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Abstract

The analysis of brain-imaging data requires complex processing pipelines to support find-

ings on brain function or pathologies. Recent work has shown that variability in analytical

decisions, small amounts of noise, or computational environments can lead to substantial

differences in the results, endangering the trust in conclusions. We explored the instability of

results by instrumenting a structural connectome estimation pipeline with Monte Carlo Arith-

metic to introduce random noise throughout. We evaluated the reliability of the connec-

tomes, the robustness of their features, and the eventual impact on analysis. The stability of

results was found to range from perfectly stable (i.e. all digits of data significant) to highly

unstable (i.e. 0 − 1 significant digits). This paper highlights the potential of leveraging

induced variance in estimates of brain connectivity to reduce the bias in networks without

compromising reliability, alongside increasing the robustness and potential upper-bound of

their applications in the classification of individual differences. We demonstrate that stability

evaluations are necessary for understanding error inherent to brain imaging experiments,

and how numerical analysis can be applied to typical analytical workflows both in brain imag-

ing and other domains of computational sciences, as the techniques used were data and

context agnostic and globally relevant. Overall, while the extreme variability in results due to

analytical instabilities could severely hamper our understanding of brain organization, it also

affords us the opportunity to increase the robustness of findings.

Introduction

The modelling of brain networks, called connectomics, has shaped our understanding of the

structure and function of the brain across a variety of organisms and scales over the last decade

[1–6]. In humans, these wiring diagrams are obtained in vivo through Magnetic Resonance

Imaging (MRI), and show promise towards identifying biomarkers of disease. This can not
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only improve understanding of so-called “connectopathies”, such as Alzheimer’s Disease and

Schizophrenia, but potentially pave the way for therapeutics [7–11].

However, the analysis of brain imaging data relies on complex computational methods and

software. Tools are trusted to perform everything from pre-processing tasks to downstream

statistical evaluation. While these tools undoubtedly undergo rigorous evaluation on bespoke

datasets, in the absence of ground-truth this is often evaluated through measures of reliability

[12–16], proxy outcome statistics, or agreement with existing theory. Importantly, this means

that tools and datasets are not necessarily of known or consistent quality, and it is not uncom-

mon that equivalent experiments may lead to diverging conclusions [17–23]. While many sci-

entific disciplines suffer from a lack of reproducibility [24], this was recently explored in brain

imaging by a 70 team consortium which performed equivalent analyses and found widely

inconsistent results [17], and it is likely that software instabilities played a role. This study does

not broach dataset differences, but there are considerable works which demonstrate that data

selection may compound these effects(e.g. [14, 16]).

The present study approached evaluating reproducibility from a computational perspective

in which a series of brain imaging studies were numerically perturbed in such a way that the

plausibility of results was not affected, and the implications of the observed instabilities on

downstream analyses were quantified. We accomplished this through the use of Monte Carlo

Arithmetic (MCA) [25, 26], a technique which enables characterization of the sensitivity of a

system to small numerical perturbations. This is importantly distinct from data perturbation

experiments where the underlying datasets are manipulated or pathologies may be simulated,

and allows for the evaluation of experimental uncertainty in real-world settings. We explored

the impact of numerical perturbations through the direct comparision of structural connec-

tomes, the consistency of their features, and their eventual application in a neuroscience study.

We also characterized the consequences of instability in these pipelines on the reliability of

derived datasets, and discuss how the induced variability may be harnessed to increase the

discriminability of datasets, in an approach akin to ensemble learning. Finally, we make rec-

ommendations for the roles perturbation analyses may play in brain imaging research and

beyond.

Results

Graphs vary widely with perturbations

Prior to exploring the analytic impact of instabilities, a direct understanding of the induced

variability was required. A subset of the Nathan Kline Institute Rockland Sample (NKIRS)

dataset [27] was randomly selected to contain 25 individuals with two sessions of imaging

data, each of which was subsampled into two components, resulting in four samples per indi-

vidual and 100 samples total (25 × 2 × 2 samples). Structural connectomes were generated

with canonical deterministic and probabilistic pipelines [28, 29] which were instrumented

with MCA, replicating computational noise either sparsely or densely throughout the pipelines

[19, 26]. In the sparse case, a small subset of the libraries were instrumented with MCA, allow-

ing for the evaluation of the cascading effects of numerical instabilities that may arise. In the

dense case, operations are more uniformly perturbed and thus the law of large numbers sug-

gests that perturbations will quickly offset one-another and only dramatic local instabilities

will have propagating effects. Importantly, the perturbations resulting from the sparse setting

represent a strict subset of the possible outcomes of the dense implementation. The random

perturbations are statistically independent from one another across both settings and simula-

tions. Instrumenting pipelines with MCA increases their computation time, in this case by

multiplication factors of 1.2 × and 7 × for the sparse and dense settings, respectively [19]. The
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results obtained were compared to unperturbed (e.g. reference) connectomes in both cases.

The connectomes were sampled 20 times per sample and once without perturbations, resulting

in a total of 8,400 connectomes. Two versions of the unperturbed connectomes were generated

and compared such that the absence of variability aside from that induced via MCA could be

confirmed.

The stability of structural connectomes was evaluated through the normalized percent devi-

ation from reference [19] and the number of significant digits (Fig 1). The comparisons were

grouped according to differences across simulations, subsampling of data, sessions of acquisi-

tion, or subjects, and accordingly sorted from most to least similar. While the similarity of con-

nectomes decreases as the collections become more distinct, connectomes generated with

sparse perturbations show considerable variability, often reaching deviations equal to or

greater than those observed across individuals or sessions (Fig 1A; right). Interpretting these

results with respect to the distinct MCA environments used suggests that the tested pipelines

may not suffer from single dominant sources of instability, but that nevertheless there exist

minor local instabilities which may the propagate throughout the pipeline. Furthermore, this

finding suggests that instabilities inherent to these pipelines may mask session or individual

differences, limiting the trustworthiness of derived connectomes. While both pipelines show

similar performance, the probabilistic pipeline was more stable in the face of dense perturba-

tions whereas the deterministic was more stable to sparse perturbations (p< 0.0001 for all;

Fig 1. Exploration of perturbation-induced deviations from reference structural connectomes. (A) The absolute deviations between connectomes,

in the form of normalized percent deviation from reference. The difference in MCA-perturbed connectomes is shown as the across MCA series, and is

presented relative to the variability observed across subsamples, sessions, and subjects. (B) The number of significant decimal digits in each set of

connectomes as obtained by evaluating the complete distribution of networks. In the case of 16, values can be fully relied upon, whereas in the case of 1

only the first digit of a value can be trusted. Dense and sparse perturbations are shown on the left and right, respectively.

https://doi.org/10.1371/journal.pone.0250755.g001
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exploratory). As an alternative to the normalized percent deviation, the stability of correlations

between networks can be found in S1 Section in S1 File.

The number of significant digits per edge across connectomes (Fig 1B) similarly decreases

alongside the decreasing similarity between comparison groups. While the cross-MCA com-

parison of connectomes generated with dense perturbations show nearly perfect precision for

many edges (approaching the maximum of 15.7 digits for 64-bit data), this evaluation uniquely

shows considerable drop off in performance when comparing networks across subsamplings

(average of<4 digits). In addition, sparsely perturbed connectomes show no more than an

average of 3 significant digits across all comparison groups, demonstrating a significant limita-

tion in the reliability of independent edge weights. The number of significant digits across

individuals did not exceed a single digit per edge in any case, indicating that only the order of

magnitude of edges in naively computed groupwise average connectomes can be trusted. The

combination of these results with those presented in Fig 1A suggests that while specific edge

weights are largely affected by instabilities, macro-scale network structure is stable.

Sparse perturbations reduce off-target signal

We assessed the reproducibility of the dataset through mimicking and extending a typical test-

retest experiment [14] in which the similarity of samples across sessions were compared to dis-

tinct samples in the dataset (Table 1, with additional experiments and explanation of the mea-

sure and its scaling in S2 Section in S1 File). The ability to discriminate connectomes across

subjects (Hypothesis 1) is an essential prerequisite for the application of brain imaging towards

identifying individual differences [6]. In testing hypothesis 1, we observe that the dataset is dis-

criminable with a scaled score of 0.82 (p< 0.001; optimal score: 1.0; chance: 0.04) for both

pipelines in the absence of MCA. We can see that inducing instabilities through MCA pre-

serves the discriminability in the dense perturbtion setting, and and discriminability decreased

slightly but remained above the unscaled reference value of 0.65 in the sparse case. This lack of

significant decrease in discriminability across MCA perturbations suggests its utility for cap-

turing variance within datasets without compromising the robustness and reliability of the

dataset as a whole, and possibly suggests this technique as a cost effective and context-agnostic

method for dataset augmentation.

While the discriminability of individuals is essential for the identification of individual

brain networks, it is similarly reliant on network similarity—or lack of discriminability—

across equivalent acquisitions (Hypothesis 2). In this case, connectomes were grouped based

upon session, rather than subject, and the ability to distinguish one session from another

based on subsamples was computed within-individual and aggregated. Both the unperturbed

and dense perturbation settings perfectly preserved differences between sessions with a score

of 1.0 (p< 0.005; optimal score: 0.5; chance: 0.5), indicating a dominant session-dependent

Table 1. The impact of instabilities as evaluated through the discriminability of the dataset based on individual (or subject) differences, session, and subsample.

Comparison Chance Target Unscaled Ref. Scaled Ref. Dense MCA Sparse MCA

Det. Prob. Det. Prob. Det. Prob. Det. Prob.

H1: Across Subjects 0.04 1.0 0.64 0.65 0.82 0.82 0.82 0.82 0.77 0.75

H2: Across Sessions 0.5 0.5 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.85

H3: Across Subsamples 0.5 0.5 0.99 1.00 0.71 0.61

The performance is reported as mean discriminability. While a perfectly discriminable dataset would be represented by a score of 1.0, the chance performance,

indicating minimal discriminability, is 1/the number of classes. H3 could not be tested using the reference executions due to too few possible comparisons. The

alternative hypothesis, indicating significant discrimination, was accepted for all experiments, with p< 0.005 after correcting for multiple comparisons.

https://doi.org/10.1371/journal.pone.0250755.t001
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signal for all individuals despite no intended biological differences. However, while still signifi-

cant relative to chance (score: 0.85 and 0.88; p< 0.005 for both), sparse perturbations lead to

significantly lower discriminability of the dataset (p< 0.005 for all). This reduction of the dif-

ference between sessions suggests that the added variance due to perturbations reduces the rel-

ative impact of non-biological acquisition-dependent bias inherent in the networks.

Though the previous sets of experiments inextricably evaluate the interaction between data

acquisition and tool, the use of subsampling allowed for characterizing the discriminability of

networks sampled from within a single acquisition (Hypothesis 3). While this experiment

could not be evaluated using reference executions, the networks generated with dense pertur-

bations showed near perfect discrimination between subsamples, with scores of 0.99 and 1.0

(p< 0.005; optimal: 0.5; chance: 0.5). Given that there was no variability in data acquisition,

due to undesired effects such as participant motion, or preprocessing, the ability to discrimi-

nate between equivalent subsamples in this experiment may only be due to instability or bias

inherent to the pipelines. The high variability introduced through sparse perturbations consid-

erably lowered the discriminability towards chance (score: 0.71 and 0.61; p< 0.005 for all), fur-

ther supporting this as an effective method for obtaining lower-bias estimates of individual

connectivity.

Across all cases, the induced perturbations maintained the ability to discriminate networks

on the basis of meaningful biological signal alongside a reduction in discriminability due to of

off-target signal in the sparse perturbation setting. This result appears strikingly like a manifes-

tation of the well-known bias-variance tradeoff [30] in machine learning, a concept which

observes a decrease in bias as variance is favoured by a model. In particular, this highlights that

numerical perturbations can be used to not only evaluate the stability of pipelines, but that the

induced variance may be leveraged for the interpretation as a robust distribution of possible

results.

Distributions of graph statistics are reliable, but individual statistics are

not

Exploring the stability of topological features of structural connectomes is relevant for typical

analyses, as low dimensional features are often more suitable than full connectomes for many

analytical methods in practice [5]. A separate subset of the NKIRS dataset was randomly

selected to contain a single non-subsampled session for 100 individuals (100 × 1 × 1) using the

pipelines and instrumentation methods to generate connectomes as above. Connectomes were

generated 20 times each, resulting in a dataset which also contained 8,400 connectomes with

the MCA simulations serving as the only source of repeated measurements.

The stability of several commonly-used multivariate graph features [31] were explored and

are presented in Fig 2. The cumulative density of the features was computed within individuals

and the mean cumulative density and associated standard error were computed for across

individuals (Fig 2A and 2B). There was no significant difference between the distributions for

each feature across the two perturbation settings, suggesting that the topological features sum-

marized by these multivariate features are robust across both perturbation modes.

In addition to the comparison of distributions, the stability of the first 5 moments of these

features was evaluated (Fig 2C and 2D). In the face of dense perturbations, the feature-

moments were stable with more than 10 significant digits with the exception of edge weight

when using the deterministic pipeline, though the probabilistic pipeline was more stable for all

comparisons (p< 0.0001; exploratory). In stark contrast, sparse perturbations led to highly

unstable feature-moments (Fig 2D), such that none contained more than 5 significant digits of

information and several contained less than a single significant digit, indicating a complete
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lack of reliability. This dramatic degradation in stability for individual measures strongly sug-

gests that these features may be unreliable as individual biomarkers when derived from a single

pipeline evaluation, though their reliability may be increased when studying their distributions

across perturbations. A similar analysis was performed for univariate statistics which obtained

similar findings and can be found in S3 Section in S1 File.

Fig 2. Distribution and stability assessment of multivariate graph statistics. (A, B) The cumulative distribution functions of multivariate statistics

across all subjects and perturbation settings. There was no significant difference between the distributions in A and B. (C, D) The number of significant

digits in the first 5 five moments of each statistic across perturbations. The dashed red line refers to the maximum possible number of significant digits.

https://doi.org/10.1371/journal.pone.0250755.g002
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Uncertainty in brain-phenotype relationships

While the variability of connectomes and their features was summarized above, networks are

commonly used as inputs to machine learning models tasked with learning brain-phenotype

relationships [6]. To explore the stability of these analyses, we modelled the relationship

between high- or low- Body Mass Index (BMI) groups and brain connectivity using standard

dimensionality reduction and classification tools. In particular, we used Principal Component

Analysis followed by a Logistic Regression classifier to predict BMI label, and demonstrated

similar performance to previous work which adopted similar techniques for this task [32, 33].

We compared the performance achieved across numerically perturbed samples to both the ref-

erence and random performance (Fig 3).

The analysis was perturbed through distinct samplings of the dataset across both pipelines

and perturbation methods. The accuracy and F1 score for the perturbed models varied from

0.520–0.716 and 0.510–0.725, respectively, ranging from at or below random performance to

outperforming performance on the reference dataset. This large variability illustrates a previ-

ously uncharacterized margin of uncertainty in the modelling of this relationship, and limits

confidence in reported accuracy scores on singly processed datasets. The portion of explained

variance in these samples ranged from 88.6% -– 97.8%, similar to the reference of 90.3%, sug-

gesting that the range in performance was not due to a gain or loss of meaningful signal, but

rather the reduction of bias towards specific outcome. Importantly, this finding does not sug-

gest that modelling brain-phenotype relationships is not possible, but rather it sheds light on

impactful uncertainty that must be accounted for in this process, and supports the use of

ensemble modeling techniques.

One distinction between the results presented here and the previous is that while networks

derived from dense perturbations had been shown to exhibit less dramatic instabilities in gen-

eral, the results here show similar variability in classification performance across the two meth-

ods. This consistency suggests that the desired method of instrumentation may vary across

Fig 3. Variability in BMI classification across the sampling of an MCA-perturbed dataset. The dashed red lines indicate random-chance

performance, and the orange dots show the performance using the reference executions.

https://doi.org/10.1371/journal.pone.0250755.g003

PLOS ONE Numerical uncertainty in network neuroscience

PLOS ONE | https://doi.org/10.1371/journal.pone.0250755 November 1, 2021 7 / 16

https://doi.org/10.1371/journal.pone.0250755.g003
https://doi.org/10.1371/journal.pone.0250755


experiments. While sparse perturbations result in considerably more variability in networks

directly, the two techniques capture similar variability when relating networks to this pheno-

typic variable. Given the dramatic reduction in computational overhead, a sparse instrumenta-

tion may be preferred when processing datasets for eventual application in modelling brain-

phenotype relationships.

Discussion

The perturbation of structural connectome estimation pipelines with small amounts of noise,

on the order of machine error, led to considerable variability in derived brain graphs. Across

all analyses the stability of results ranged from nearly perfectly trustworthy (i.e. no variation)

to completely unreliable (i.e. containing no trustworthy information). Given that the magni-

tude of introduced numerical noise is to be expected in computational workflows, this finding

has potentially significant implications for inferences in brain imaging as it is currently per-

formed. In particular, this bounds the success of studying individual differences, a central

objective in brain imaging [6], given that the quality of relationships between phenotypic data

and brain networks will be limited by the stability of the connectomes themselves. This issue is

accentuated through the crucial finding that individually derived network features were unreli-

able despite there being no significant difference in their aggregated distributions. This finding

is not damning for the study of brain networks as a whole, but rather is strong support for the

aggregation of networks, either across perturbations for an individual or across groups, over

the use of individual estimates.

Underestimated false positive rates

While the instability of brain networks was used here to demonstrate the limitations of model-

ling brain-phenotype relationships in the context of machine learning, this limitation extends

to classical hypothesis testing, as well. Though performing individual comparisons in a

hypothesis testing framework will be accompanied by reported false positive rates, the accu-

racy of these rates is critically dependent upon the reliability of the samples used. In reality, the

true false positive rate for a test would be a combination of the reported confidence and the

underlying variability in the results, a typically unknown quantity.

When performing these experiments outside of a repeated-measure context, such as that

afforded here through MCA, it is impossible to empirically estimate the reliability of samples.

This means that the reliability of accepted hypotheses is also unknown, regardless of the

reported false positive rate. In fact, it is a virtual certainty that the true false positive rate for a

given hypothesis exceeds the reported value simply as a result of numerical instabilities. This

uncertainty inherent to derived data is compounded with traditional arguments limiting the

trustworthiness of claims [34], and hampers the ability of researchers to evaluate the quality of

results. The accompaniment of brain imaging experiments with direct evaluations of their sta-

bility, as was done here, would allow researchers to simultaneously improve the numerical sta-

bility of their analyses and accurately gauge confidence in them. The induced variability in

derived brain networks may be leveraged to estimate aggregate connectomes with lower bias

than any single independent observation, leading to learned relationships that are more gener-

alizable and ultimately more useful.

Cost-effective data augmentation

The evaluation of reliability in brain imaging has historically relied upon the expensive collec-

tion of repeated measurements choreographed by massive cross-institutional consortia [35,

36]. The finding that perturbing experiments using MCA both preserved the discriminability
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of the dataset due to biological signal and decreased the discriminability due to off-target dif-

ferences across acquisitions and subsamples opens the door for a promising paradigm shift.

Given that MCA is data-agnostic, this technique could be used effectively in conjunction with,

or in lieu of, realistic noise models to augment existing datasets. While this of course would

not replace the need for repeated measurements when exploring the effect of data collection

paradigm or study longitudinal progressions of development or disease, it could be used in

conjunction with these efforts to decrease the bias of each distinct sample within a dataset. In

contexts where repeated measurements are typically collected to increase the fidelity of the

dataset, MCA could potentially serve as an alternative solution to capture more biological vari-

ability, with the added benefit being the savings of millions of dollars on data collection.

Shortcomings and future questions

Given the complexity of recompiling complex software libraries, pre-processing was not per-

turbed in these experiments as the instrumentation of the canonical workflow used in diffu-

sion image processing would have added considerable technical complexity and

computational overhead to the large set of experiments performed here; similarly, this com-

plexity along with the added layer of difficulty in comparing instrumentations meant that only

algorithms within a single library were tested. Other work has shown that linear registration, a

core piece of many elements of pre-processing such as motion correction and alignment, is

sensitive to minor perturbations [21]. It is likely that the instabilities across the entire process-

ing workflow would be compounded with one another, resulting in even greater variability.

While the analyses performed in this paper evaluated a single dataset and set of pipelines,

extending this work to other modalities and analyses, alongside the detection of local sources

of instability within pipelines, is of interest for future projects.

This paper does not explore methodological flexibility or compare this to numerical insta-

bility. Recently, the nearly boundless space of analysis pipelines and their impact on outcomes

in brain imaging has been clearly demonstrated [17]. The approach taken in these studies com-

plement one another and explore instability at the opposite ends of the spectrum, with human

variability in the construction of an analysis workflow on one end and the unavoidable error

implicit in the digital representation of data on the other. It is of extreme interest to combine

these approaches and explore the interaction of these scientific degrees of freedom with effects

from software implementations, libraries, and parametric choices.

Finally, it is important to state explicitly that the work presented here does not invalidate

analytical pipelines used in brain imaging, but merely sheds light on the fact that many studies

are accompanied by an unknown degree of uncertainty due to machine-introduced errors.

The presence of unknown error-bars associated with experimental findings limits the impact

of results due to increased uncertainty. The desired outcome of this paper is to motivate a shift

in scientific computing—both in neuroimaging and more broadly—towards a paradigm that

favours the explicit evaluation of the trustworthiness of claims alongside the claims

themselves.

Materials & methods

Dataset

The Nathan Kline Institute Rockland Sample (NKI-RS) [27] dataset contains high-fidelity

imaging and phenotypic data from over 1,000 individuals spread across the lifespan. A subset

of this dataset was chosen for each experiment to both match sample sizes presented in the

original analyses and to minimize the computational burden of performing MCA. The selected
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subset comprises 100 individuals ranging in age from 6–79 with a mean of 36.8 (original: 6–81,

mean 37.8), 60% female (original: 60%), with 52% having a BMI over 25 (original: 54%).

Each selected individual had at least a single session of both structural T1-weighted

(MPRAGE) and diffusion-weighted (DWI) MR imaging data. DWI data was acquired with

137 diffusion directions in a single shell; more information regarding the acquisition of this

dataset can be found in the NKI-RS data release [27].

In addition to the 100 sessions mentioned above, 25 individuals had a second session to be

used in a test-retest analysis. Two additional copies of the data for these individuals were gen-

erated, including only the odd or even diffusion directions (64 + 9 B0 volumes = 73 in either

case) such that the acquired data was evenly represented across both portions, and each sub-

sample represented a realistic complete acquisition. This allowed for an extra level of stability

evaluation to be performed between the levels of MCA and session-level variation.

In total, the dataset is composed of 100 subsampled sessions of data originating from 50

acquisitions and 25 individuals for in depth stability analysis, and an additional 100 sessions of

full-resolution data from 100 individuals for subsequent analyses.

Processing

The dataset was preprocessed using a standard FSL [37] workflow consisting of eddy-current

correction and alignment. The MNI152 atlas [38] was aligned to each session of data via the

structural images, and the resulting transformation was applied to the DKT parcellation [39].

Subsampling the diffusion data took place after preprocessing was performed on full-resolu-

tion sessions, ensuring that an additional confound was not introduced in this process when

comparing between downsampled sessions. The preprocessing described here was performed

once without MCA, and thus is not being evaluated.

Structural connectomes were generated from preprocessed data using two canonical pipe-

lines from Dipy [28]: deterministic and probabilistic. In the deterministic pipeline, a constant

solid angle model was used to estimate tensors at each voxel and streamlines were then gener-

ated using the EuDX algorithm [29]. In the probabilistic pipeline, a constrained spherical

deconvolution model was fit at each voxel and streamlines were generated by iteratively sam-

pling the resulting fiber orientation distributions. In both cases tracking occurred with 8 seeds

per 3D voxel and edges were added to the graph based on the location of terminal nodes with

weight determined by fiber count.

The random state of both pipelines was fixed for all analyses. Fixing this random state led to

entirely deterministic repeated-evaluations of the tools, and allowed for explicit attribution of

observed variability to limitations in tool precision as provoked by Monte Carlo simulations,

rather than the internal state of the algorithm.

Perturbations

All connectomes were generated with one reference execution where no perturbation was

introduced in the processing. For all other executions, all floating point operations were

instrumented with Monte Carlo Arithmetic (MCA) [25] through Verificarlo [26]. MCA simu-

lates the distribution of errors implicit to all instrumented floating point operations (flop).

This rounding is performed on a value x at precision t by:

inexactðxÞ ¼ xþ 2ex � tx ð1Þ

where ex is the exponent value of x and ξ is a uniform random variable in the range (� 1

2
, 1

2
).

MCA can be introduced in two places for each flop: before or after evaluation. Performing

MCA on the inputs of an operation limits its precision, while performing MCA on the output
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of an operation highlights round-off errors that may be introduced. The former is referred to

as Precision Bounding (PB) and the latter is called Random Rounding (RR).

Using MCA, the execution of a pipeline may be performed many times to produce a distri-

bution of results. Studying the distribution of these results can then lead to insights on the sta-

bility of the instrumented tools or functions. To this end, a complete software stack was

instrumented with MCA and is made available on GitHub at https://github.com/verificarlo/

fuzzy.

The RR variant of MCA was used for all experiments. As was presented in [19], both the

degree of instrumentation (i.e. number of affected libraries) and the perturbation mode have

an effect on the distribution of observed results. For this work, the RR-MCA was applied

across the bulk of the relevant operations (those occurring in BLAS, LAPACK, Python,

Cython, and Numpy) and is referred to as dense perturbation. In this case the bulk of numeri-

cal operations were affected by MCA.

Conversely, the case in which RR-MCA was applied across the operations in a small subset

of operations (those ocurring in Python and Cython) is here referred to as sparse perturbation.

In this case, the inputs to operations within the instrumented libraries were perturbed, result-

ing in less frequent, data-centric perturbations. Alongside the stated theoretical differences,

sparse perturbation is considerably less computationally expensive than dense perturbation.

All perturbations targeted the least-significant-bit for all data (t = 24 and t = 53 in float32

and float64, respectively [26]). Perturbing the least significant bit importantly serves as a per-

turbation of machine error, and thus is the appropriate precision to be applied globally in com-

plex pipelines. Simulations were performed 20 times for each pipeline execution for the 100

sample dataset and 10 times for the repeated measures dataset. A detailed motivation for the

number of simulations can be found in [40].

Evaluation

The magnitude and importance of instabilities in pipelines can be considered at a number of

analytical levels, namely: the induced variability of derivatives directly, the resulting down-

stream impact on summary statistics or features, or the ultimate change in analyses or findings.

We explore the nature and severity of instabilities through each of these lenses. Unless other-

wise stated, all p-values were computed using Wilcoxon signed-rank tests and corrected for

multiple comparisons. To avoid biasing these statistics in this unique repeated-measures con-

text, tests were performed across sets of independent observations and then the results were

aggregated in all cases.

Direct evaluation of the graphs. The differences between perturbation-generated graphs

was measured directly through both a direct variance quantification and a comparison to

other sources of variance such as individual- and session-level differences.

Quantification of variability. Graphs, in the form of adjacency matrices, were compared to

one another using three metrics: normalized percent deviation, Pearson correlation, and edge-

wise significant digits. The normalized percent deviation measure, defined in [19], scales the

norm of the difference between a simulated graph and the reference execution (that without

intentional perturbation) with respect to the norm of the reference graph, and is defined as

[19]:

%DevðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

Xn

j¼1

jaij � bijj
2

s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

Xn

j¼1

jaijj
2

s

; ð2Þ

where A and B each represent a graph, and ▫ij are elements therein corresponding to row and

column i and j, respectively. For these experiments, the A graph always refers to the reference,
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where B represents a perturbed value. The purpose of this comparison is to provide insight on

the scale of differences in observed graphs relative to the original signal intensity. A Pearson

correlation coefficient [41] was computed in complement to normalized percent deviation to

identify the consistency of structure and not just intensity between observed graphs, though

the result of this experiment is shown only in S1 Section in S1 File.

Finally, the estimated number of significant digits, s0, for each edge in the graph is calculated

as:

s0 ¼ � log10

s

jmj
ð3Þ

where μ and σ are the mean and unbiased estimator of standard deviation across graphs,

respectively. The upper bound on significant digits is 15.7 for 64-bit floating point data.

The percent deviation, correlation, and number of significant digits were each calculated

within a single session of data, thereby removing any subject- and session-effects and provid-

ing a direct measure of the tool-introduced variability across perturbations. A distribution was

formed by aggregating these individual results.

Class-based variability evaluation. To gain a concrete understanding of the significance of

observed variations we explore the separability of our results with respect to understood

sources of variability, such as subject-, session-, and pipeline-level effects. This can be probed

through Discriminability [14], a technique similar to ICC [12] which relies on the mean of a

ranked distribution of distances between observations belonging to a defined set of classes.

The discriminability statistic is formalized as follows:

Disc: ¼ Prðk gij � gij0 k�k gij � gi0j0 kÞ ð4Þ

where gij is a graph belonging to class i that was measured at observation j, where i 6¼ i0 and

j 6¼ j0.
Discriminability can then be read as the probability that an observation belonging to a

given class will be more similar to other observations within that class than observations of a

different class. It is a measure of reproducibility, and is discussed in detail in [14]. This defini-

tion allows for the exploration of deviations across arbitrarily defined classes that in practice

can be any of those listed above. We combine this statistic with permutation testing to test

hypotheses on whether differences between classes are statistically significant in each of these

settings. This statistic is similar to ICC [12] in a two-measurement setting, however, given the

dependence on a rank distribution from all measurements, discriminability scores do not

become meaningless by the addition of more samples which are highly similar to the originals,

whereas ICC scores would much more rapidly trend towards 1, making discriminability

appropriate in this context. The scaling properties of discriminability are described more fully

in S2 Section in S1 File.

With this in mind, three hypotheses were defined. For each setting, we state the alternate

hypotheses, the variable(s) which were used to determine class membership, and the remain-

ing variables which may be sampled when obtaining multiple observations. Each hypothesis

was tested independently for each pipeline and perturbation mode.

HA1: Individuals are distinct from one another

Class definition: Subject ID
Comparisons: Session (1 subsample), Subsample (1 session), MCA (1 subsample, 1 session)

HA2: Sessions within an individual are distinct

Class definition: Session ID | Subject ID
Comparisons: Subsample, MCA (1 subsample)

PLOS ONE Numerical uncertainty in network neuroscience

PLOS ONE | https://doi.org/10.1371/journal.pone.0250755 November 1, 2021 12 / 16

https://doi.org/10.1371/journal.pone.0250755


HA3: Subsamples are distinct

Class definition: Subsample | Subject ID, Session ID
Comparisons: MCA

As a result, we tested 3 hypotheses across 6 MCA experiments and 3 reference experiments

on 2 pipelines and 2 perturbation modes, resulting in a total of 30 distinct tests. While results

from all tests can be found within S2 Section in S1 File, only the bolded comparisons in the list

above have been presented in the main body of this article. Correction for repeated testing was

performed.

Evaluating graph-theoretical metrics. While connectomes may be used directly for some

analyses, it is common practice to summarize them with structural measures, that can then be

used as lower-dimensional proxies of connectivity in so-called graph-theoretical studies [5].

We explored the stability of several commonly-used univariate (graphwise) and multivariate

(nodewise or edgewise) features. The features computed and subsequent methods for compari-

son in this section were selected to closely match those computed in [31].

Univariate differences. For each univariate statistic (edge count, mean clustering coefficient,

global efficiency, modularity of the largest connected component, assortativity, and mean path

length) a distribution of values across all perturbations within subjects was observed. A Z-

score was computed for each sample with respect to the distribution of feature values within

an individual, and the proportion of “classically significant” Z-scores, i.e. corresponding to

p< 0.05, was reported and aggregated across all subjects. There was no correction for multiple

comparisons in these statistics, as they were not used to interpret a hypothesis but demonstrate

the false-positive rate due to perturbations. The number of significant digits contained within

an estimate derived from a single subject were calculated and aggregated. The results of this

analysis can be found in S3 Section in S1 File.

Multivariate differences. In the case of both nodewise (degree distribution, clustering coeffi-

cient, betweenness centrality) and edgewise (weight distribution, connection length) features,

the cumulative density functions of their distributions were evaluated over a fixed range and

subsequently aggregated across individuals. The number of significant digits for each moment

of these distributions (sum, mean, variance, skew, and kurtosis) were calculated across obser-

vations within a sample and aggregated.

Evaluating a brain-phenotype analysis. Though each of the above approaches explores

the instability of derived connectomes and their features, many modern studies employ

modeling or machine-learning approaches, for instance to learn brain-phenotype relationships

or identify differences across groups. We carried out one such study and explored the instabil-

ity of its results with respect to the upstream variability of connectomes characterized in the

previous sections. We performed the modeling task with a single sampled connectome per

individual and repeated this sampling and modelling 20 times. We report the model perfor-

mance for each sampling of the dataset and summarize its variance.

BMI classification. Structural changes have been linked to obesity in adolescents and adults

[42]. We classified normal-weight and overweight individuals from their structural networks

(using for overweight a cutoff of BMI >25 [33]). We reduced the dimensionality of the con-

nectomes through principal component analysis (PCA), and provided the first N-components

to a logistic regression classifier for predicting BMI class membership, similar to methods

shown in [32, 33]. The number of components was selected as the minimum set which

explained >90% of the variance when averaged across the training set for each fold within the

cross validation of the original graphs; this resulted in a feature of 20 components. We trained

the model using k-fold cross validation, with k = 2,5,10, and N (equivalent to leave-one-out;

LOO).
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Data & code provenance. The unprocessed dataset is available through The Consortium

of Reliability and Reproducibility (http://fcon_1000.projects.nitrc.org/indi/enhanced/),

including both the imaging data as well as phenotypic data which may be obtained upon sub-

mission and compliance with a Data Usage Agreement. The connectomes generated through

simulations have been bundled and stored permanently (https://doi.org/10.5281/zenodo.

4041549), and are made available through The Canadian Open Neuroscience Platform

(https://portal.conp.ca/search, search term “Kiar”).

All software developed for processing or evaluation is publicly available on GitHub at

https://github.com/gkpapers/2021ImpactOfInstability. Experiments were launched using Bou-

tiques [43] and Clowdr [44] in Compute Canada’s HPC cluster environment. MCA instru-

mentation was achieved through Verificarlo [26] available on Github at https://github.com/

verificarlo/verificarlo. A set of MCA instrumented software containers is available on Github

at https://github.com/gkiar/fuzzy.
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31. Betzel R. F., Griffa A., Hagmann P., and Mišić B., “Distance-dependent consensus thresholds for gen-

erating group-representative structural brain networks,” Network neuroscience, vol. 3, no. 2, pp. 475–

496, 2019. https://doi.org/10.1162/netn_a_00075 PMID: 30984903

32. Park B.-Y., Seo J., Yi J., and Park H., “Structural and functional brain connectivity of people with obesity

and prediction of body mass index using connectivity,” PLoS One, vol. 10, no. 11, p. e0141376, Nov.

2015. https://doi.org/10.1371/journal.pone.0141376

33. Gupta A., Mayer E. A., Sanmiguel C. P., Van Horn J. D., Woodworth D., Ellingson B. M., et al, “Patterns

of brain structural connectivity differentiate normal weight from overweight subjects,” Neuroimage Clin,

vol. 7, pp. 506–517, Jan. 2015. https://doi.org/10.1016/j.nicl.2015.01.005

34. Ioannidis J. P., “Why most published research findings are false,” PLoS medicine, vol. 2, no. 8, p. e124,

2005. https://doi.org/10.1371/journal.pmed.0020124 PMID: 16060722

35. Van Essen D. C., Smith S. M., Barch D. M., Behrens T. E., Yacoub E., Ugurbil K., et al., “The WU-Minn

human connectome project: an overview,” Neuroimage, vol. 80, pp. 62–79, 2013. https://doi.org/10.

1016/j.neuroimage.2013.05.041 PMID: 23684880

36. Zuo X.-N., Anderson J. S., Bellec P., Birn R. M., Biswal B. B., Blautzik J., et al., “An open science

resource for establishing reliability and reproducibility in functional connectomics,” Scientific data, vol.

1, no. 1, pp. 1–13, 2014. https://doi.org/10.1038/sdata.2014.49

37. Jenkinson M., Beckmann C. F., Behrens T. E. J., Woolrich M. W., and Smith S. M., “FSL,” Neuroimage,

vol. 62, no. 2, pp. 782–790, Aug. 2012. https://doi.org/10.1016/j.neuroimage.2011.09.015

38. Lancaster J. L., Tordesillas-Gutiérrez D., Martinez M., Salinas F., Evans A., Zilles K., et al, “Bias

between mni and talairach coordinates analyzed using the icbm-152 brain template,” Human brain map-

ping, vol. 28, no. 11, pp. 1194–1205, 2007. https://doi.org/10.1002/hbm.20345 PMID: 17266101

39. Klein A. and Tourville J., “101 labeled brain images and a consistent human cortical labeling protocol,”

Front. Neurosci., vol. 6, p. 171, Dec. 2012. https://doi.org/10.3389/fnins.2012.00171

40. D. Sohier, P. De Oliveira Castro, F. Févotte, B. Lathuilière, E. Petit, and O. Jamond, “Confidence inter-

vals for stochastic arithmetic,” Jul. 2018.

41. Benesty J., Chen J., Huang Y., and Cohen I., “Pearson correlation coefficient,” in Noise Reduction in

Speech Processing, Cohen I., Huang Y., Chen J., and Benesty J., Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2009, pp. 1–4.

42. Raji C. A., Ho A. J., Parikshak N. N, Becker J. T., Lopez O. L., Kuller L. H., et al, “Brain structure and

obesity,” Hum. Brain Mapp., vol. 31, no. 3, pp. 353–364, Mar. 2010. https://doi.org/10.1002/hbm.20870

PMID: 19662657

43. Glatard T., Kiar G., Aumentado-Armstrong T., Beck N., Bellec P., Bernard R., et al, “Boutiques: a flexi-

ble framework to integrate command-line applications in computing platforms,” Gigascience, vol. 7, no.

5, May 2018. https://doi.org/10.1093/gigascience/giy016

44. Kiar G., Brown S. T., Glatard T., and Evans A. C., “A serverless tool for platform agnostic computational

experiment management,” Front. Neuroinform., vol. 13, p. 12, Mar. 2019. https://doi.org/10.3389/fninf.

2019.00012

PLOS ONE Numerical uncertainty in network neuroscience

PLOS ONE | https://doi.org/10.1371/journal.pone.0250755 November 1, 2021 16 / 16

https://doi.org/10.1016/S1053-8119(09)71202-9
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fnins.2012.00175
https://doi.org/10.3389/fnins.2012.00175
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/netn_a_00075
http://www.ncbi.nlm.nih.gov/pubmed/30984903
https://doi.org/10.1371/journal.pone.0141376
https://doi.org/10.1016/j.nicl.2015.01.005
https://doi.org/10.1371/journal.pmed.0020124
http://www.ncbi.nlm.nih.gov/pubmed/16060722
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1016/j.neuroimage.2013.05.041
http://www.ncbi.nlm.nih.gov/pubmed/23684880
https://doi.org/10.1038/sdata.2014.49
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1002/hbm.20345
http://www.ncbi.nlm.nih.gov/pubmed/17266101
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.1002/hbm.20870
http://www.ncbi.nlm.nih.gov/pubmed/19662657
https://doi.org/10.1093/gigascience/giy016
https://doi.org/10.3389/fninf.2019.00012
https://doi.org/10.3389/fninf.2019.00012
https://doi.org/10.1371/journal.pone.0250755

