), with the particle axis e and where the squirmer coefficient is defined as
B2 = f0a/2πηR2. In Fig. 3(a), the force dipole is decomposed in analogy to Blake’s treatment at a
solid surface [47]. This gives rise to two terms compatible with a highly rigid fluid interface. From
their symmetry it is clear that the first one does not affect the particle motion, whereas the second
one results in the torque,

T = 4πηR2 e · n(n × e) = 2πηR2 sin(2φ)τ, (5)

where the unit vector τ is perpendicular on the particle axis e and the interface normal n.
This rationalizes the dependency �F ∝ sin 2φ observed in the simulations, yet it does not provide

the drag coefficient T/�F , which is determined by the additional contributions to the velocity field.
Figure 3(b) shows the slip velocity (1) at the contact line, which is clearly incompatible with the
presence of the interface. Starting from the force-dipole flow and satisfying the boundary conditions
both at the interface and at the particle surface results in a series of source and force multipoles,
similar to that of an interfacial particle driven by a self-generated Marangoni flow [48]. The resulting
flow profile in the vicinity of the contact line is illustrated in Fig. 3(c).

Source dipole contribution. Now we turn to self-propelling microswimmers with a finite B1,
which have been shown to be sensitive to variations of the viscosity of the swimming medium.
In previous experimental and theoretical investigations, a negative viscotaxis has been observed
[28–36]. To study the effect of the source dipole B1, we consider a neutral squirmer (B2 = 0) and
introduce a viscosity ratio λ = η2/η1.

Our simulation data for the source-dipole driven angular velocity �S are shown in Fig. 4 as a
function of the particle orientation φ and the viscosity ratio λ. For λ � 0.7, the variation with the
angle φ [Fig. 4(a)] obeys the relation

�S = �̂S cos φ, (6)

as expected from previous work [31,36]. For larger values of λ, the hydrodynamic torques are weak
and a slow drift of φ(t ) is observed, which likely arises from numerical errors due to the finite
capillary number used in the simulations. In Fig. 4(b) we plot the dependence of the prefactor �̂S
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FIG. 4. (a) Angular velocity �S (φ) observed for a neutral squirmer for different values of the viscosity
ratio λ. The arrow indicates an increase from λ = 0.1 to 0.7, with a step size of 0.1. The dashed lines are given
by �S = �̂S cos φ. (b) The prefactor �̂S obtained from the simulations (full circles), whereas the solid line is
calculated from Eq. (7) (solid line) with the constant −0.225U0/R.

on the viscosity ratio λ, and we find a good agreement with the theoretical prediction [36]

�̂S = const × (2 − λ)(1 − λ)

1 − 3
32 (1 − λ)2

(7)

with the constant −0.225U0/R.
General squirmer. Finally, we consider the general case of a microswimmer with both force and

source dipoles. At low Reynolds number, the reorientation rate can be written as the sum of their
respective contributions, � = �S + �F , where the former is proportional to B1 and the latter to
B2. In the following, we assume a constant self-propulsion velocity U0 = 2

3 B1, and we discuss the
dependencies on the viscosity ratio λ and the squirmer parameter β = B2/B1,

�(λ, β ) = �̂S (λ) cos φ + �̂F (β ) sin 2φ. (8)

The prefactor �̂S is a complex function of λ, whereas �̂F is proportional to β. The stationary points
φ∗(λ, β ) of the orientational dynamics are given by a zero angular velocity, � = 0, and they can
be visualized by an effective orientational potential � = − ∫

� dφ (Fig. 5). From Eq. (8) it is clear
that its minima and maxima are given by φ∗ = arcsin(�̂S/2�̂F ) for |�̂S| < |2�̂F |, corresponding to
strong pushers and pullers, respectively. For weak force dipoles, |�̂S| � |2�̂F |, only two stationary
points φ∗ = ±90◦ are observed (Fig. 5).

Using (8), we construct a steady-state diagram in terms of stable and unstable fixed points in
the λ-β space (Fig. 6). To test these theoretical predictions, we carried out simulations where the
squirmer parameter β and the viscosity ratio λ were varied. Both theory and simulations show three
different ranges.

The first one (I) is observed for pushers (β < 0) and is characterized by a stable fixed point
between −90◦ and 0◦ (Fig. 6), corresponding to a minimum of � (see, e.g., β = −3 and −5 curves
in Fig. 5). This arises from the competition between the force dipole contribution turning the particle
toward the interface and the source dipole, which turns the particle toward the lower viscosity fluid.
The resulting steady-state orientation varies from parallel to the interface (0◦, upper left corner) to
normal orientation (−90◦, dashed line). The φ∗ observed from the simulations are given by circles,
with a filling color according to the color bar at the right in Fig. 6. The background color corresponds
to the theoretical expression φ∗ = arcsin(�̂S/2�̂F ), where the constant prefactors of �̂F and �̂S are
taken from the fits in Figs. 2(d) and 4(b), respectively.
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FIG. 5. Orientational potential �(φ) = − ∫ φ

0 �(φ′)dφ′ for pushers (β < 0) and pullers (β > 0) with λ =
0.2, calculated from Eq. (8).

In range II, the stationary orientation corresponds to a minimum at φ = −90◦, which occurs
for sufficiently small |β|, where the source dipole term �S is dominant and orients the swimmers
toward the lower viscosity fluid. The dashed lines give the theoretical boundaries of range II, defined
by �S = ±2�F . The upward orientation φ = 90◦ corresponds to an unstable fixed point (see, e.g.,
β = ±1 curves in Fig. 5).

Range III describes strong pullers. The force dipole contribution �F dominates and turns the
swimmer toward one of the minima at φ = ±90◦. The steady-state orientation is decided depending
on whether the initial orientation is below or above the unstable fixed point at φ = arcsin(�̂S/2�̂F ),
as illustrated by the curves for β = +3 and +5 in Fig. 5.

We observe a good agreement between the simulations and the theory based on the superposition
principle of the two interactions (8). The deviations observed for β < 0 at strong viscosity contrast,
λ < 0.2, are possibly due to numerical artefacts overestimating the source dipole contribution.

FIG. 6. A state diagram for the stationary angle φ∗ in β-λ space. Simulation results (symbols) and theory
(background) are color-coded according to the color bar at the right. Range I (circles) indicates a stable fixed
point in the range −90◦ < φ � 0 for pushers, and range II (diamonds) at −90◦ for sufficiently weak pushers
and pullers, where the source dipole contribution dominates. Range III (squares) indicates the stationary states
φ∗ = ±90◦ for strong pullers. The dashed lines give the boundaries between these states and are calculated
from �̂S = ±2�̂F . (See the text for more details.)
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Conclusions. We have investigated the reorientation dynamics of spherical microswimmers
trapped at a clean fluid-fluid interface. In rather good agreement with the theoretical models, our
numerical simulations demonstrate that the reorientation has two, independent, components: The
force dipoles give rise to a torque, which drives a parallel steady-state orientation for pushers and
a perpendicular one for pullers. When a viscosity difference is introduced, our simulations show
that neutral swimmers orient toward the lower viscosity fluid, in agreement with simulations of
catalytic particles [36] and bacterial experiments [33,34] in sharp viscosity profiles. Our results
show, moreover, that these two contributions are independent of each other, and that their interplay
defines the steady-state orientation.

In summary, in the case of a weak force dipole and strong viscosity contrast, the swimmers
align on the interface normal toward the less viscous fluid, such that their translational velocity
is zero. Similarly, strong pullers adopt a normal orientation yet may be trapped in an upward or
downward state and become stationary. A different behavior is predicted for strong pushers, which
in the steady state reach a finite inclination angle, toward the lower-viscosity fluid, and thus move
at a finite velocity U = U0 cos φ∗ along the interface.
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