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Novel and Simplified Model Representing Current-Output Phase-Shift Full-Bridge DC-DC LCLC Resonant Converter in Arc Welding Application
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In this paper, a novel and simplified model representing Current-Output Phase-Shift Full-Bridge DC-DC LCLC resonant converter in arc welding application is thoroughly presented. Firstly, a switched model written in state space representation and featuring a bilinear form is proposed. The latter facilitates the derivation of both the reduced and full order averaged models in continuous conduction mode (ROAM and FOAM). Although the FOAM can be employed in linear or nonlinear control schemes and the derivation of steady state behavior, in this paper the ROAM is considered in designing both voltage mode control and current mode control by using the classical PID and the fractional order PID controllers. Simulation confirms that the switched model, ROAM and FOAM are quite accurate compared to the circuit simulation using SimPowerSystem toolbox of MATLAB/SIMULINK. Results clearly showed that depending on the switching frequency, the proposed topology can be applied either in constant voltage characteristic or dropped characteristic welding machines fulfilling either zero current Switching (ZCS) or zero voltage switching (ZVS). Besides, the fractional order PID controller seems to be more adapted for arc welding application than its traditional version.

Introduction:

Arc welding power supplies (AWPS) based on technology inverter operating at high switching frequencies have become more efficient, compact and light [START_REF] Weman | Welding processes handbook[END_REF]. However, the switching losses become more important. Hence, using soft switching, which ensures zero-voltage switching (ZVS) or zero-current switching (ZCS), is unavoidable. Several resonant converter topologies such as series, parallel and series-parallel also called LCC topology have already been employed for arc welding application [START_REF] Crespin | Digital control for an Arc welding machine based on resonant converters and Synchronous Rectification[END_REF][START_REF] Crespin | Performance improvements in an arcwelding power supply based on resonant inverters[END_REF][START_REF] Saffar | Resonant Converter Power Supply for Arc Welding Application[END_REF][START_REF] Pollock | Series-parallel load-resonant converter for controlledcurrent arc welding power supply[END_REF]. Recently, it has been shown that, compared to the LLC topology, the LCLC resonant converter topology exhibits improved performance [START_REF] Lin | Efficiency improvement on LLC resonant converter using integrated LCLC resonant transformer[END_REF]. However, its use has been limited to high voltage applications, [START_REF] Lin | Efficiency improvement on LLC resonant converter using integrated LCLC resonant transformer[END_REF] and [START_REF] Shafiei | Analysis and Implementation of a Fixed-Frequency LCLC Resonant Converter with Capacitive Output Filter[END_REF]. Extending the application of such converters in new areas such as arc welding, which is in the scope of this paper, represents a challenging task. In this paper, a novel dynamic model, for feedback control system design and analysis based on both classical PID and fractional order PID controllers, is presented.

The PID controller is the utmost typical controller used in the control of industrial processes. Many studies have proposed to enhance LCLC resonant converter efficiency. For instance, Shih et al. [START_REF] Shih | A novel hybrid mode control for a phase-shift fullbridge converter featuring high efficiency over a full-load range[END_REF] have proposed a novel hybrid mode control technique for phase-shift full-bridge (PSFB) converter. The proposed control technique is to decrease the turn's ratio so as to reduce the circulating current. A hybrid fuzzy sliding mode control (FSMC) was proposed for phase-shift full-bridge center-tapped (PSFB-CT) converters to improve the dynamic characteristic in comparison to the PI controller in the output voltage control [START_REF] Lee | Control method for phase-shift full-bridge centertapped converters using a hybrid fuzzy sliding mode controller[END_REF]. A. K. Paul has proposed a robust controller of full-bridge hard switched center-tapped (FBHS-CT) converter based on second-order sliding mode SOSM for Shielded Metal Arc Welding (SMAW) process [START_REF] Paul | Robust product design using SOSM for control of shielded metal arcwelding (SMAW) process[END_REF].

Recently, the fractional order PID (FPID) controller, which is a generalization of the classical PID controller, has been proposed. Compared with the traditional PID controller, the FOPID controller can provide good control performance and increases the robustness of the system against pattern uncertainties [START_REF] Bingi | Fractional order set point weighted PID controller for pH neutralization process using accelerated PSO algorithm[END_REF]. These controllers have an integrator order  and a differentiator order , those two extra parameters provide an added degree of freedom in the performance of the controller, which makes FOPID controller performance better than that of conventional PID controller.

The fine-tuning of fractional order PID control is challenging compared to conventional PID control due to the existence of extra two parameters and the need to meet some special constraints like gain margin, phase margin, gain crossover frequency, and sensitivity conditions [START_REF] Rajesh | Optimal tuning of FOPID controller based on PSO algorithm with reference model for a single conical tank system[END_REF]. Nevertheless, the evidence from literature shows that the meta-heuristic methods have facilitated enormously the tuning of the constraints. These methods include genetic algorithm [START_REF] Amieur | A new robust tilt-PID controller based upon an automatic selection of adjustable fractional weights for permanent magnet synchronous motor drive control[END_REF], particle swarm optimization [START_REF] Kahla | On-Off control based particle swarm optimization for maximum power point tracking of wind turbine equipped by DFIG connected to the grid with energy storage[END_REF], bacterial foraging optimization algorithm [START_REF] Chen | A novel bacterial foraging optimization algorithm for feature selection[END_REF], artificial bee colony algorithm [START_REF] Xue | A self-adaptive artificial bee colony algorithm based on global best for global optimization[END_REF], multiobjective optimization design [START_REF] Kahla | Maximum power point tracking of wind energy conversion system using multi-objective grey wolf optimization of fuzzy-sliding mode controller[END_REF], cuckoo search algorithm [START_REF] Mareli | An adaptive Cuckoo search algorithm for optimization[END_REF], differential evolution [START_REF] Opara | Differential Evolution: A survey of theoretical analyses[END_REF], grasshopper optimization algorithm [START_REF] Guha | Grasshopper optimization algorithm scaled fractional order PI-D controller applied to reduced order model of load frequency control system[END_REF], chaotic particle swarm optimization [START_REF] Kahla | power extraction framework using robust fractional-order feedback linearization control and GM-CPSO for PMSG-based WECS[END_REF] and Grey Wolf Optimization (GWO) [START_REF] Mirjalili | Grey wolf optimizer[END_REF]. This latter features easy implementation with fewer control parameters in order to adjust, and ensures fast convergence. In this paper, to optimize the FOPID controller parameters, applied to our proposed dynamic model, the improved GWO algorithm is adopted. This paper is organized as follows.

In section 2, the switched model of Current-Output Phase-Shift Full-Bridge DC-DC written in state space representation and featuring bilinear form is proposed, and from which the reduced and full order averaged models (ROAM and FOAM) operating in continuous conduction mode has been derived easily. The two latter models are obtained by applying the reduced order averaged modelling and the generalized averaged modelling approaches respectively. In section 3, optimal fractional order PID controller base voltage and current controls regarding the proposed resonant converter is presented. In section 4, simulation and results are presented and discussed. Section 5 summarizes the whole paper.

Dynamic model of PSFB LCLC resonant converter

The DC-DC resonant converters based on LCLC resonant tank topologies as shown in Figure 1 can achieve zero voltage switching (ZVS) and/or zero current switching (ZCS) depending on the load resistance value and operating switching frequency. When the latter is above or below the principal resonant frequency (frequency that coincides with the resonant frequency of the series branch and that of the parallel branch), the normalized voltage gain for different values of load resistance is illustrated in Figure 2(a). All the resonant frequencies involved in the operation of the LCLC resonant tank network are given in appendix D. Choosing the switching frequency in the interval limited by the intersections of the bode plot of input impedance at short circuit with that at open circuit (Figure 2(b)), the converter has always a good efficiency whether with heavy load or at light load. Since arc welding process features a heavy load, the converter is intended to achieve ZVS under CCM when working above the principal resonant frequency. Next, the switching circuit model, ROAM and FOAM of PSFB DC-DC LCLC resonant converter considered in CCM conditions are presented. 

Switching circuit model

The switched model (or so-called exact model) of the full-bridge LCLC DC-DC resonant converter (see Figure 1) can be obtained either by listing all its possible configurations and finding a general structure or by applying the method of emphasizing the variables exhibiting switched-time evolution [START_REF] Bacha | Power electronic converters modeling and control: with case studies[END_REF][START_REF] Bandi | Analysis, modelling and implementation of multi-phase single-leg DC/DC converter for fuel cell hybrid electric vehicles[END_REF][START_REF] Bandi | Analysis, modelling and design of CLLC resonant converter for performance enhancement of fuel cell hybrid electric vehicle[END_REF][START_REF] Das | Modelling, simulation and analysis of high step up DC-DC converter using coupled inductor and voltage multiplier cell using PSCAD[END_REF].

The switched model can be switched using only one internal switching function u2 and an external one u1, which represents the control input. They are illustrated in Figure 3. The external or control one u1 is defined as follows:
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The internal one u2 is a function of state variable (resonant parallel capacitor voltage) vCp defined as follows: 
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It is to mention that the series resistance rs includes both the turn-on Full-bridge power switches resistance and the series resonant inductor resistance, while rf includes both the turn-on rectifier resistance rD and the filter inductor resistance. The low dynamic subsystem is given by:

2 11 0 0 0 0 0 12 000 1 L f f D f ff ff R C C d V u r dt LL LL                                  c ca x xx (4) 
The fast dynamic subsystem is given by: 21
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The switching functions u1 and u2are symmetrical with a pulsation of ω =2π/T. Hence, the fast dynamic system Equation ( 5) is excited by two sources; one is an independent one representing the input voltage and the other is a dependent current source, when considering the output current iLf constant denoted by Io, see Figure 4.

They are given respectively by: 
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where the first harmonic of the switching functions u1and u2 are respectively
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where ζ is the phase angle between the inverter output voltage Uab and the resonant parallel capacitor voltage VCp.

Applying the sliding average to Equation ( 4), it gives:
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The sliding average of the second term of the right side of Equation ( 10) is given by:
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The fast dynamic subsystem Equation (5) represented by the diagram of Figure 4 can be solved to obtain the response of the AC part xa. Note that the fundamental harmonic of vCp1presented in Equation [START_REF] Ang | Analysis of 4 th -Order LCLC Resonant Power Converters[END_REF] or Equation ( 11) can be determined by applying VKL at the left mesh. Hence, the phasor expression of vCp1 is given by:   
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More details of the calculations of Equation [START_REF] Shih | A novel hybrid mode control for a phase-shift fullbridge converter featuring high efficiency over a full-load range[END_REF] and Equation [START_REF] Lee | Control method for phase-shift full-bridge centertapped converters using a hybrid fuzzy sliding mode controller[END_REF] are given in the appendix A. The ROAM described by the two DC state variables: vo=<vCf>0 and io=<iLf>0and controlled by uα(t)=sin(α(t)/2)can now be obtained:
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Operating the converter at the vicinity of resonant frequency makes the reactance Xp much greater against both Xs and rs, which simplifies further the above terms Kα and Rio as follows: 

The short-circuiting angle of secondary side θc when the filter inductor is discharging can be estimated using fundamental component and small ripple approximation for output current and voltage as follows:
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The equivalent circuit of the PSFB DC-DCLCLC resonant converter operating in CCM is illustrated in Figure 5; the equivalent circuit and the steady state model can be derived from the full order averaged model presented in the next section (see appendix C). The input impedance of this equivalent circuit can be simplified further as follows:
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where the equivalent load resistance of the rectifier (see appendix C), inductive filter and load can be demonstrated to be given by:
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More details of the simplification of terms Kα and Rio are presented in appendix B.

Full order averaged model in CCM

The full order large signal model (FOAM) can be derived easily from the proposed switched model, which has bilinear form by applying the generalized averaged modelling (GAM) approach [START_REF] Bacha | Power electronic converters modeling and control: with case studies[END_REF]. Resonant dc-dc converters exhibit AC state variables and DC ones. Hence, the first harmonic sliding average is considered for AC terms and sliding average for DC ones.

The GAM is based on two fundamental properties derived from the complex Fourier series representation of every periodic variables x(t) and y(t). The first property concerns the derivative of the sliding average, since the second one concerns the averaged variable products, which are expressed respectively for the k th -order sliding harmonic as follows:

      kk k dd x t x t jk x t dt dt   (22) 
      k k i i x y t x t y t        (23) 
In matrix form, Equation (3) can be written in bilinear form as follows:
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Fortunately, in most industrial applications, the power transfer mainly done by the fundamental harmonic. Applying properties Equation [START_REF] Opara | Differential Evolution: A survey of theoretical analyses[END_REF] and Equation [START_REF] Guha | Grasshopper optimization algorithm scaled fractional order PI-D controller applied to reduced order model of load frequency control system[END_REF] on Equation [START_REF] Kahla | power extraction framework using robust fractional-order feedback linearization control and GM-CPSO for PMSG-based WECS[END_REF] with respect to the first sliding harmonic, the full order large signal model can be derived as follows:
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where the averaged state variables of AC terms are:
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whereas the sliding averages of DC part are: 0 10 0
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Noting that the relation between the AC averaged sliding harmonic variables and the corresponding real waveforms can be determined, the reader can refer to the chapter 5 in [START_REF] Bacha | Power electronic converters modeling and control: with case studies[END_REF]. Now considering the state variable x and the switching function u, by using Equation ( 9), the product averaging manipulations for the first order harmonic are given as follows:
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For AC terms, the variables x and u, have zero average value, hence, Equation ( 28) can be rewritten as follows:
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Now, it is easy to calculate the averaged products appeared in the differential equations above as follows:

The averaged products presented in Equation ( 25) are calculated as follow:
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The first-phasor of the switching functions u1 and u2 which have alternating waveform (zero-order sliding harmonic is zero) are respectively
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After substituting the averaged products Equation [START_REF] Naidu | Modeling, Sensing and Control of Gas Metal Arc Welding[END_REF] and Equation (32) in Equation ( 25) and separating the real parts from the imaginary ones, Equation ( 25) it can be rewritten as follows: 
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It was showed that from the same switched model the FOAM and the ROAM have extracted. However, each has its advantages and disadvantages. The FOAM is nonlinear and of the sixth order, which requires a more complicated control techniques.

Despite this drawback, this model describes the internal behavior of the converter, which allows us to control in addition to the output state variables, the voltage and current stresses related to resonant circuit elements. Moreover, the steady state model can be obtained by solving the large signal model Equation (35) for dx/dt=0,see appendix C. The steady state model allows the analysis and the design of this type of resonant converters. Whereas, due to its simplicity the ROAM facilitates enormously the implementation of the voltage mode control and current mode control which is the main objective of this paper.

Optimal fractional order PID controller

It is well known that Static and dynamic electrical characteristics depend on the welding process. Usually, in basic welding machines such as Shielded Metal Arc Welding, SMAW, process, dropping electrical characteristic is adopted. However, in more recent welding machines such as GMAW and GTAW, voltage and current mode control respectively are required to achieve either constant voltage characteristic or constant current characteristic. This section deals with voltage and current mode controls regarding Current-Output PSFB DC-DC LCLC resonant converter using optimized fractional order PID controller. Hence, a brief overview on fractional calculus and Improved Grey Wolf Optimization, IGWO method are given as well.

Fractional calculus

Fractional calculus is a standout amongst the basic branches of calculus in which the order of the differential and integral can be represented as non-integer values. In FO calculus, d α /dt α can have fractional negative or positive α values. Generalized fundamental FO operator at D  can be expressed as below [START_REF] Bingi | Fractional order set point weighted PID controller for pH neutralization process using accelerated PSO algorithm[END_REF]:
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where a and t are the operation limits, whereas α is the order of integration or differentiation (α∈ℝ). Liouville-Riemann (e.g., in FO calculus), Caputo (e.g., in physics and mathematical integration), and Letnikov-Grunwald (e.g., control and communications) definitions of FO operators are the most commonly used ones in an FO systems [START_REF] Rajesh | Optimal tuning of FOPID controller based on PSO algorithm with reference model for a single conical tank system[END_REF]. The situation with FO Linear-Time-Invariant (LTI) systems is dissimilar from Integer-order (IO) LTI systems, where FO systems may have roots in the right half of the complex plane and can be still stable. Linear-Time-Invariant (LTI) fractional-order differential equation is in the structure of the following equations: 
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The system Equation (37) can then be expressed as follows: 00 ( ) ( )
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Applying the Laplace transformation to Equation (37) with zero initial conditions, the continuous transfer function of the fractional-order system can be obtained as follows:
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where αk, βk (k=0,1,2,…) are real numbers, αk<αk-1<…<α0, βk<βk-1<…<β0 and ak, bk (k=0,1,2,…) are arbitrary constants. To implement FO systems in practical or in simulation studies, approximations using integer-order (IO) transfer functions must be carried out. The higher-order Oustaloup's filter is one of the well-known approximation methods, which employs recursive distribution of K gain, N zeros and N poles [START_REF] Rajesh | Optimal tuning of FOPID controller based on PSO algorithm with reference model for a single conical tank system[END_REF].

Hence, in this paper, the higher-order analog filter is employed for approximation of FO operators and is given by the following relations: ' ()

N k f kN k s s G s K s         ( 40 
)
where α∈(0,1) is the order of the fractional differ-integration. N is the order of approximation. The gain K, the frequencies of the zeros ωk and the poles ωk' of the filter are calculated from Equation (41) and Equation ( 42)
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)
where ωl and ωh are the ranges of low and high frequencies [START_REF] Amieur | A new robust tilt-PID controller based upon an automatic selection of adjustable fractional weights for permanent magnet synchronous motor drive control[END_REF]. In this paper, frequency range is used as ω = [10 -3 ,10 3 ] rad/s and the 5 th order Oustaloup's recursive filter are utilized.

FO-PID controller is an extension of the classical PID controller. Fractional order controllers are less sensitive to changes in parameters of the system being supervised and the controller. The generalized transfer function of FO-PID is given as [START_REF] Bingi | Fractional order set point weighted PID controller for pH neutralization process using accelerated PSO algorithm[END_REF] and [START_REF] Rajesh | Optimal tuning of FOPID controller based on PSO algorithm with reference model for a single conical tank system[END_REF]:

( ) , ( , 0) 
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where Kp, Ki and Kd represent the proportional, integral and derivative gains respectively, λ the fractional order of the integral term and μ is the fractional degree of the derivative term. In general, the range of fractional degrees is considered between 0 and 2 [START_REF] Amieur | A new robust tilt-PID controller based upon an automatic selection of adjustable fractional weights for permanent magnet synchronous motor drive control[END_REF]. Classical PID controller is obtained if λ=1 and μ=1, PD controller is obtained if λ=0 and μ=1, PI controller is obtained if λ=1 and μ=0 , and P controller is obtained if λ=0 and μ=0, as shown with the plan in Figure 6.

This is

Figure 6. The plan of Fractional-order PID controller. 

Improved Grey Wolf Optimization (IGWO) algorithm

The Grey Wolves Optimization (GWO) algorithm was developed to mimic the social hierarchy of grey wolves and in particular their behavior during hunting [START_REF] Rajesh | Optimal tuning of FOPID controller based on PSO algorithm with reference model for a single conical tank system[END_REF]. As it can be seen in Figure 7, the GWO uses four types of wolf populations: α wolves that lead the hunt are considered the best solutions. The wolves β and δ, which represent the best second and third respectively, can assist the wolves α in decision making. Wolves ω are 2  0, 1

    (PI) 0, 0     (P) 1, 0     (PD) 0, 1     (PID) 2 
follower wolves [START_REF] Kahla | Maximum power point tracking of wind energy conversion system using multi-objective grey wolf optimization of fuzzy-sliding mode controller[END_REF][START_REF] Mirjalili | Grey wolf optimizer[END_REF][START_REF] Nadimi-Shahraki | An improved grey wolf optimizer for solving engineering problems[END_REF]. Figure 7 shows the updated positions of grey wolves when hunting game. From Figure 8, the main phases on which the GWO is based are:  Recognition of the position of the prey and encirclement of the latter Equations ( 44) and (45) [START_REF] Kahla | Maximum power point tracking of wind energy conversion system using multi-objective grey wolf optimization of fuzzy-sliding mode controller[END_REF][START_REF] Mirjalili | Grey wolf optimizer[END_REF][START_REF] Nadimi-Shahraki | An improved grey wolf optimizer for solving engineering problems[END_REF].

 Encircling the prey until it stops moving.

 Therefore, the wolf positions are updated to converge to the best positions obtained as presented in Equations ( 46) and (47) [START_REF] Kahla | Maximum power point tracking of wind energy conversion system using multi-objective grey wolf optimization of fuzzy-sliding mode controller[END_REF][START_REF] Mirjalili | Grey wolf optimizer[END_REF][START_REF] Nadimi-Shahraki | An improved grey wolf optimizer for solving engineering problems[END_REF].

 Attacking prey (exploitation) [START_REF] Kahla | Maximum power point tracking of wind energy conversion system using multi-objective grey wolf optimization of fuzzy-sliding mode controller[END_REF][START_REF] Mirjalili | Grey wolf optimizer[END_REF][START_REF] Nadimi-Shahraki | An improved grey wolf optimizer for solving engineering problems[END_REF]. The GWO algorithm (Figure 8) takes place in the following stages:
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( (2) The calculation of the objective function (fitness) consists in choosing the most appropriate performance index to have a minimum error, which corresponds to fitness.α_score; β_score and δ_score are compared to fitness as follows:

 If α_score<fitness, we update α_score which will be equal to fitness and we define the new position (α_position) of the wolf α, which corresponds to recent α_score.

 If α_score > fitness and β_score <fitness, we update β_score which will be equal to fitness and we define the new position (β_position) of the wolf β, which corresponds to recent β_score.

 If α_score > fitness and β_score > fitness and δ <fitness, we update δ_score which will be equal to fitness and we define the new position (δ_position) of the wolf δ, which corresponds to recent δ_score. Thus, the gain values of FOPI controller, which correspond to the positions of the wolves α, are defined from the fitness value.

(3) The updating of the positions of the wolves is represented in Figure 8. This update is done at each iteration according to Equations ( 46) and (47). Parameters A, C

and a are updated according to Equations ( 48) and (49), which makes it possible to narrow the search space and reduce the distance that separates wolves from prey.

(4) The calculation of fitness and the update of the wolf positions are done at each iteration until reaching Maximum iteration, which is the criterion for stopping the GWO.

An improved grey wolf optimizer (I-GWO) was proposed in [START_REF] Nadimi-Shahraki | An improved grey wolf optimizer for solving engineering problems[END_REF] to reduce the diversity of the population and avoid falling into the local optimum. The improvements include a new search strategy associated by selecting and updating steps, which are indicated in the dashed green line border in the flowchart of I-GWO (Figure 8). The I-GWO includes three phases: initializing, movement, and selecting and updating as follows.

In Initializing phase: N wolves are randomly distributed in the search space in a given range , 

      [0,1] , 1, , 1, ij j j j X l rand u l i N j D       (52) 
The position of the i-th wolf in the t-th iteration is represented as a vector of real values 

Xi(t)= {xi1, xi2, …,
) ( ) ( ) i DLH d i d n d r d X t X t rand X t X t       ( 1) ( 
Then, besides Xi-GWO (t + 1), the DLH search strategy generates another candidate for the new position of wolf Xi(t) named Xi-DLH(t + 1). To do so, first, a radius Ri(t) is calculated using Euclidean distance between the current position of Xi(t) and the candidate position Xi-GWO (t + 1) by Equation (54).

( ) ( ) ( 1) 
i i i GWO R t X t X t     (54) 
Selecting and updating phase: In this phase, first, the superior candidate is selected by comparing the fitness values of two candidates Xi-GWO (t + 1) and Xi-DLH (t + 1) by Equation ( 55).

(

) ( ) ( ) ( 1) 1 
i GWO i GWO i DLH i i DLH X t if f X f X Xt X t otherwise           (55) ( 1) 
Finally, after performing this procedure for all individuals, the counter of iterations (iter) is increased by one, and search can be iterated until the predefined number of iterations (Maxiter) is reached.

Optimal fractional order PID controller based voltage and current mode controls

Firstly, to determine which type of fractional order PID controller is more suitable, the PID tuning algorithm, available in MATLAB, is used to know the convenient form whether for voltage mode control or current mode control. Then, the corresponding fractional order version will be employed. Hence, the FO-PID parameters can be computed using optimized tuning algorithm according to transfer function for each control mode. The IGWO tuning is employed to determine the optimal FO-PID controller subjected to the best possible performance for the regulation of the LCLC resonant converter. It executes offline search to obtain optimized parameters that provide better results in both dynamic and steady states. Figure 9 illustrates the IGWO scheme for the parameter tuning process of a LCLC resonant converter.

The ITAE index J measures the similarity between the closed-loop step response of LCLC resonant converter produced by a determined parameters configuration and the voltage output reference. Therefore, the quality of each candidate solution is assessed according to the following objective function: 0 ()

sim t J t e t dt   ( 56 
)
where tsim is the time of simulation. This objective function is minimized according to IGWO algorithm as depicted in Figure 8. resistance RLe. The linearized ROAM around this operating point is:
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where the perturbation of the variable ip due to the resistance load variation is:

2 oe L p Le v iR R  (58)

Fractional order PI controller based voltage mode control

In order to find the type of PID controller suitable for voltage mode control, the transfer function describing the channel from the control input u ̃α (phase shift angle α) to output voltage v ̃o is required. By zeroing E ̃ and ip in Equation (57), one can find:
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where
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Using PID tuning algorithm available in MATLAB/SIMULINK software package, a classical proportional and integral PI controller is designed so that the computed gains of proportionality and integration meet a crossover frequency fc of 10 times the bandwidth frequency fB of Equation (59) and phase margin of 65 degrees as illustrated in Figure 10(a). As it can be noticed, the PI controller performances are fairly acceptable compared with those of PIDF, which is more complicated. Thus, the PI controller is adopted for voltage mode control of the converter.

i vp K CK s   (63) 
In addition, the fractional order PI version can be determined by computing the corresponding gains and the fractional order of the integral term  at the vicinity of the previous PI controller gains using optimization techniques such as IGWO and PSO (see Table 1). From Figure 11(a), the cost function curves show that the IGWO is slightly more precise than PSO. 

Fractional order PIDF controller based current mode control

In order to find the convenient type of PID controller for current mode control, the transfer function describing the channel from phase shift angle α to output current io is needed. By zeroing 𝐸 ̃ and 𝑖pin Equation (57), one can find:
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)
where the output current to output voltage transfer function is given as: Step 

where

vo io Le K K R  (67) vi Le f T R C  (68)
Again, in the same manner, the controller that is more suitable for current mode control is the proportional, integral, and derivative with first-order filter on derivative term (PIDF) that meets a crossover frequency fc of 7 times the bandwidth frequency fB of the plant and phase margin of 65 degrees as illustrated in Figure 10(b). In this case, the PI does not actually satisfy the desired performances like the PIDF one, which has clearly lower peak response as shown in Figure 10(b). Thus, the PIDF controller for current mode control is adopted. The latter takes the general form with fractional order version FOPIDF as follows:

1 1 i i p d f K C K K s s T s       (69) 
In addition, the fractional order PIDF version can be determined by computing the corresponding gains: Kp, Ki, Kdand Tf plus the fractional degree of the integral term  and that of derivative term μ at the vicinity of the previous PIDF controller gains using optimization techniques such as IGWO and PSO (see Table 2). From Figure 11(b), the cost function shows that the IGWO is slightly more precise than PSO. 

Simulation results and discussion

In this section, the simulation of both switched, ROAM and FOAM models of Current-Output PSFB DC-DC LCLC resonant converter is fulfilled according to the parameters presented in Table 3. Those parameters are calculated for arc welding applications. The simulation and control of the converter are implemented using MATLAB/SIMULINK software package. 

Switching circuit model validation

The switched model presented in section 2 is compared and validated with circuit simulation using SimPowerSystem toolbox. The simulation was carried out with solver type ode3 Bogacki-Shampine with a fixed step of Ts/10000 and the simulation parameters are given in Table 3.

The state variables waveforms at steady state are given in: Figures 12(a-d) for series and parallel resonant currents iLs and iLp and for series and parallel resonant voltage vCs and vCp respectively. The output current and voltage waveforms iLf and vCf are given in Figure 13(a) and Figure 13(b), respectively. It is worthy to mention that the switching operating frequencies, e.g., fs=50kHz are in the vicinity of resonant frequency fr=47kHz, so that the simplifying assumptions for ROAM are held.

According to simulation results of Figure 12 and Figure 13, the switched model, ROAM and FOAM are in agreement with the simulation circuit. However, in this paper the voltage and current mode control schemes using ROAM is preferred for its simplicity.

(c) (d) 

Current-Output PSFB DC-DC LCLC resonant converter as a welding machine

In welding machines, operating in short-circuiting transfer mode, the molten electrode tip can be transferred to the work-piece by direct contact. It is well known that the shortcircuiting frequency depends upon the power source dynamic. Although, the shortcircuiting frequency is within the range of 20 to 200 times per second [START_REF] Naidu | Modeling, Sensing and Control of Gas Metal Arc Welding[END_REF], certain authors claim operating in short-circuiting frequency down to 2.2 times per second [32]. Also, the peak short-circuit current to load welding current ratio is less than 2.5 and peak current ratio from open circuit to a short circuit is less than 3 according to criteria of dynamic characteristics for rectifier-type welding power sources for coated- 

Voltage mode control

The Also, the closed loop system with the FOPI controller features a smooth magnitude characteristic, which leads to lower percentage of overshoot. Table 4 shows the comparative results of overshoot and settling time based on 5% band between traditional PI and FOPI controllers. Moreover, the simulation results illustrated by Figures 16(a-d) show that the FOPI controller is better than the traditional PI controller.

It can be shown that the latter (black signals) is not fast enough to overcome the high frequency variation of the cyclic resistance. In contrast, one can see that the FOPI controller tuned either by IGWO or PSO is well adapted to track the reference signal (output voltage) even for high short-circuiting frequency. 5, it seems that the traditional PIDF controller is acceptable for current mode control compared to the FOPIDF tuned by PSO algorithm. However, the latter offers better dynamic performances especially in terms of percentage overshoot, which is almost twice less.

The simulation results shown by Figures 18(a-d) lead to the same remark. Hence, although the traditional PIDF is easier to implement the fractional order version is preferred for its reduced overshoot percentage. the ROAM is a second order system that involves only two state variables, the DC output voltage and the DC output current. Thus, it is simpler for linear control purposes contrarily to FOAM which is sixth order system with four extra AC state variables.

Subsequently, the reduced model is linearized in order to obtain the transfer functions relating each output voltage and current to the phase shift angle. Then, both a classical PID and fractional order PID controllers are designed to regulate either the output voltage or the output current depending on welding applications. In this paper, Gas Metal Arc Welding, GMAW and Gas tungsten arc Welding, GTAW were considered.

We need to bear in mind that the former is voltage mode controlled whereas the latter is current mode controlled.

Simulation Results show clearly that even without control, Current-Output Phase-Shift Full-Bridge (PSFB) DC-DC LCLC resonant converter can be used to ensure either a constant voltage characteristic or a dropping voltage characteristic depending on the switching frequency. When operating at the resonant frequency, our model fulfills a constant voltage characteristic. By contrast, when operating far from the resonant frequency, the converter fulfills the dropping characteristic.

In voltage mode control, the fractional order PI controller, tuned either by PSO or IGWO methods, is better adapted than the classical PI even at high cyclic resistance frequency. In current mode control, although the PIDF structure is easier to implement and showed dynamic performances close to those of FOPIDF controller, this latter could be preferred in welding applications due to itslower percentage of overshoot.

To the best of our knowledge, it is the first time that such simplified and efficient model is proposed for the representation of the Current-Output Phase-Shift Full-Bridge DC-DC LCLC Resonant Converter topology. The simplifications operated in this paper are of key importance in controlling and implementing this kind of resonant converters regarding welding applications.
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The second term of the right side becomes
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In Equation (A-2), the resonant parallel capacitor voltage fundament vCp1 must be determined according to equivalent diagram of AC part in the sense of the first-order harmonic shown in Figure 3. Note that, according to Figure 3 
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Now, the phasor expression of vCp1 is Once vCp1 is known, the integral term in Equation (A-2) can further be developed 
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B. Simplification of terms Kα and Rio

The terms of Equations ( 13) and ( 14) can be simplified as follows 

RX R X R X               (B-7)
Finally, the terms Kα and Rio take the following forms At steady state, the last two equations in the large signal averaged model Equation (37) can be written as follows:
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Because (the reader can refer to [START_REF] Bacha | Power electronic converters modeling and control: with case studies[END_REF], chapter 5), Hence, the amplitude of iLs is: According to the equivalent circuit (see Figure 5), the normalized output voltage gain when ignoring the voltage drop due to rs, is given as follows   where F=ωs/ωr0 is the normalized resonant frequency, Qe= R0/ Re' is the quality factor and R0=√Lp /√Cp' is the characteristic impedance.
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 12 Figure 1. Current-Output Phase-shift full-bridge DC-DC LCLC resonant converter.
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 3 Figure 3. Principal waveforms and the necessary switching functions used for Current-Output PSFB DC-DC LCLC resonant converter modelling.
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 22 Reduced order averaged model in CCMThe reduced-order averaged model (ROAM) can be derived from the switched model by neglecting the dynamics of AC state variables with respect to the DC filter dynamic. The AC state variables xa = [iLsiLpvCsvCp] T have fast dynamics and the DC state variables xc=[vCfiLf] have slow dynamics.
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 4 Figure 4. The equivalent diagram of the Current-Output PSFB DC-DC LCLC resonant converter's AC part in the sense of first-order harmonic.
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 5 Figure 5. Steady state equivalent circuit of Current-Output PSFB LCLC resonant
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 7 Figure 7. Position updating in GWO.

  Coefficient vectors whose elements are determined randomly. A and C are given by Equations (48) and (49). Where components of a are linearly decreased from 2 down to 0 over the course of iterations and r1, r2 are random vectors in [0, 1]. X: Position vector of the wolf. Xp: Position vector of the prey. D: Distance between the positions of the wolf and the prey.
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  Figure 8. Schematic diagram of the IGWO Algorithm.

1 )

 1 Random initialization of the positions of the wolves α, β, δ in the search space limited by the minimum and maximum values of the values of the gains FOPID (Equation (50)). The initial position of each type of wolf is assigned to the value equals to infinity (Equation (51)). α_position = β_position = δ_position = zeros (1
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  Figure 9. Fractional order PID controller tuning based on IGWO algorithm for voltage
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 10 Figure 10. Voltage and current controller design using PID tuning algorithm of MATLAB, (a) Voltage mode control and (b) Current mode control.

Figure 11 .

 11 Figure 11. Control objective function, (a) IGWO and PSO tuning based FOPI voltage controller and (b) IGWO and PSO tuning based FOPIDF current controller.
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 12 Figure 12. Current and voltage waveforms of Current-Output PSFB DC-DC

Figure 13 .

 13 Figure 13. Voltage and current waveforms at output filter of current-output PSFB DC-DC LCLC resonant converter according to Table 3 and phase shifted with angle of α=π/2 rad. (a) Output voltage vCf and (b) Output current iLf.

  32]. Thus, in order to test the converter for welding applications, the current-output variant of FBPS LCLC resonant converter is loaded by a cyclic resistance Rcyc={0.1 <RL< 0.3},the cyclic frequency of which varies from 20 to 200 Hz.4.2.1. Without controlThe output voltage and current waveforms are presented in Figure14. Results are obtained when the converter is π/2 rad phase-shift controlled. In this figure, two switching frequencies are used: 50 kHz (corresponding to fs/fr=1.0106), presented in dotted red line and 47.5 kHz (corresponding to fs/fr=1.0638), presented in solid blue line.When comparing Figure14(a) to Figure14(b) and Figure14(c) to Figure14(d), one can see that high short circuit frequency (200 short-circuit/s)leads to slow converter dynamic response for both output voltage and output current. In contrast, low short circuit frequency (20 short-circuit/s), leads to high converter dynamic response. It is to highlight that working at or tightly close to a principal resonant frequency fr=47 kHz when the arc welding process features low short-circuit frequency, the dynamic characteristic of the converter is comparable to a constant voltage characteristic as can be seen in the blue lines in Figure14(b) and Figure14(d). On the other hand, the dynamic characteristic of the converter is comparable to a dropping characteristic, as shown by the red lines in Figure14(b) and Figure14(d). To sum up, the topology we proposed can ensure either a constant characteristic when operating near the resonant frequency or a dropping characteristic when operating far from the resonant frequency.

Figure 14 .

 14 Figure 14. Current-Output PSFB DC-DCLCLC resonant converter phase shifted with angle of α=π/2 and loaded by cyclic resistance of RL={0.1;0.3}. Cyclic resistance frequency of 200 Hz in left hand side and 20 Hz in right hand side. (a) Output voltage, b) Output voltage, (c) Output current and (d) Output current.

Figure 16 .

 16 Figure 16. Voltage mode control of Current-Output PSFB DC-DC LCLC resonant converter loaded by cyclic resistance of RL={0.1;0.3}. Cyclic resistance frequency of 200 Hz in left hand side and 20 Hz in

  right hand side. (a) Output voltage, (b) Output voltage, (c) Output current and (d) Output current.

  Bode plots of the transfer function Hvα for different values of load resistance RL illustrated by Figure 15(a) shows the stability of the converter, even though the closed loop transfer function Cr• Hvα shown in Figure 15(b) indicates that the converter with regulation has larger system bandwidth, which improves the fast dynamic response.

Figure 15 .

 15 Figure 15. Bode plot of transfer functions considered in voltage mode control, (a) The

Figure 17 .

 17 Figure 17. Bode plot of transfer functions considered in current mode control, (a) The output current to phase shift angle transfer function Hiα and (b) The closed loop transfer function Cr•Hvα.

Figure 18 .

 18 Figure 18. Current mode control of Current-Output PSFB DC-DC LCLC resonant converter loaded by cyclic resistance of RL={0.1;0.3}. Cyclic resistance frequency of 200Hz in left hand side and 20 Hz in right hand side. (a) Output voltage, (b) Output voltage, (c) Output current and (d) Output current.

  state formulae for current-output PSFB DC-DC LCLC resonant converterThe derivation of steady state formulae that can be used design or steady state analysis by neglecting diode voltage drop VD is presented next.

  (C-3) and (C-4) in Equation (C-2), the short-circuit angle at secondary side i.e., when the inductor filter is discharging, is given by voltage crossing the resonant parallel capacitor VCp is approximated by its fundamental harmonic. The LCLC resonant converter uses an inductor output filter and drives the rectifier with an equivalent voltage source. Hence, its amplitude is related to output voltage Vo as follows 2

21 ) 3 ).

 213 the equivalent load resistance has the following form: Note that when looking at Equation (C-20), it is obvious that the ratio of the amplitudes of series resonant current iLs to and parallel resonant voltage vCp is the magnitude of the three admittances in series (or the corresponding impedances in parallel) which can be written as follows: corresponding equivalent circuit is illustrated in Figure4.D. Output voltage gain and input impedances of LCLC resonant tank and principal resonant frequenciesThe short-circuit Zi0 and open-circuit Zi∞ input impedance magnitudes of the resonant tank network are given by The open-circuit Zi∞ input impedance has three resonant frequencies given by The frequencies where which the bode plot of impedance magnitude: ǁZi0(ωs)ǁ and ǁZi∞(ωs)ǁ intersect are:

  xiD}, where D is the dimension number of the problem. The whole population of wolves is stored in a matrix Pop, which has N rows and D columns. The fitness value of Xi (t) is calculated by the fitness function, f (Xi(t)). (53) in which this individual wolf is learned by its different neighbors and a randomly selected wolf from Pop.

	,	,		,	,	
	Movement phase: In addition to group hunting, individual hunting is another interesting
	social behavior of grey wolves [21]. The I-GWO incorporates an additional movement
	strategy named dimension learning-based hunting (DLH) search strategy. In DLH, each

individual wolf is learned by its neighbors to be another candidate for the new position of Xi(t).In the DLH search strategy, each dimension of the new position of wolf Xi(t) is calculated by Equation

IGWO Algorithm Fitness Function Reference Vo or Io Error E(s) Phase shift Control (Uα) VCf or ILf ROAM of LCLC resonant converter Improved Grey WolfOptimization Integral of Time Multiply Absolute Error (ITAE) Global Best Parameters FOPID Control + _

  Consider a quiescent operating point determined by steady-state phase shift angle uαe=sin(αe/2), output current ioe, output voltage voe, voltage source Ee and load

	9. Fractional order PID controller tuning based on IGWO algorithm for voltage
	or current mode controlled Current-Output Phase Shift Full Bridge LCLC resonant
	converter.
	3.3.1. Linearized ROAM

Table 1 .

 1 Voltage mode control FOPI tuning.

	Parameters of PFOPI	Kp	Ki	
	Tuning methods			
	MATLAB PID tuning algorithm:	0.291	1170	1
	Type: PI			
	Crossover frequency: 10 fB			
	Margin phase: 65°			
	FOPI using IGWO tuning method	0.299	4000	1.450
	Search Agents =20;			
	Best function = 6.4271e-6			
	FOPI using PSO tuning method	0.3	4000	1.4500
	Number of particle=4			
	Best function = 6.4272e-6;			
	Search space	Lb= [0.1	2000	1.45];
		Ub= [0.3 4000	1.5 ];

Table 2 .

 2 Current mode control FOPI tuning.

	Parameters of						
	FOPIDF	Kp	Ki	Kd		μ	Tf
	Tuning methods						
	MATLAB PID tuning	0.0763 204	-2.82•10 -6	1	1	6.36• 10 -5
	algorithm:						
	Type: PIDF						
	fc= 7• fB						
	Margin phase: 65°						
	FOPI using IGWO tuning	0.0741 299.98 -7.38• 10 -6 1.000 0.7802 9.93• 10 -6
	Search Agents =20;						
	Best function= 8.064e-9						
	FOPI using PSO tuning	0.0700 183.94 -9.32 •10 -6 1.001 0.7783 7.61•10 -6
	Number of particle=4						
	Best function=2.897e-8						
	Search space	Lb= [0.01 100 Ub=[0.08 300	-10 -5 10 -5	1 1.5	0 1	10 -6 ]; 10 -5 ];

Table 3 .

 3 Simulation parameters of Current-Output PSFB DC-DC LCLC resonant

	converter.					
	Current-output	LCLC	resonant tank parameters	filter	and	load
	resonant converter			parameters	
	E=300V		rs=0.1163 Ω	Lf=200µH	
	fs=50kHz		γ= 0.041	Cf=50µF		
	fr=47kHz		Ls=64 µH=γLp	RL=0.1733Ω	
	m=3;		Cs=0.17917µF	rLf=17.5mΩ	

Table 4 .

 4 Transient response characteristics for voltage mode controllers.

	Dynamic	PI	FPI-IGWO	FPI-PSO
	performances			
	RiseTime:	8.9388e-05	7.5803e-05	7.5803e-05
	SettlingTime:	3.74503e-04	3.34417e-04	3.34409e-04
	SettlingMin:	0.9593	0.9462	0.9462
	SettlingMax:	1.1148	1.0281	1.0281
	Overshoot:	11.4833	2.8100	2.8101
	(a)			(b)

Table 5 .

 5 Transient response characteristics for current mode controllers.

	Dynamic	PIDF	FPIDF-IGWO FPIDF-PSO
	performances			
	RiseTime:	1.04694e-04	2.13996e-04	2.86990e-04
	SettlingTime:	2.34440e-04	14.64790e-04	2.89352e-04
	SettlingMin:	0.9589	0.9505	0.9501
	SettlingMax:	1.0781	1.0562	1.0418
	Overshoot:	7.8128	5.6285	4.1851

  Because when operating the converter at the vicinity of resonant frequency. This makes the reactance Xp much greater against Xs and rs which simplify further the above terms Kα and Rio. The term of impedance ratio in Equation (B-1) can be simplified as

		1 		tan	1   s p r X   	0	(B-4)
	Also with the same manner for the term of impedance in Equation (B-2) is simplified as
	follows											
	    sp  12 22 22 22 jj p s s p s s ss sps s p s p Z Z jX r X X e r X e r X ZZ r j X X rX     	e	j 	2	(B-5)
			2			tan	1   s s X r  	(B-6)
	Also, at the vicinity of resonant frequency Xs<<Re'and rs<< Re'. Using Equation (19),
	one can write					
						cos		2		cos	cos	2	sin	sin	2
												/
												es
				cos						sin	cos
								2				2	2
											/2		2	/2	2
											e		s	e	s
			K 		2 8 cos m 	1  cos p c sp jX Z jX 	(B-1)
			  23 16 cos cos sp ic o sp Z jX R Z jX m     	2		(B-2)
	follows											
	p Z Z s Z 	p			 r j X X p s s jX 	p		p r jX s jX 	p		1 22 j p sp X e  rX 	11 p s p Z Z Z   	(B-3)
	where											

  After substitution of x3 and x4 and squaring each side of the two last equations, it gives

	2 mm p p x C C 	4 x			s	7 x		2 1 p L C R	2 10 8 2 f L L L f r R x R R r           	(C-13)
	Now, the two equations become as follows
	1 mm p p x C C 	3 x			s	8 x		1 p C	2 8 	1 R r L 	f	7 x		0	(C-14)
				2 mm p p x C C 		4 x			s	7 x		2 1 8 p C 	1 R r L 	f	8 x		0	(C-15)
	Using the following equation obtained from Equation (37) at steady state:
	16 ss x C x  	,	2 x		5 C x ss 	,	3 xx 8 sp m L  	and	47 sp m xx L  	(C-16)
				2 mm 1 p p p s 2 x C L C   8 7 2 1 8 1 s p L f x x C R r                     	2	(C-17)
				2 mm 2 8 2 1 8 1 p p L f p p s 2 x x C C R r L C    7 s x                    	2	(C-18)
	We know that											
	   1 2 ax 	8 bx cx 7 	8      7 2 2 2 bx cx  		7 bcx x 8 2
	   2 2 ax 	8 cx bx 7 	8      7 2 2 2 cx bx  		7 8 bcx x 2
	2 a x x 2 1 2 2   	    	2 b c x x 2 2 7 8 2      	 
	Because (the reader can refer to [27] chapter 5),
				I	s L	22 x x  2	(C-19)
										12
	p mm p x C C 	x				s	x		p C R L	f L R r     L L f R R r      	x		(C-12)
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Appendix

A. Integral calculus

Applying the sliding average to the low dynamic subsystem, Equation (6) becomes   2