Bilateral K-Means for Superpixel Computation (the SLIC Method) - Archive ouverte HAL
Article Dans Une Revue Image Processing On Line Année : 2022

Bilateral K-Means for Superpixel Computation (the SLIC Method)

Robin Gay
  • Fonction : Auteur
  • PersonId : 1133104
Jérémie Lecoutre
  • Fonction : Auteur
  • PersonId : 1133105
Nicolas Menouret
  • Fonction : Auteur
  • PersonId : 1133106
Arthur Morillon
  • Fonction : Auteur
  • PersonId : 1133107
Pascal Monasse

Résumé

As a substitute to a full segmentation of a digital image, or as preprocessing to a segmentation algorithm, superpixels provide an over-segmentation that offers several benefits: good adherence to edges, uniformity of color inside superpixels, a richer adjacency structure than the regular grid of pixels, and the fact that each node of the graph of superpixels has a shape, which can be used in subsequent processing. Moreover, their evaluation is less subjective than a full segmentation, which somehow always involves a semantic interpretation of the scene. The SLIC method (Simple Linear Iterative Clustering) has been a very popular algorithm to compute superpixels since its introduction. Its advantage is due to its simplicity and to its computing time performance. In essence, it consists in a K-means clustering in bilateral domain, involving both position and color. We study in detail this algorithm and propose a fast, simple postprocessing that ensures that superpixels are connected, a property not ensured by the original method. Source Code The commented C++ source code for SLIC and its documentation are available on the web page of this article 1. Usage instructions are detailed in the README.md file of the archive.
Fichier principal
Vignette du fichier
article.pdf (13.45 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03651336 , version 1 (25-04-2022)

Identifiants

Citer

Robin Gay, Jérémie Lecoutre, Nicolas Menouret, Arthur Morillon, Pascal Monasse. Bilateral K-Means for Superpixel Computation (the SLIC Method). Image Processing On Line, 2022, ⟨10.5201/ipol.2022.373⟩. ⟨hal-03651336⟩
61 Consultations
293 Téléchargements

Altmetric

Partager

More