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Abstract
The explosion of scientific publications overloads researchers with information. This is even more
dramatic for interdisciplinary studies, where several fields need to be explored. A tool to help
researchers overcome this is Natural Language Processing (NLP): a machine-learning (ML) tech-
nique that allows scientists to automatically synthesize information from many articles. As a
practical example, we have used NLP to conduct an interdisciplinary search for compounds that
could be carriers for Diffuse Interstellar Bands (DIBs), a long-standing open question in astro-
physics. We have trained a NLP model on a corpus of 1.5 million cross-domain articles in open
access, and fine-tuned this model with a corpus of astrophysical publications about DIBs. Our
analysis points us toward several molecules, studied primarily in biology, having transitions at
the wavelengths of several DIBs and composed of abundant interstellar atoms. Several of these
molecules contain chromophores, small molecular groups responsible for the molecule’s colour,
that could be promising candidate carriers. Identifying viable carriers demonstrates the value of
using NLP to tackle open scientific questions, in an interdisciplinary manner.

Keywords
Machine-learning; natural language processing; astrophysics; interstellar medium; diffuse inter-
stellar bands

I INTRODUCTION
A prerequisite to interdisciplinarity is the ability of researchers in a given field to explore the
literature of other fields and easily extract relevant information. In particular, finding similar
concepts in two different fields, adapting methods from one field to another, or re-purposing
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data acquired in an unrelated field are all potentially fruitful approaches for scientists to make
discoveries. It is not unlikely that clues to various open questions in the global scientific lit-
erature currently exist, but looking for them is like searching for a needle in the proverbial
haystack. However, as the scientific knowledge expands exponentially (Densen, 2011), human
ability to keep up with both sorting and navigating diminishes quickly. It is humanly impossi-
ble to read all published articles, and keyword searches that do not include contextual semantic
meaning or conceptual reasoning are extremely limited. Fortunately, tremendous progress has
recently been made in the automatic analysis of written documents. Natural Language Process-
ing (NLP) is a branch of linguistics that leverages the statistical properties of a given corpus with
machine learning (ML) methods to explore the semantic relationships between texts (Manning
and Schütze, 1999). It is being used to extract information, to draw parallels between problems
and to formulate new research directions. It is aimed at solving information overload. Recently,
ML techniques have been used to generate scientific hypotheses in many scientific domains,
such as the drug repositioning / discovery research (Hastings et al., 2012; Lamurias et al.,
2019). Going beyond the boundary of disciplines, we pioneer the use of ML techniques for
hypothesis generation from cross-domain literature. It is a practical method, quickly becoming
popular, that will have an important role in interdisciplinary studies in the coming years.

The present article discusses the results of a collaboration between astrophysicists and com-
putational linguists. NLP techniques have already been applied to astrophysics to outline re-
search priorities (Thomas et al., 2022) and to thoroughly search the literature (Kerzendorf,
2019; Grezes et al., 2021). In these recent studies, NLP is used as an exploratory tool that can
be used to help refine a project. Here, we take a step further and use NLP as a primary research
tool, with the hope of making actual discoveries. We have applied it to the long-lasting question
of the origin of the Diffuse Interstellar Bands (DIBs). DIBs are ubiquitous spectral absorption
features observed at visible wavelengths, along the sightline to stars in the Milky Way (Hobbs
et al., 2009). They were discovered a century ago, but the chemical composition of their carriers
is still unknown. Thus, we have trained a NLP model on a cross-domain corpus, which includes
astrophysical publications about DIBs, then explored other fields, such as biochemistry, where
relevant molecules could have been studied. We start this article by presenting the astrophysical
context of our study, in Section II. In Section III, we review the NLP techniques used in this
study. We then discuss how we have applied NLP to address the origin of DIBs, in Section IV.
The astrophysical relevance of the molecules we have found is assessed in Section V and our
results are summarized in Section VI.

II DIFFUSE INTERSTELLAR BANDS
The object of our study, the Diffuse Interstellar Bands (DIBs), are spectroscopic absorption
features that are ubiquitously observed in the Milky Way, our own galaxy (Hobbs et al., 2009;
Jones, 2016b, for reviews). They appear as a forest of bands along the line of sight towards
stars, in the visible electromagnetic spectrum (wavelengths, λ ' 0.4 − 0.8 µm), sometimes
extending up to the near-infrared domain (up to λ = 2 µm). Figure 1 shows a synthetic DIB
absorption spectrum. They originate from the InterStellar Medium (ISM).

2.1 The Interstellar Medium
Since DIBs are interstellar features, we first need to review the general properties of the ISM.
Broadly speaking, the ISM is constituted of all the matter filling the volume of a galaxy between
the stars. This matter is essentially gaseous, but about half a percent of its mass is made of small
solid particles, the dust grains (Tielens, 2005; Draine, 2011, for textbooks). The elemental
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Figure 1: Synthetic absorption spectrum of the most prominent DIBs. The parameters of each feature
(position, width and depth) come from the observational compilation by Jenniskens and Desert (1994).

composition of the ISM is 74% hydrogen, 25% helium, and the remaining 1% contains all the
heavier elements (Asplund et al., 2009). Figure 2 shows the abundances, in the Solar system,
of the first elements in the periodic table. We see that besides hydrogen and helium, the two
most abundant species are carbon and oxygen. This puts some constraint on the most abundant
molecules that can be formed, and this will be important for our serendipitous search.
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Figure 2: Elemental abundances in the Solar system, from the data in Asplund et al. (2009). Those are
number abundances (i.e. number of atoms relative to hydrogen). The blue dots represent measures made
in the Solar photosphere, through absorption spectroscopy, and the red dots correspond to the chemical
composition of chondrite meteorites. Both are in good agreement, except for the lightest, most volatile
elements, which do not remain trapped in meteorites. These abundances are representative of the ISM in
our Solar neighborhood, and are even used as a reference when studying other galaxies.

2.1.1 The Phases of the ISM
The ISM is a highly heterogeneous medium (e.g. Chap. III.3 of Galliano, 2022). Half of the
volume of our galaxy is filled with a permeating hot ionized gas with a very low density (tem-
perature, T = 106 K; density, n ' 3 × 10−3 cm−3). This phase is heated by the shock waves
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from supernova explosions. The rest of the volume covers a wide range of density, temperature
and atomic state. The coldest and densest interstellar regions are called molecular clouds. As
their name indicates, the elements in these clouds have combined to form molecules, majoritar-
ily H2 and CO. Their high density (up to n ' 106 cm−3) allow them to be shielded from the
stellar radiation and to reach low temperatures (T ' 10 K). Between these two extremes, there
are nine orders of magnitude in density and five in temperature, unlike anything we can find on
Earth. DIBs are found preferentially in the diffuse ISM, and disappear in dense regions (e.g.
Lan et al., 2015), although some specific DIBs are found in diffuse molecular clouds (density
n ' 102 cm−3; Thorburn et al., 2003).

2.1.2 Interstellar Molecules
As we will see in Section 2.2, DIB carriers are likely large molecules. Until now, more than
200 individual molecules have been identified in space (McGuire, 2018). The first one to be
discovered was CH, in the 1930s (Herzberg, 1988, for an historical review). Although this first
observation was performed in the visible domain, the majority of the subsequent detections were
achieved at radio wavelengths, through the various rotational lines1 of the molecules. Several
new molecules containing more than six atoms are now discovered each year. These large
molecules all contain carbon atoms. They are thus called Complex Organic Molecules (COMs;
Herbst and van Dishoeck, 2009, for a review). Even branched molecules, which were believed
to be too brittle to survive the harsh interstellar environment, have been detected (Belloche
et al., 2014).

An important class of organic molecules is Polycyclic Aromatic Hydrocarbons (PAHs). They are
constituted of several aromatic cycles, which are hexagonal structures made of carbon atoms,
such as in benzene, with peripheral hydrogen atoms (Figure 3). This species was introduced,
in astrophysics, to provide an interpretation for the bright mid-infrared features (in the spectral
range λ = 3− 20 µm) observed ubiquitously in the ISM and in galaxies (Figure 4). The vibra-
tional modes of the C–C and C–H bonds in PAHs, which have similar resonance frequencies
across the PAH family, indeed provide a good account for these mid-infrared bands (Tielens,
2008, for a review). This however forbids the identification of individual PAHs, as these broad
mid-infrared bands arise from the mixture of several molecules. Only a few individual PAHs
have unambiguously been detected, either because they have very peculiar features due to an
atypical structure, such as fullerenes (Figure 3; Cami et al., 2010), or, recently, through their
rotational lines (McGuire et al., 2021).

2.1.3 Interstellar Dust Grains
When the number of atoms in a molecule becomes large, its resonance features become broader
and a noticeable continuum arises (e.g. Chap. 1 of Galliano, 2022). This is because, with a large
number of atoms, we are entering the solid-state realm. Large molecules are at the interface with
dust grains, and there is probably a continuity between both in the ISM, although there is no
well-defined limit between these two categories.

Interstellar dust grains are small solid particles with radii ranging from ' 3 Å to 300 nm (e.g.
Draine, 2003, for a review). They account for about half of the mass of heavy elements in the
ISM, thus about half a percent of its total mass. Yet, these grains, which are predominantly
silicate and carbonaceous compounds, have a very important role. In a quiescent galaxy, such

1Rotational lines arise from transitions between different values of the quantum angular momentum of the
molecule.
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Figure 3: The PAH molecular family. On the left side, we show six different PAHs. Hydrogen atoms
are represented in cyan, and carbon atoms, in red. On the right side, we show the buckminsterfullerene,
which is a spherical molecule, composed of 60 carbon atoms. Credit: the left figure is adapted from
Galliano (2022); the fullerene image is from Yassine Mrabet, licensed under CC BY 3.0.
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Figure 4: Mid-infrared spectrum of the galaxy NGC 1097. The blue line, with error bars, is the observed
spectrum of the central region of this object. We have highlighted the main spectral features: on top,
we have indicated the main silicate and ice interstellar absorption bands; in green, we have shown the
position of the brightest gas lines; in red, we have pointed towards the brightest PAH features and have
noted which vibrational C–C or C–H mode they correspond to. Credit: figure adapted from Galliano
et al. (2018).
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as the Milky Way, they absorb about 25% of the stellar power, in the ultraviolet (UV) and
visible range, and re-emit it thermally in the infrared (e.g. Bianchi et al., 2018). In regions of
massive star formation, this fraction can go up to 99%. These regions are thus totally opaque
to visible photons and can be studied only through their infrared radiation, emitted by the dust.
Grains are also the catalysts of several chemical reactions, including the formation of H2, the
most abundant molecule in the Universe (e.g. Bron, 2014).

When looking at a star in the Milky Way, the dust present along the line of sight extincts its
radiation. It means that a fraction of the stellar light is either absorbed by grains or scattered
in another direction. Dust grains are so well-mixed with the gas in the ISM that the extinction
amplitude (usually quoted in the visual band, V, at λ = 0.55 µm) is considered as a reliable
tracer of interstellar matter.

2.1.4 The Lifecycle of a Galaxy
Finally, it is important to understand that the ISM is a dynamical environment, constantly evolv-
ing. It is indeed the fuel of star formation. Stars form by the gravitational collapse of molecular
clouds. Once ignited, the most massive stars, which are also the brightest, blow their interstellar
cocoon away and ionize their surroundings. At the end of their lifetime, stars eject in the ISM
fresh heavy elements that they have formed in their core by nucleosynthesis. The more a galaxy
is evolved, the more tenuous and rich in heavy elements its ISM is.

2.2 The Uncertain Nature of DIBs
The first DIBs were discovered exactly one century ago by Heger (1922), but the physical nature
of their carriers largely remains a mystery, today. Their interstellar origin was demonstrated
by Merrill (1934). Their intensity is indeed correlated with the dust extinction amplitude and
independent of the intrinsic properties of the background stars. Over 500 DIBs have been
detected so far, in the ISM (Fan et al., 2019). DIBs are also detected in external galaxies, such
as the Magellanic clouds (Galliano et al., 2018, for a review).

2.2.1 Constraints on the Nature of the DIB Carriers
As absorption features, DIBs must originate from the transition of an atom or a molecule, be-
tween two of its quantum energy levels. The intrinsic line width of DIBs, which is typically
' 1 Å, excludes that they originate from free-flying atoms. They must come from molecules
with a few to ' 100 atoms (MacIsaac et al., 2022). Their strength and their ubiquity also tells
us that they have to be made with the most abundant atoms in the ISM, mainly H, O, C, N.
A last constraint is that, due to their presence in the diffuse ISM, a medium permeated with
UV photons, these molecules need to be rather compact, to be more resilient. The branched
molecules we have mentioned in Sect. 2.1.2 are only found in dense molecular clouds, well
protected from UV radiation.

2.2.2 Identification of Buckminsterfullerene
The only molecule to date, unambiguously identified as a DIB carrier is the buckminster-
fulerene2 (Campbell et al., 2015; Walker et al., 2015). The cation of this molecule, C+

60, can
account for two, possibly four DIBs, at near-infrared wavelengths. Notice that this molecule
satisfies all the constraints we have listed in Sect. 2.2.1. The fact that this molecule had been
detected beforehand, in a planetary nebula, via its mid-IR features (Cami et al., 2010), makes

2Fullerenes constitute a family of compact closed-mesh carbon compounds. Buckminsterfullerene is the variety
with formula C60.
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this identification trustworthy. It is possible that other COMs, and probably other PAHs, are
DIB carriers. There are however variations of the relative strengths of DIBs, across sightlines
(Herbig, 1995). This indicates that DIB carriers likely come from a diversity of molecules
whose relative abundance varies with the environment.

2.2.3 The Significance of DIB Identification
DIBs are the last large class of interstellar spectral features that are still unidentified. The fact
that, a hundred years after their discovery, less than one percent of these features has been
identified, shows that this is an arduous challenge. This is however an important question, as
spectroscopy is historically what transformed astronomy into astrophysics (Hearnshaw, 2014).
This is because spectroscopy allows us to identify atoms and molecules from a distance, mea-
sure their charge state, temperature, density and abundance, that we could learn so much about
the Universe. Identifying the carriers of the DIBs would therefore be a major breakthrough in
our understanding of the ISM. It could help us unlock the complexity of interstellar chemistry
and provide a wealth of diagnostics of the physical conditions where these bands are observed.

Astrophysicists have been stuck by this problem, because its answer lies in the wide diversity
of potential molecules. Only a handful of these molecules can be measured in the laboratory
or computed theoretically. Teams working on these identifications have limited resources. Yet,
since we have seen that DIB carriers are likely large organic molecules, it is possible that some
of these molecules have been studied in other fields, such as biochemistry or biology. We have
thus performed a serendipitous, interdisciplinary search for these molecules, using the technique
of natural language processing.

III NATURAL LANGUAGE PROCESSING
NLP is a sub-discipline of machine-learning, that combines linguistics and artificial intelligence
to allow computers to interface with human language. In this application specifically, it is used
to extract data from natural language documents: academic papers.

3.1 Machine learning and neural networks
Machine-Learning (ML) is a methodology for producing computer programs whose main de-
cision making is determined by data, not directly coded by a computer scientist. This method-
ology enables us to perform automated decision making too detailed for a human to design
by using a set of examples too numerous for a human to fully perceive. Done correctly, the
decision making should remain valid for data not explicitly included in the set of training exam-
ples (Goodfellow et al., 2016, for a text book). Neural Networks (NNs) are a popular algorithm
for many modern ML applications. Modelled on an organic brain, NNs are comprised of ar-
tificial neurons that perform a non-linear operation on a signal and propagate the result as a
signal to the next neurons. When that signal has passed through the entire network of neurons,
it can be interpreted as a meaningful prediction. Each neuron’s behaviour is parameterized.
Corrections are made to iteratively update the neurons’ parameters during a dedicated training
process by propagating a prediction error backwards through the network and calculating the
error gradient with respect to each parameter. Neurons are typically arranged in layers because
the corresponding vectors of parameters allow efficient matrix arithmetic to be used to perform
the necessary operations.
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3.2 Word-embeddings
Word-embeddings are numerical representations of words, useful for computation, and NNs are
a common tool for producing and using word-embeddings.

In recent years, development of word-embeddings models has taken big steps forward from
NNs with few layers, such as the Word2Vec (Mikolov et al., 2013), Glove (Pennington et al.,
2014), and FastText (Bojanowski et al., 2017) models, to complex models that require enormous
volumes of data to train, such as ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019).

3.2.1 Concepts
Word-embeddings are underpinned by the distributional hypothesis: that words with similar
co-occurrence distributions have similar meanings or ”a word is characterized by the company
it keeps” (Firth, 1957). Techniques leveraging this hypothesis are able to represent semantic
properties of words and capture meaningful syntactic and semantic regularities. Often, reg-
ularities are observed as constant vector offsets between pairs of words sharing a particular
relationship. For example, it has been demonstrated that the Word2Vec model in Mikolov
et al. (2013) can learn the male/female relationship, which is expressed as the vector expres-
sion,

#      »

king − #      »man + #             »woman producing a vector very close to #          »queen. Such behaviour makes
word-embedding models an effective tool for a number of NLP applications such as identify-
ing contextual synonyms, ranking keywords, and computing similarities between millions of
documents (Botev et al., 2017).

3.2.2 The Word2Vec Model
Given the large volume of publications to be processed in this study, we opt to use the gensim
library (Řehůřek and Sojka, 2010) implementation of the Word2Vec Continuous Bag-of-Words
(Word2Vec-CBOW) model for it’s computational speed. The Word2Vec model is a simple
architecture of two sets of embeddings where one encodes input words that should approximate
output words encoded by the other. This will draw similar words together and push dissimilar
words apart within the embedding space. The two variants, CBOW and skip-gram, swap the
target word and context words as input and output. The CBOW model uses context words
that appear in a fixed window around the target word as input to predict the target word. See
Mikolov et al. (2013) for details about context word sampling, negative-word sampling and the
loss-function used.

In order to obtain a model trained on the cross-domain scientific literature, we compile a generic
corpus of 1.5 million open access English articles across all domains from the CORE ser-
vice (Knoth and Zdrahal, 2012). To ensure the articles cover a diverse range of domains, we
randomly select these articles out of a pool of 20 million English articles hosted by the CORE
service with any of 24 keywords. The keywords used in our selection and the resultant numbers
of articles are listed in Table 1.

Table 1: Genre keywords used to select articles in July 2021

Keyword # of articles
”starburst” ∧ ”galaxy” 55k
”quantum” ∧ ”field” ∧ ”theory” 50k
”artificial” ∧ ”intelligence” 80k
”nanotechnology” 75k
”surface” ∧ ”science” 25k
”microbiome” 75k
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Table 1: Genre keywords used to select articles in July 2021

Keyword # of articles
”computer” ∧ ”architecture” 75k
”game” ∧ ”theory” 25k
”bioinformatics” 25k
”quantum” ∧ ”computation” 75k
”cognitive” ∧ ”behavioral” ∧ ”therapy” 40k
”obsessive” ∧ ”compulsive” ∧ ”disorder” 40k
”renaissance” 20k
”crystallography” 75k
”dielectric” 75k
”Ising” 25k
”Markov” ∧ ”chain” 75k
”thin” ∧ ”film” 75k
”cancer” 80k
”corrosion” 75k
”neural” ∧ ”network” 75k
”geochemistry” 15k
”HIV” 75k
”renewable” ∧ ”energy” 75k

Due to the resource limitation in this pilot study, we focus on the abstracts, which are usually
concise but still contain essential information of the article. We then train a generic Word2Vec-
CBOW model of 100 dimensions on this corpus for ten epochs with a window size of five:
where the dimensionality is the size of the vector embedding for each word, one for input and
one for output, and the epochs are the number of times the entire corpus is repeated during train-
ing, and the window size specifies the region around the target word from which context words
can be selected. While hyperparameter optimization was not performed on this specific dataset,
the choice of dimension was based on previous experiments (Yin, 2018) and the gensim li-
brary’s recommended value for CBOW models. We observe that training over the corpus for ten
epochs showed thorough convergence of validation loss. In the following section, we explain
how this model is used in our analysis.

3.3 Extracting physical quantities from scientific documents
As the main objective of this study is to discover possible carriers of DIBs in the literature
outside of the astrophysics domain, recognition of physical quantities is an essential step in the
corpus processing. A physical quantity in the corpus is defined as a numeric value that appears
with a physical unit, such as “1500 Å”. However, recognizing physical quantities from existing
documents is not a trivial task. For example, MWC 349A, is a member of the double star system,
MWC 349 (Gvaramadze, V. V. and Menten, K. M., 2012), and should not be recognized as a
physical quantity of 349 Å. Furthermore, there are numerous ways to denote one physical
quantity. For example, 1500 Å and 0.15 µm are equivalent and should be recognized as such by
the model.

To identify all relevant wavelengths mentioned in the generic corpus, we implement a quantity
recognition algorithm which includes three major components:
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1. A regular expression (RegEx) algorithm that identifies all numerical values, such as 28.4×
103, 28, 400 and (28.4± 0.1)× 103.

2. A unit-parsing algorithm that is based on the open source library Pint (version 0.19.1)3.
3. A unit-disambiguation algorithm that assigns probabilities to ambiguous units, such as

angstrom (Å) and ampere (A), by comparing the unit predicted by the generic Word2Vec
model.

We detail the unit-disambiguation algorithm in the following.

With the RegEx and unit-parsing algorithms listed above, we mask the identified physical quan-
tities by numbers and units in the articles of the generic corpus. Physical quantities with am-
biguous units are masked by all candidate units, for example, 1500 Å is masked as “NUM–
Angstrom–Ampere”.

Using this model, we compute a context vector, which is the average vector from a window
of 5 words around the physical quantity excluding itself, for each physical quantity with an
ambiguous unit. The choice of window size, 5, is to be consistent with the hyperparameters
used in the Word2Vec-CBOW model training discussed previously. For each candidate unit
assigned to the ambiguous unit, we then calculate the cosine similarity, which quantifies how
parallel are two vectors, or in our case, how contextually-correlated are two words, between the
calculated context vector to other units of the same dimension as the candidate unit. The highest
cosine similarity is then assigned to the candidate unit as its score to represent the ambiguous
unit.

IV TACKLING DIBS WITH NLP
We now discuss how we apply this NLP model to the question of DIBs. We start with the
curation of the astrophysical literature corpus.

4.1 Compiling the DIB corpus

Figure 5: Indication of identified known DIBs (blue bands) and identified physical quantities from the
generic corpus that overlap with DIBs (red crosses). The y-axis is in arbitrary unit to guide the eyes on
how identified physical quantities distribute through the DIBs bands.

To improve accuracy of the semantic relationships between words directly associated with
DIBs and common words used in other domains, a specialized corpus for DIBs is required.
Our generic corpus of 1.5 million articles aims to cover cross-domain literature so will likely
under-represent DIB articles making it inadequate for this purpose. To overcome this under-
representation, we compile a corpus specialized in DIBs to enhance the representations of DIB
words in the word-embeddings model.

3https://pint.readthedocs.io/en/stable/
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We first search for DIBs-related papers on NASA’s Astrophysics Data System4 and look for
their relevant papers with Iris.ai’s Explore Tool5. We then examine all articles appearing in
the search and hand pick the articles that are directly DIBs-related. The final selected DIB
corpus then includes 939 articles.We then search through these 939 articles to annotate all valid
physical quantities in the texts that are directly associated with the DIBs catalog (Jenniskens
and Desert, 1994)6. In total, there are 243 annotated wavelengths identified out of these articles.
The physical quantity recognition algorithm described in Section 3.3 correctly identified 203
and missed 40 of them. The algorithm also wrongly identified 41 candidates that are not valid
physical quantities. The precision and recall values are summarized in Table 2. These 243
annotated wavelengths, along with the full-width-half-maximum (FWHM), are marked as blue
bands in Figure 5.

Table 2: Precision and recall for the physical quantity recognition algorithm.

precision recall
203/244 203/243
83.2% 83.5%

As many tokens that are specific to the DIB corpus are infrequent in the generic corpus, in
order to well represent these tokens, it is important to fine-tune the generic Word2Vec-CBOW
model. The DIB corpus, with the disambiguated units, is then used to fine-tune the generic
model. During the fine-tuning process, the vectors of tokens that appear in the DIB corpus
are updated and thus displaced with the new context words. We observe that after training the
generic model on the DIB corpus for ten epochs, the displacement of vectors stabilized. As
demonstrated in Figure 6, in the fine-tuning process, vectors of tokens that are frequent in the
DIB corpus and infrequent in the generic corpus are displaced the most while vectors of tokens
that are infrequent in the DIB corpus yet frequent in the generic corpus are generally still.

4.2 Using the unit quantity recognition
We then apply the physical quantity recognition algorithm on the generic corpus. Out of the
1.5 million articles, we identify∼ 2000 physical quantities from∼ 20, 000 articles, that overlap
with DIBs and mark their locations as red crosses in Figure 5. Some of these physical quantities
describe molecular sizes, which are unrelated to DIBs, but others describe the wavelength of
the energy transitions and are thus of direct interest to us.

In order to systematically filter the identified physical quantities down to the most relevant to
DIBs, we use three filters to select candidate articles.

1. In the DIBs wavelength range, 0.1 − 1 µm, physical quantities that are described in the
unit of µm in the generic corpus are often found to be associated to diameters or dis-
tances, such as the DNA lengths. On the contrary, physical quantities used to describe
wavelengths in this range often appear in units of angstrom or nanometer. As a conse-
quence, we discard quantities that are identified within this range that appear in µm.

2. Known laser wavelengths are irrelevant for identifying DIB carriers so we discard any
identified physical quantities that co-occur with the token ”laser” or ”light” within a win-
dow of 5 words.

4https://ui.adsabs.harvard.edu/
5https://the.iris.ai/
6https://leonid.arc.nasa.gov/DIBcatalog.html
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Figure 6: This graph shows how tokens specific to the DIB corpus vary before and after the fine-tuning.
One can see that tokens that are frequent in the DIB corpus yet infrequent in the genric corpus displace
the most, while tokens that are infrequent in the DIB corpus yet frequent in the generic corpus do not
displace much.

3. Using the DIBs-enhanced Word2Vec-CBOW model in the sentence window as the con-
text where a physical quantity is identified, we compute a cosine similarity between the
context vector and the physical-quantity vector. Articles of low (< 0.5) cosine similarities
are filtered out to remove false positives given by the unit-recognition algorithm.

After applying filters, we manually screen through all 1932 candidate articles and identify
twelve papers of high relevance, which are discussed in the following section.

V ASSESSMENT OF THE RESULTS
Our model points us toward twelve articles presenting spectroscopic measurements of molecules
having transitions corresponding to some DIBs. These findings are summarized in Table 3.
They now need to be scrutinized.

5.1 The Results

Article Transitions Closest DIB Molecule
Wakakuwa et al. (2010) 425 nm 425.90± 0.01 nm 11-cis retinal
Butterfly eye pigment 453 nm 450.18± 0.02 nm chromophore

563 nm 563.50± 0.01 nm within opsin
620 nm 619.90± 0.01 nm (H, C, O)
640 nm 640.05± 0.01 nm

Dove et al. (1995) 560 nm 560.09± 0.01 nm Chromophores
Coral pigment 580 nm 580.66± 0.01 nm within

590 nm 590.06± 0.01 nm pocilloporin
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Article Transitions Closest DIB Molecule
Davies et al. (2009) 441.9± 1.0 nm 442.82± 0.17 nm Chromophores
Elephant shark eye pigment 493.7± 2.6 nm 494.74± 0.01 nm within

496.3± 0.1 nm 496.39± 0.01 nm proteins
498.3± 0.3 nm 498.21± 0.01 nm (H, C, N, O)
498.7± 0.3 nm 498.74± 0.01 nm
504.1± 1.0 nm 505.48± 0.01 nm
509.5± 0.5 nm 509.21± 0.01 nm
510.1± 0.2 nm 510.10± 0.01 nm
520.9± 2.0 nm 521.79± 0.01 nm
534.2± 1.0 nm 534.25± 0.01 nm
547.8± 2.2 nm 548.08± 0.01 nm

Spady et al. (2006) 423 nm 425.90± 0.01 nm Retinal
Cichlid eye pigment 456 nm 450.18± 0.15 nm chromophores

472 nm 472.68± 0.02 nm within
518 nm 517.81± 0.01 nm opsin
528 nm 529.8± 0.01 nm
561 nm 560.98± 0.01 nm

Wolfbeis et al. (2001) 488 nm 488.00± 0.01 nm Valinomycin
Valinomycin (H, C, N, O)
Filosa (2001) 695 nm 694.46± 0.01 nm Amide II
Blood proteins (H, C, N, O)
Davies et al. (2009) 501.0± 0.1 nm 500.36± 0.01 nm Chromophores
Agnathan eye pigments 535.5± 3.3 nm 535.88± 0.01 nm within

544.1± 5.0 nm 543.35± 0.01 nm opsin
554.3± 2.0 nm 554.51± 0.01 nm
562.8± 0.4 nm 563.50± 0.01 nm

Schoot Uiterkamp et al. (1976) 653 nm 653.65± 0.01 nm Tyrosinase
Mushroom absorption 755 nm 755.94± 0.01 nm (H, C, O, Cu)
Davies et al. (2007) 439 nm 436.39± 1.10 nm Chromophores
Lamprey eye pigment 492 nm 494.74± 0.01 nm

497 nm 496.91± 0.01 nm
Maréchal et al. (2007) 445 nm 442.82± 1.69 nm Heme intermediate
Nitric-oxide synthase (H, C, N, O, Fe)
Rémigy et al. (2003) 420 nm 425.90± 0.01 nm Heme-type
Bacterium cytochrome 525.2 nm 525.18± 0.01 nm molecule

545.4 nm 545.06± 0.83 nm (H, C, O, N, Fe)
Fasick et al. (1998) 488 nm 488.00± 0.12 nm 11-cis retinal
Dolphin eye pigment 545 nm 545.06± 0.83 nm chromophore

Table 3: Summary of the results. The first column lists the found articles, with their topics. The second
column shows the transition wavelengths reported in each article. We quote the uncertainty when it is
reported, otherwise we assume it is the last significant digit, that is 1 nm in most cases, which is the
median uncertainty of published transition quoted in Table 3. The third column gives the closest DIB
reported by Hobbs et al. (2009). This database contains 380 bands in the λ = 380− 810 nm range. We
do not discuss bands reported by the interdisciplinary articles outside this spectral range. Values in grey
correspond to the case where the DIB centroid is not consistent with the article measurement. The last
column gives the studied molecule, with its constituting elements between parentheses, when they are
provided.
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The twelve interdisciplinary articles listed in Table 3 are all biochemistry studies. They all
report experimental spectroscopic measurements of organic molecules. Most of these molecules
are constituted of abundant interstellar atoms, mainly, H, C, N and O. We can divide them into
the two following categories.

5.1.1 Chromophores
A majority of the papers in Table 3 deal with animal retinal eye pigments (Fasick et al., 1998;
Spady et al., 2006; Davies et al., 2007, 2009; Wakakuwa et al., 2010). These studies indeed
measure the absorption bands of organic molecules in the visible range. Their potential rel-
evance to DIBs is thus obvious. All these molecules are proteins (such as opsin) containing
chromophores. Chromophores are molecular groupings, often part of a larger molecule, that
are responsible for the color of an organism (e.g. Shukla et al., 2017, for a review). It is thus
reasonable to assume that they are responsible for the reported bands. A recurring chromophore
in these studies is 11-cis retinal (Figure 7). Not all these papers discuss the actual chromophores
present in their molecules, probably because they are not always known.

11-cis retinal Heme b Valinomycin

Figure 7: Molecular structure of 11-cis retinal, heme b and valinomycin.

5.1.2 Heme and other molecules
Apart from chromophores, our model points us toward several other organic molecules. In
particular, two studies deal with molecules related to heme (Figure 7; Rémigy et al., 2003;
Maréchal et al., 2007). Heme is the molecule that allows hemoglobin to transport oxygen in
the blood stream. Another potentially interesting molecule for interstellar chemistry is valino-
mycin (Figure 7; Wolfbeis et al., 2001). We will discuss the likeliness of the existence of these
molecules in the ISM in Sect. 5.2.2.

5.2 Discussion
We now attempt at assessing these results. We start by discussing the numerical values of the
spectral band centroid. We then evaluate the likeliness of these molecules as carriers of some
DIBs.
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5.2.1 Accuracy of the reported transitions
The second column of Table 3 lists the central wavelengths of the bands reported by the articles
found by our model. Unfortunately, only a few of these papers quote measurement errors on the
centroid. This adds some uncertainty to our assessment. We assume that these errors are the last
significant digit, that is 1 nm in most cases. Yet, we note that the median of the uncertainties
in Table 3, when they are reported, is exactly 1 nm. Our assumption is thus realistic, assuming
errors are comparable across all these studies. The third column of Table 3 gives the closest DIB
from the measured band, using the Hobbs et al. (2009) compilation. Out of the 43 centroids,
only 8 (19%) do not have a DIB within ±1σ (grey values).

The first question one can ask is how probable is it to draw a centroid wavelength at ±1σ of
a DIB. The compilation of Hobbs et al. (2009) contains 380 DIBs in the wavelength range
λ = 320 − 810 nm. It gives a probability of 0.78 DIB per nm. Assuming that DIBs are
randomly, uniformly distributed with this density, the Poissonian probability to find at least one
DIB within ±1σ (±1 nm in our case) is 79%. Matching bands is thus very likely. However,
several studies list a large number of bands. The most spectacular is the paper by Davies et al.
(2009), listing 11 bands with their uncertainties. It happens that all of them coincide with a
DIB within ±1σ. Using the uncertainties quoted by Davies et al. (2009) and assuming they are
normally distributed and independent, the probability to randomly obtain such a result is 0.2%.
These results are thus non trivial.

We have mentioned in Sect. II that DIBs were a few Angstrom wide. The bands reported in
these articles are however wider (up to several tens of nm). One can thus wonder if they are
relevant to our problem. The answer to this question is not straightforward. Molecular band
width depends on the molecular size. Our candidate molecules contain a few tens to a hundred
atoms, which is the expected size of DIB carriers (MacIsaac et al., 2022). If these molecules are
however bonded in a larger matrix, such as a protein, the line widths will surely be broadened
with respect to an isolated molecule. This will be because, unless the material is very pure and
well structured, the local environment of the chromophore will be varied thus giving to slight
spread in line positions due to different (steric or other) interactions for each molecule.

5.2.2 Insights for astrochemistry
We have seen that most of the molecules our model points us toward are constituted of abundant
interstellar atoms. This is a first requirement that our model has successfully accounted for. It
is likely the result of the NLP training, associating DIBs with these elements and with organic
molecules.

Our highest-score molecules, chromophores, have been proposed as DIB carriers (e.g. Johnson,
2006; Adams and Oka, 2019), and this is probably why our NLP model has selected them.
Chromophores are probably too brittle molecules to survive in the diffuse ISM. For instance,
the long chain of 11-cis retinal (Figure 7) will likely be photolyzed by UV photons. However,
chromophores could form moieties in larger molecules or, possibly, in nanometer-size dust
grains (Jones, 2014, 2016b). This would allow them to be present in the ISM and carry some of
the DIBs. We note this is also the case in the biochemistry studies. Several of the found papers
mention that the chromophores are covalently bonded with their proteins.

Heme (Figure 7) has also been discussed has a possible interstellar molecule (Jones, 2016a).
Together with porphyrin, which is also considered as a potential DIB carrier (Johnson, 1994),
these molecules could result from the reaction of nitrogen atoms with hydrogenated amorphous
carbon grains. The structure of valinomycin (Figure 7) is not unlike heme and porphyrins. The

J. of Interd. Method. and Issues in Science
Open-access journal: http://jimis.episciences.org

15 ISSN: 2430-3038, c© JIMIS, Creative Commons
Volume: N - Year: AAAA, DOI: 10.18713/JIMIS-ddmmyy-v-a

http://jimis.episciences.org
https://doi.org/10.18713/JIMIS-ddmmyy-v-a


problem of valinomycin is that it is probably not going to be very stable in the ISM because of
all its oxygen, which is going to make it very reactive with atomic C, N, H and S.

5.3 Limitation of the methodology and prospects for interdisciplinarity
This pilot study aims to demonstrate a proof of concept on using NLP as a tool for users to
identify cross-domain knowledge. We have shown that it could bring down the borders be-
tween different disciplines and perform a rather unbiased search for relevant information. Our
uncovering of meaningful classes of molecules, studied in biochemistry, that could provide in-
sights into an astrophysical question shows the practical relevance of NLP for interdisciplinary
studies. Could this method, applied to the particular problem of the origin of DIBs, be applied
to other open questions? There are no reason why this could not be the case. The method is
however not completely straightforward and will need to be adapted to each new problem and
its specificity: what is the size of the specialized corpus, are numerical quantities instrumental,
and so on? Fully automatizing the search in order to release an open source software is thus a
challenge for future studies.

As the nature of our research question is closely associated to the DIBs wavelengths, these phys-
ical quantities are thus the ideal lampposts guiding us in the literature outside of the astrophysics
domain. To reproduce such process for research questions that are associated to some semantic
concepts, an embeddings space of higher precision is crucial. It is thus a natural next step to
explore how one can disambiguate word senses in the embeddings space. It is also worthwhile
to explore other domain-adaptation techniques, such as the graph-based latent semantic impu-
tation (Yao et al., 2019), to obtain an embeddings space with higher precision in the domain of
interest.

As mentioned in Section 3.2.2, the study is based on a generic Word2Vec-CBOW model that is
trained on 1.5 million English articles selected with some specific keywords. These manually
selected keywords inevitably create some domain biases in the generic corpus. This can be
further improved by randomizing our search across the entire CORE database, which contains
more than 500 million articles. Furthermore, we include only abstracts in our analysis in this
study due to the limitation of resources. A lot of important contextual information written in
the full text is therefore absent from our analysis. To thoroughly cover all information in the
generic and DIB corpus, it would be essential to include the full text information in the future
study.

Another limitation of the demonstrated method in this work is the language. As the curated DIB
corpus includes only English articles, for research questions that are in low-resource languages,
it would be difficult to adopt such methodology in cross-domain literature search.

VI SUMMARY AND CONCLUSION
We have trained a Natural Language Processing (NLP) model on a corpus of astrophysical
publications dealing with the open question of the origin of Diffuse Interstellar Bands (DIBs).
We have then used this model to explore an interdisciplinary corpus of scientific literature,
with the hope to find relevant molecules having transitions matching some DIBs. We have
implemented a careful parsing of physical quantities and their units, in order to identify mea-
sured wavelengths in the visible electromagnetic spectrum. Our model points us toward twelve
biochemistry studies presenting spectroscopic measurements of molecules having transitions
consistent with some DIBs. More than half of these molecules contain chromophores. Several
other studies deal with molecules linked to heme and valinomycin.
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Our main objectives, the feasibility to use NLP to address open scientific questions, is reached.
We have shown that NLP is able to surface candidate DIBs molecules from an interdisciplinary
corpus of scientific literature. This confirms that NLP-methodologies can generate plausible
and non-trivial hypotheses for future investigation. First, we have shown that some associations
between the reported transitions and the DIBs would be unlikely if they were purely random.
Second, our NLP model has pointed us toward molecules relevant to the InterStellar Medium
(ISM). These molecules are constituted of abundant interstellar atoms. In addition, several
of these molecules have been proposed in the past to be DIB carriers. Their presence in the
ISM has not been proven, yet, but it is conjectured that they could form moieties in interstellar
grains. In light of our study, NLP thus appears as a practical tool for interdisciplinarity. We
have shown that this computational linguistic technique could uncover information in the bio-
chemistry literature that happen to be relevant to astrophysics. We have also discussed how this
technique could be applied to other open questions in an interdisciplinary fashion. In the future,
extending our analysis to the full text, and expanding the generic corpus to thoroughly-cover
cross-domain literature, can potentially give us a more complete result. From an astrophysical
point of view, our work adds credibility to the possibility that some DIBs could be carried by
chromophores and to the role of heme and porphyrins in interstellar chemistry. These findings
need now to be further investigated in the laboratory, in interstellar conditions. As a further
outlook, our methodology should be applicable to other open scientific questions which require
interdisciplinary knowledge. More generally, our study shows it is possible to retrieve univer-
sal concepts from multiple disciplines. An interesting prospective would be to look for hidden
interdisciplinary concepts from related universal concepts used in multiple domains.
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