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Abstract

The requirement for coordination of distributed energy resources in the fu-
ture power system provides an incentive to move from the current high level
of centralized control to a more distributed control paradigm. In this paper,
an agent-based distributed optimal power flow is proposed to optimize the
operation of the power system. The optimal power flow problem is built
in the general consensus optimization formulation in matrix based formula-
tion. The agent is then designed to realize the operation of the multi-agent
system in the cyber-physical system. Agents have ability of collecting local
measurement, data, communicating with neighbor agents and implementing
alternating direction method of multiplier. Each agent accesses to limited
information but can give decision to solve the global problem. The perfor-
mance is evaluated on the IEEE 9 bus by using a cyber Hardware-in-the-Loop
platform with a cluster of hardware agents, a real-time simulator OPAL-RT
and a real communication network.
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1. Introduction

The optimal power flow problem (OPF) in power systems is given to find
out the amount of power generated at each generator that makes the systems
operate in an optimal state [1, 2]. The OPF problem is solved to obtain a
global operating objective while ensuring the power balance and the physics
laws of the power network. In traditional approaches, a single operator col-
lects all necessary parameters of the system, e.g., line impedance, network
topology, cost function of generators, load demands, and then execute a cen-
tral computation to solve optimization problems.

In the modern power system scheme, the number of distributed genera-
tions, intelligent and controllable components is expected to rise significantly.
In this paper, we propose an approach to deal with the OPF in a distributed
way. Rather than collecting data and assigning the computation for a single
entity, in the distributed scheme, the entire workload will be decomposed into
small subproblems which need less effort to compute. The multi-agent sys-
tem (MAS) which have been applied in computer science studies for years,
have characteristics that make it suitable for building modern distributed
control systems. An important feature, that distinguishes MAS from tradi-
tional distributed control systems, is a local intelligence embedded in each
agent [3, 4, 5]. The agents obtain certain problem parameters by local mea-
surements and communicating with limited neighbors.

The advantages of the distributed approach for solving OPF problems are
[6, 7]: (i) the agents need to share limited amounts of knowledge with their
neighborhood agents. This can enhance overall robustness and save costs
for communication infrastructure, (ii) the total computation effort in agents
is reduced. Each agent only has to solve a sub-problem with a significantly
smaller dimension of variables and constraints due to the sparse communi-
cation property of grid systems. Especially, the size of the subproblems is
unchanged when the network is scaled up. Meanwhile, in traditional central-
ized schemes, the increase of the grid size lead to a combinatorial explosion
of the complexity and time consume of the computation due to the fact that
OPF problems are non-polynomial difficult, (iii) distributed algorithms have
the potential to respect the privacy of sensitive data of loads (e.g., house-
hold, industrial and commercial loads) or DGs (of different owners). The
MAS can achieve common goals with restricted exchanged information, (iv)
the robustness of the system is improved because it is not sensitive to the
common mode failure related to the central unit anymore. Morcover, com-



pared to the centralized method, the distributed optimization framework is
more flexible and adaptive concerning the changes of systems, especially in
view that topologies of the electricity grid and the communication infrastruc-
ture in the smart grid are likely more changable.

Recently there exists many studies presenting the distributed optimiza-
tion techniques for OPF problems in AC grids. We refer to [6, 7, 8, 9] for
the overviews. Specifically, the distributed OPF is mainly classified into
two sets [6]: (i) one is based on augmented Lagrangian decomposition in-
cluding Dual Decomposition[10, 11], Alternating Direction Method of Mul-
tipliers and Augmented Lagrangian Alternating Direction Inexact Newton
method (ALADIN) [12]; and (ii) one is based on decentralized solution of
the Karush-Kuhn-Tucker (KKT) condition including Optimality Condition
Decomposition (OCD) [13, 14] and Consensus+Innovation algorithms (C+1)
[15, 16].

Alternating Direction Method of Multipliers (ADMM) uses an augmented
Lagrangian function with a two-norm term and also has minimization and
dual variable update steps similar to dual decomposition method [17]. In
the literature, ADMM is widely used to solve OPF problems [18, 19, 20, 21]
because of its simplicity and the improvement of the convergence among dis-
tributed algorithms [9, 18]. The approach in [18] is used to solve distributed
OPF as a region-based optimization procedure where limited information is
exchanged between neighbour regions. The work in [19] proposes an adaptive
method to improve the convergence of ADMM on the component-based dual
decomposition of the OPF problem. In [20], the authors address the general
non-convex OPF issue by providing a method based on ADMM combined
with sequential convex approximations. Recently, a further development of
ADMM, which is called ALADIN, is introduced to applied to OPF problem
[22, 23]. The consensus results in ALADIN method are achieved in less num-
ber of iterations compared with ADMM. However, the effort of computation
in cach iteration is much higher and ALADIN still relies on a centralized
update step. In general, these works mostly concentrate on mathematical
formulations and show numerical results that focuses on the steady state
analysis without dynamic change regarding disturbances of the system. In
[21], an online algorithm is proposed to pursue solutions of AC OPF under
the change of grid. Nevertheless, the process of ADMM in local agent un-
der the interaction with system and neighbor agents is not clarified. The
time consumed by the computation in agent and transferring delay are not
taken into account. Moreover, the validation is processed in pure simulation
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without hardware agents and real-time condition of the grid. The gap be-
tween theory and practical applications is therefore still large and need to be
reduced for the real deployment for MAS with distributed OPF.

In this paper, the distributed OPF problem is investigated in a more
practical approach when considering the operation of MAS that implement
distributed optimization algorithm. The ADMM is chosen for the good per-
formance of the distributed system without any centralized step. We do
not only provide the way to formulate and decompose the OPF problem,
but also realize the MAS with realistic conditions that can be used to apply
in real-world applications. The MAS run as cyber system with real mes-
sages exchanged among hardware agents under real communication network.
Furthermore, the MAS can also interact with the real-time grid physical
system to track the change of the system and always minimize the total
power losses. One agent manages one sub-system of the OPF problem to
implement ADMM algorithm. The agents are independent entities and run
asynchronously with abilities of gathering measurements, computation and
interfacing with local devices.

The major contributions of this study are:

e The subsystem of the OPF consensus problem is presented in detail
and written in matrix based formulation that is convenient to express
in software program. The Jacobian matrices are also easily computed
in this type of formulation that is necessary for optimization solver.

e The iterative process of implementing asynchronously ADMM in an
agent is presented in detail and analyzed in time domain considering
communication delay among agents.

e The agent is systematically designed to able to operate in the real-
istic environment. The agent has multiple functions: (i) run RPC
server /client structure to exchange message in real communication net-
work, (ii) interface with devices to transfer local data and adapt to the
variation of the power grid, and (iii) process ADMM algorithm to solve
the distributed OPF problem based on information collected.

e The implementation of MAS is verified by deploying on a cyber Hardware-
in-the-loop (HIL) platform. The MAS is realized by using a cluster of
microprocessors Raspberry PI and a switch for real communication
network. The OPAL-RT is used to simulate the grid in real-time and



emulate the change of the physical system under the interaction of the
running MAS. The convergence will be shown in practical implemen-
tations, and obtained results will be compared with those when solved
in the centralized approach.

The paper is structured as follows. Section 2 presents the general opti-
mization consensus problem and the ADMM algorithm for solving the general
problem in distributed way. In Section 3, we provide the OPF problem in
the general consensus problem. Then, the application of ADMM for the dis-
tributed OPF problem is given. Section 4 presents the structure of the agent
designed for distributed OPF purpose by implementing ADMM. Section 5
investigates the transient behavior of the 9-bus test case system in the cyber
HIL test bed with the hardware MAS. Finally, Section 6 draws conclusions.

2. Alternating Direction Method of Multipliers for General Dis-
tributed Problems

2.1. General Structures of Consensus Problems
We consider a system consisting of K subsystems. The global objective
of the general form consensus problem is:

F=> fulwy) (1)

where
fr is the private function handled by subsystem £k,
x;; € RM¥ is the vector of local variables of subsystem k. These vari-
ables are coupled with variables in the neighbor subsystems. Each component
of x; is a local copy of a global variable of the whole system.

Let z € RY be the vector of the global variables. It can be considered that
component n of z is distributed its copies to a set of subsystems which creates
net n. Figure 1 shows the relation of variables in a distributed problem with
K subsystems. In the figure, elements in one net are represented in a color.
The constraint for ensuring the equality of the local copies of the same net
is:

XkZEkZ k=1727...7K (2)
where
1 if (zg)n is in net m
0 otherwise

(B = { )
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Figure 1: The relation of variables in a distributed problem. Coupling is represented by
the global variable z, together with the constraints x; = Egz, k = 1,..., K, where Ej
projects global variables to the corresponding local variables.

2.2. Alternating Direction Method of Multipliers

This section introduces Alternating Direction Method of Multipliers al-
gorithm for solving a distributed problem based on the material originally
presented in [17]. The main advantage for using ADMM is that it inherits
the benefits of dual decomposition and augmented Lagrangian methods for
constrained optimizations with fast convergence properties. We now con-
sider the problem in general decomposition structure. The objective and
constraint terms are split into K parts:

K
minimize Z fr(zk)
k=1

subject to x, €Cr, k=1,....K
Xk,:EkZ, k’:]_,,K

where the variables are x; € RV and z € R".



The coupling constraint can be simplified as:
Xk — Zk =0 (5)

where z€ RN is the fraction of the variable z that local variable x; should
be.

The augmented Lagrangian of Problem 4 related to the coupling con-
straint is given by:

K

Ly(x,2,0) = D (filxr) + AL (= 2) + (p/2) |35, — 2413) (6)
k=1

where A, € R is the dual variables associated with the equality constraint,
p € R is the Lagrangian step parameter.

The ADMM is summarized in Algorithm 1. The variables are updated
in an iterative way. x",z" and A" are the variables x, z and A respectively
after iteration n.

Algorithm 1: ADMM.

n = 0: initial z° and A° are given

repeat

3 | xupdate: x}! = argminL,(xy, 2", A}) =

[

Xk
argmin( f(xx) + AT xi + (p/2)||xx — Z1][3)

Xk

4 z update: z"*!

= argminl,(x},z, A\}) =
argmin Y10 (= AT %, + (p/2)|Ixp — 27 3)

A update: A" = AP + p(xpt — 7
6 n=n-+1

In the distributed scheme, each agent manages a subproblem and has the
responsibility of handling its own objective and constraints. The variables
are updated each iteration and converge to a common value, which is the
solution of the full problem of the whole original system. As presented in
the algorithm, the local variable x; and the dual variable A; can be updated
independently in parallel. Only at step 4 when updating the global variable
z, agents need the information from neighbors. Although it is not shown di-
rectly in the mathematical formulation, each component of the global variable
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in an agent can be found out by averaging all values of 8 = ™ + (1/p) A2
that obtained via exchanging messages.

3. Formulation of an Optimal Power Flow Problem

3.1. General Optimal Power Flow Formulation

We consider an electrical network composed of N buses and L lines with
the set of buses NV = {1,2,..., N} and set of lines £L = N x N. Initially,
some notations are introduced to express the formulation of the power flow
equation. The set of generator buses is G C A and the power of generator
at bus k € G is s¢ = p{ + jq¢ € C. The load power at bus k € N is
sk =pl + jqF € C. The injected power at bus k:

G _ L
S = —|— =
kPRI {—sﬁ otherwise

(7)

The set of the injected power of all buses is denoted as the vector s =
p+Jq.

The other two important parameters of the network are bus voltages and
current injections. The current injection at bus k is defined as the total
current injected into bus & and denoted as i, = 4} + jii™. In the vector form
for the system, the collection of the current injection is vector i = i" + ji"™.
The vector of bus voltages is written in rectangular form as v = v + jv'™,
where component k is vy = vi¢ + joim.

The admittance value of line (m,n) € L 18 Ymn = gmn + jbmn € C, where
gmn € R is the real part and b,,,, € R is the imaginary part of the flow line
admittance. The admittance of the whole network is expressed by the vector
Y =G +jB € ¢V,

The relation between the bus voltages and the current injection is:

=Y ov=(GvT BV LBV GV (8)

The injected power is expressed in the relation of voltages and current
injection:

S=v® i* — (Vre ® ire 4 Vim ® izm) +j(VZm ® ire _ Vre ® lzm) (9)
From (8) and (9) we have:
s=p+ja=v® (Y- V) (10)
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Therefore:
p:Vre®<G.V're_B.Vz‘m)_’_Vim®(B.Vre_’_G.Vim) (11)

q=v"® (G -v¢-B-v") v (B-v*+G-v™) (12)

Now new notions are introduced:

o [V »_[G -B] 4_[B -G
“lvm'" 7B G|'* T |G -B

Then, the total of the injected power can be calculated as:

N
Zpk—{fT z’ - v (13)
k=1
N
qu:ffT z? v (14)
k=1

Equations (7) and (13) can imply that:

QT°ZP°{7:ZPG_ZPL:ZPZOSS (15)

Moreover, the active power balance at bus k£ can be written as follows:
pr = Vi - zp - Vi (16)

where v and z} are the vectors having same size with v and z? respectively
and determined by replacing all elements not involved in bus k by zeros.

zP(k,:)
z, = 0
z’(k+ N,:)
0

zP(k,:) and zP(k + N, :) are line k£ and line k 4+ N of matrix z? respectively, 0
is the zero matrix of the correct size. In order to create matrix z,, we only
need parameters of lines connected to bus k.

Similarly, the reactive power balance at bus k can be expressed:

G = Vi - 2 - Vi (17)
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where matrix ZZ is obtained in a similar fashion of matrix ZZ.
q _
z] = 0 (18)

The currents through the line are expressed by the vector I, = I;* + I\
We have that i,,, = Ymn(Vm — v,) with (m,n) € C. Then:

byn = Gmn (Vs — V) + bm/n(vf;n - @'flm)

A : 19
= b (0 = 077) = (02 = 07) 1
So we get:
I“=[C D]v
(20)

"~ [D -C]%
where C,D € R¥*Y and

— gnm if m adjacent to n
0 otherwise

P B b.m if m adjacent to n
" 0 otherwise

The optimal power problem with the objective of minimizing total active
power losses can be formulated as:

mini{’mize viez? . ¥

subject to P < ¥y -2k - ¥y, 4 pE < P keg

at k=1,-,N
Qi < VT -zl v+ qf < QP keg
Vi -zl +pE =0, k¢ G (1)
Vi ezl i+ gf =0, e

([C D} V)2 + ([D -C] V)2 < (Imer)?
(Vmin)Z S (Vre)Z + (Vim)Z S (Vmaac)Z

10



where Pk, Pk QF. and QF  are the active and reactive power limi-
tation of generator at bus k; p¥ and ¢ are the active and reactive power of
load at bus k; v™™ and v are the bus voltage limitation.

The variables of the OPF are bus voltages. The power the generators can
be implied from the bus voltages.

The convergence of the ADMM algorithm is guaranteed for convex prob-
lem [17]. Typically, the distributed OPF process is implemented for trans-
mission networks, and the DC power flow model is generally well suited with
the convex problems expressed. However, in a general case as shown in (21),
the formulation of the OPF problem is non-convex. In order to deal with the
convergence guarantee issue for the ADMM process, in the literature, some
works convexified the OPF by a convex approximation of the feasible set
[6]. Semidefinite programming (SDP) [24] and second-order cone program-
ming (SOCP) [25] are two main approaches for the convex relaxations. The
convexation approaches, however, in some cases can not recover the original
problem because of the violation of constraints. Moreover, the workflows
are not simple and straightforward when the optimization problem needs to
be rewritten in a relaxation form. In [17] (section 9), the authors indicate
that the use of ADMM for many non-convex problems can be carried out
exactly. Furthermore, many researches demonstrate that distributed opti-
mization techniques can solve practical non-convex OPF problems with the
ADMM method in [18, 20, 26, 27]. The use of a general non-linear solver
can provides a good solution and the convergence can be achieved to opti-
mal values. The solver in this approach can offers 0% constraint violation
every time. In the light of practical implementation, in this paper, the OPF
problem is solved directly in the original non-convex formulation and the
convergence is shown in the experimental results.

Remark 1. Problem (21) is formulated in a quadratic form and its Jacobian
matrices can be easily calculated as:

1
' zP ¥) = 5(sz + ZP)V

This point is crucial in programming to deploy realistic applications due to
less effort in computation and enhanced accuracy.

Remark 2. In problem (21), all constraints are constructed by local param-
eters and local variables. Therefore, we only need to rewrite the objective
function in order to fully decompose the problem and it will be solved in the
following section.
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3.2. Optimal Power Flow Problem in General Consensus Formulation
The OPF problem in (21) is rewritten in general structures of consensus
problems by separating into N subsystems corresponding to /N buses of the

network.
The total active power losses in the network can be expressed by decom-

posing the function into N parts as follows:
vzl v =) Viezh vy (22)

From (21) and (22), the subproblems can be expressed as follows.

e Subproblem at bus k if k ¢ G:

minimize V] -z} - v
Vi
subject to V| +zf « vy +pF =0
\A/T'Zz'ffk-i-qlf:() (23)

[Ck Dk} \A’k)Q + ([Dk 'Ck} {/k)Q < (Izna:r)2

VIS (VP () S (v

—_—~

e Subproblem at bus k if £ € G:

... AT N
minimize v, -z - Vg
Vi

subject to P <N - zb - vy, 4 pl < PO
Qp <V gl o < QP
([Ck Dy v4)? + ([Dy -Cyi] ¥4)? < (Ie")? (24)
(VY < ()P + () < ()
if voltage at k& is kept at a reference value v,°

() + (") = (1)

where v, € R?M is the local variable, C;, and D, are determined by
eliminating rows having elements not involved in bus k.

f

The OPF problem is therefore formulated in the general consensus prob-
lem as presented in (4). The coupling constraint is:

Vi — V=0 (25)
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Figure 2: The relation of global and local variables in an example network.

where v, € R?"* is the global variable representing the collection of the
related components of v € R?Y that map into subsystem k.

In order to illustrate clearly the relationship between global variables
and local variables, we consider the example network shown in Figure 2a.
Figure 2b presents how to form the vectors of local and global variables.
For instance, since bus 1 connects to the neighbor 2, subproblem at bus 1
has the vector of local variables [(v7¢)!, (v5€)!, (vim)t, (vi™)1]T created from
the rectangular form of v; and vy. The corresponding global variables of
subproblem at bus 1 are [v}¢, v5¢, vi™ vi™|T which are copied from a part of
variables of the whole system network. A variable therefore only appears in
a set of subproblems sharing a same net.

3.8. Distributed Optimal Power Flow using ADMM

The OPF problem is decomposed into subsystems and formulated as a
general consensus form. Each subsystem is handled by an agent located at a
bus. The agent deals with the subproblem with restrictive information about
the whole network. Specifically, the agent has knowledge of the local bus and
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Algorithm 2: ADMM for distributed OPF implementation at agent k.

1 1 =0: Vi< Vg, A < Ao // at initial iteration, give initial
guest values of global variables and Lagrangian multipliers

2 while I < I, do

3 At each iteration, the agent solves the local problem to find the

local voltage variable v (I + 1).

e if bus k is connected to load:
minimize Vi 2 9+ AL+ (0/2) Ve = W13
subject to (23)

e if bus £ is connected to generator:
minimize Vi 2 9+ AL+ (0/2)[[Ve = W13

subject to (24)

a | Bp(I+1) =¥(I +1) + L ()

Distribute B to all neighbors

Collect B from all neighbors

Update global variable ¥ (I 4 1) // agent exchanges Bj with
neighbors then averages all component B collected.

8 Update Lagrangian multiplier:

Me(T+1) =X(D) + p(Vie(I +1) = V(I + 1))

9 Go to next iteration I <— [ + 1

its connected electrical neighbors through the communication network. The
graph of the agent system is therefore equivalent to electrical connections,
i.e., if (z,7) € L then agent i can exchange messages with agent j. Each agent
solves its own problem to obtain local objective, and concurrently ensure the
coupling constraints with its neighbors due to the same voltage variables
they share. Algorithm 2 presents how agents implement the ADMM method
in an iterative way to solve the distributed consensus problem. In each
iteration, the processes of updating local variables and Lagrangian multiplier
are carried out in a decentralized scheme by using only local knowledge.

14



Messages are exchanged between agents only at Step 5 and Step 6, where
the global variables are updated. The number of iterations I, is determined
by analyzing the system with different values of the parameter p. There is a
trade-off between consistency and objective value. Thus, for a specific case,
we need to do some tests to analyze the performance of convergence and
obtain a reasonable value of p.

4. MAS for Realizing Operation of Distributed OPF in Cyber-
physical System

power measurements v \
of load # . l'. '

RPC client m b )
§ : h
interface with RPC client n__J i
Y e I
{  RPC client | J

RPC server k

ADMM for

local controller e

local controller

Figure 3: The structure of an agent implementing ADMM method for distributed OPF
problem.

The MAS is deployed to solve the OPF problem in a distributed manner.
In order to approach practical implementation of MAS, the agent is developed
as a Python program with the structure illustrated in Figure 3. An agent has

15



following fundamental functions: (i) interface with physical system to collect
local measurements and with local controller to send power set-points for the
corresponding generator, (ii) RPC server/client for exchanging messages with
neighbor agents, and (iii) computation of ADMM algorithm. Each agent is
a server that can receive incoming messages and dispatch them after a call
and, at the same time, is a client of the server in neighbor agents.

Figure 4 presents the iterative process of an agent in the time-domain.
A loop is defined as the duration from the moment that the agent receives
measurements at iteration 0 to the moment that the ADMM process reach
consensus and the agent sends the control signals at iteration Iy. Intuitively,
in a loop, each agent updates the state of the power network, processes the
calculation and then returns the decision of the optimal state. Agents execute
the loops consecutively to always seek the optimal set-points for generator
outputs. Agents run in parallel, but they are synchronized to ensure always
exchanging data in the same iteration step.

5. Cyber Hardware-in-the-Loop Experiment

The test case grid based on the IEEE 9 bus system [28] is used to validate
the proposed distributed OPF in Section 3.3 and the agent presented in
Section 4. The grid diagram is presented in Figure 5 which includes two
generators at bus {2, 3} supplying power to three loads at bus {5, 7, 9}
while bus 1 connects to the bulk system as the slack bus. The outputs
of the generators will be adjusted by the designed agents to minimize the
total active power losses. The aim of the experiment is to show the secure
operation of the dynamic system under the control of MAS in the distributed
manner. The agents have ability of adapting to the disturbances when the
loads change in the time domain. Figure 6 shows the load profile during
1440s with a decreasing step change and an increasing step change at 480s
and 960s respectively.

The laboratory test-bed is set up as shown in Figure 7 for Cyber Hardware-
in-the-Loop experiment. The dynamic model of the test case grid is simulated
in Matlab® /Simulink and run in real-time in a OPAL-RT simulator. The cy-
ber system consists of hardware agents and a real communication network.
The system at bus 1 is represented by a voltage source in the simulation,
while the generators at bus 2 and bus 2 are current sources. A cluster of 9
Raspberry PI (RPI 3, model 3, 1GB RAM, 1.2 GHz processor) connects each
other via a network switch that represents the MAS. Each RPI is used to
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begin loop

iteration get local
0 local data measurements
’—__“i
v update
—_—

distributes B to
H &
to neighbors neighbors

iteration collects B from
- a [ .
k from neighbors neighbors
N

Vi update

A update
| ————

—
compute
power set-points

iteration

send local
control signals controller

end loop
Y

time

Figure 4: The ADMM iterative process in an agent

run an agent which is a Python program. The data exchange between agents
is in server/client manner and uses the gRPC protocol. The communica-
tion topology is configured to coincide the electrical connection. The data
from the grid simulation in OPAL-RT is exchanged with the cyber system
through the external switch using user data protocol (UDP). Each agent can
transfer data with the corresponding bus to get the load power or send the
generator set-points. The communication time between agents is depicted in
Figure 8. The latency time is varied in a range with the median is lower than
0.05s. Regarding the ADMM process in agents, the execution for solving the
local problem consumes the most time. The boxplots in Figure 9 show the
difference in calculating in different agents.

Based on the measurements collected from the grid, the agent system
implement ADMM algorithm to optimize the operation of the system with
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Figure 5: The 9 bus test case .
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Figure 6: The active and reactive power of loads in time domain.

respect to the alteration of loads. Intuitively, what happens in agents could
be separated into three phases as follows:

e Phase 1: agent receives initial states which are local measurement of
load active and reactive power from OPAL-RT through the interface.

e Phase 2: from local information from OPAL-RT and exchanged in-
formation from neighborhood RPIs, agent iteratively run the ADMM
process. We choose p = 25 for good convergent performance and the
number of iteration in an ADMM process loop is 1000 to guarantee the
CONSEeNnsus.
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e Phase 3: at iteration 1000th, all agents complete an ADMM process
loop. Agent 2 and agent 3 send the optimal set points of active and
reactive powers to set new operational outputs of corresponding DGs.
Then ADMM processes in the agents are restarted again from Phase 1.
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Figure 10: Active and reactive power at the slack bus 1 and generator buses 2, 3.

The results of the system are presented in Figure 10. At initial, the active
and reactive power of the generators are set to 50 MW and 30 MVAr respec-
tively. The important milestones are marked by vertical lines as follows:

e the dashed red lines represent the instants when the loads change at
480s and 960s,

e the dashed black lines represents the instants when the generators re-
ceive the optimal set points from the corresponding agents at 251s, 756s
and 1261s.

The data in the figure is collected from two sources: one is the measure-
ments of active and reactive power from OPAL-RT (as the solid blue lines),
and one is the computation in each iteration from the logging files of the
agents (as the solid grey lines). Although operating independently and asyn-
chronously and having different solving time and communication time (as
depicted in Figure 8 and Figure 9), the agents reach the ADMM convergence
at the same time to send the signals to the physical system simultaneously.
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When the agents perform the ADMM process, any change of the system is
perceived and considered for controlling the system to the optimal operation
state. Figure 11 shows the total active power losses of the grid. The losses
are always declined when the generators receive new set-point values from
the MAS which achieving the objective of the global problem. It is noted
that the power values measured from slack bus 1 coincide with the results
calculated in agent 1 as demonstrated in Figure 10. The unification between
the measurements from OPAL-RT simulation and the results from agent cal-
culation affirms the accuracy of the method and the implementation process.

o]

Active power losses [MW]

f

s ! [ s s
0 200 400 600 800 1000 1200 1400
Time [s]

Figure 11: The total active power losses.

Figure 12 shows the computation of active and reactive power in the
agents with respect to iterations equivalent to one ADMM loop. This loop
corresponds to the duration from 0s to 251s in Figure 10. It can be seen that
the convergent values computed in the agents are as the same as the values
solved in centralized method with the formulation presented in Section 3.1.

6. Conclusions

The paper presents a practical approach to optimize the operation of the
power system in the distributed strategy. The OPF problem formulation is
developed to be separated into bus-based subsystems. The agent located
at a bus in the network is designed to manage the subsystem. The agent
is constructed with multiple functions for interfacing with physical devices,
communicating with other agents and implementing ADMM to solve the
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Figure 12: The ADMM calculation of active and reactive power in the agents.

OPF problem and adjust optimally generator outputs. The agents provide
stable behaviours and react appropriately to the system demand changes.
Although processing the local problems in different execution times and ex-
changing information in different latencies, the agent system still can reach
the consensus and achieve the global results concurrently as the centralized
approach. A HIL experiment platform is also provided to validate the oper-
ation the hardware agents on the 9 bus test case. The dynamic performance
of the system shows the ability of the designed agent in a practical environ-
ment. In the future works, we will investigate the applications of ADMM
based OPF on network microgrids and AC/DC hybrid systems. Large scale
system will also be considered demonstrate the scalability and effectiveness
of the proposed method.
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