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Abstract

Coupled electromechanical resonators that can be independently driven/detected

and easily integrated with external circuits are essential for exploring mechanical modes

based signal processing and multifunctional integration. One of the main challenges

lies in controlling energy transfers between distinct resonators experiencing nano-scale

displacements. Here, we present a room temperature electromechanical system that

mimics a “phonon-cavity”, in analogy with optomechanics. It consists in a silicon

nitride membrane capacitively coupled to an aluminum drum-head resonator. We

demonstrate electromechanically induced transparency and amplification through ma-

nipulating the mechanical displacements of this coupled system, creating interferences

in the measured signal. The anti-damping effects, generated by phonon-cavity force,
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have been observed in both movable objects. We develop an analytical model, which

captures the analoguous optomechanical features in the classical limit and enables to

fit quantitatively the measurements. Our results open up new possibilities for build-

ing compact and multifunctional mechanical systems, and exploring phonon-phonon

coupling based optomechanics.

Keywords

phonon-cavity, coupled mechanical resonators, membrane, transparency and amplification,

interference

Micro- and nano-electromechanical systems, allowing mechanical displacements to couple

with electrical and optical signals, are extensively studied for various applications and fun-

damental research.1,2 The specific features of tiny scale and high quality factor resonances

are attractive for sensing applications.3–6 Their intrinsic nonlinearity and mechanical trans-

duction design have been implemented for developing logic gates,7,8 radio frequency (RF)

amplifiers9 and memory nodes.10 In recent years, the study of mode coupling, which exists

between different mechanical modes in a single system but also between different resonators,

attracts great research interests. Because they allow to transmit information between me-

chanical modes11,12 and to filter signals in different frequency bands through controlling

transfers of energy.13 In addition to these applied possibilities, such devices can also be

viewed as model systems to implement mechanical analogues of some other phenomena.14

As such, one of the successful examples exploiting mechanical mode coupling is the con-

cept of “phonon-cavity”,15,16 inspired by recent achievements in optomechanics. Optome-

chanics, which studies interactions between the mechanical vibrations and photons confined

in a cavity, offers a powerful platform for many engineering applications, from sensing (e.g.

detecting thermal Brownian motion) to the generation of mechanical self-sustained oscilla-

tions, and even the storage of light.17–19 In order for the two coupled mechanical modes to

exploit the rich physics available with optomechanics, the phonon-cavity scheme is built by
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implementing the mode with the higher resonance frequency Ω1 as a phonon cavity in analogy

with the optical/microwave one, and then pumping it with a signal at frequency ∼ Ω1 ±Ω2.

Here, Ω2 is the resonance frequency of the other mode. The concept of phonon-cavity not

only enables the two coupled mechanical modes to inherit those interesting functions of op-

tomechanics, but also further enriches existing optomechanical applications, in both classical

and potentially the quantum regime.16,20–22

Up to now, in most phonon-cavity schemes, the coupling is created between different

mechanical modes with a single resonator by means of an intrinsic nonlinearity, or between

different resonators by using physical connections to transmit a displacement-induced ten-

sion.3,11,16,23–25 However, mechanical coupling design yields implementation complexities in

optimizing the coupling between distinct and distributed resonators, and poses a challenge

for electromechanical devices desiring higher resonance frequencies and flexible tunability.

Compared to mechanical coupling designs, electrostatic coupling schemes are widely im-

plemented in diverse electrical integrated systems. It allows to implement the coupling of

distributed resonators experiencing nano-scale displacements, but also to drive/detect in-

dependently each resonator of the coupled system.26,27 However, it is still challenging to

achieve directly coupled distinct mechanical resonators via capacitive coupling, especially

for compact schemes.

In this work, we present coherent energy transfers between two capacitively coupled and

distinct electromechanical resonators, consisting of an Al drum suspended on top of a SiN

membrane drum. Both resonators can be driven and detected independently. We explore

phonon-cavity electromechanics based on a simple theoretical model which is analogous to

optomechanics. At room temperature (RT), we experimentally demonstrate electromechan-

ically induced transparency and amplification of the input signal through controlling the

electromechanical energy transfers (in the form of phonons) to create signal interferences in

the coupled system. We observe mechanical anti-damping effects (with respect to the applied

driving tone) in both coupled drums generated by the phonon-cavity force, exhibiting the
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trend expected by the theoretical model. These results indicate that this new type of device

design could serve for phonon-based information processing in both classical and quantum

regimes, and is potentially useful for building multifunctional compact mechanical systems.

The device structure investigated in this work consists of two distinct electromechanical

resonators. One of them is a silicon nitride (SiN) circular membrane nanomechanical res-

onator, ≈ 80 nm in thickness and ≈ 36 µm in diameter, covered with an aluminum (Al)

thin film ≈ 25 nm in thickness, which has been fabricated from a silicon substrate covered

with a stoichiometric SiN thin film, ∼ 1 GPa tensile stress. The other resonator is an Al

drum having a diameter of ≈ 40 µm suspended on the top of a SiN membrane. Its mechan-

ical property approaches to a plate model (details in SI), as shown in Figure 1 (a). The

measurement setup is schematically depicted in Figure 1 (b). Mechanical motions of both

electromechanical resonators can be independently excited by passing RF signals Vac com-

bined with dc voltages Vdc to generate an electrostatic driving force. All the measurements

are performed at RT, under vacuum (∼ 10−6 mbar) to minimize air damping. Figure 1 (c)

shows linear responses of both Al drum and SiN drum resonators, for their fundamental

modes. For the Al drum, the resonance frequency is ΩAl/(2π) ≈ 2.95 MHz with a quality

factor QAl ≈ 358. A finite element simulation is consistent with a low tensile stress in the

Al film ∼40 MPa. The SiN drum, a high-stress thin membrane, vibrates at high frequency

ΩSiN/(2π) ≈ 11.792 MHz with a high quality factor QSiN ≈ 1.8×104. In the experiment,

we take the SiN nanomechanical resonator as a phonon cavity, as ΩSiN > ΩAl. It presents

an energy leaking rate much smaller than that of the coupled Al drum, thus contrary to

standard optomechanical systems.

Electromechanical capacitive coupling model. The whole device structure can be

viewed as a parallel plate capacitor Cg (X1, X2), where each plate is a membrane drum res-

onator, as shown in Figure 1 (a). The mechanical displacement of each membrane is described

by X1(t) and X2(t) resonating at the frequency Ω1 and Ω2 respectively far from each other,

with Ω1 > Ω2. Driven by the electrostatic force F1,2(t) =
[Vdc+Vac(t)]

2

2
∂

∂X1,2
Cg [X1 (t) , X2 (t)],
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Figure 1: (a) Above, a scanning electron microscope (SEM) image of an Al drum resonator,
≈ 550 nm in thickness, which is suspended on top of a SiN circular membrane covered with
an Al thin film.28 The Al drum is designed to have a “X”-shaped clamping structure covering
∼50% of the circumference. Below, a magnified SEM image of the vacuum gap region marked
by the green box in the above image. The distance between the Al drum and the SiN one is
d ≈ 600 nm. At the bottom, an optical image of a SiN drum resonator covered with an Al
thin film, before the Al drum was fabricated on top of it. There is no physical connection
between the two drums. More details of device fabrication are shown in SI: Device fabrication
and basic mechanical properties (b) Schematic diagram of the measurement setup. Both
electromechanical resonators are driven by low frequency signals combined with RF and dc
signals. The mechanical displacement is imprinted in the reflected microwave signals and
read out by a lockin amplifier through frequency down-conversion.28 The inset schematic
shows a cross-sectional view of the device structure. (c) Linear resonance response of the Al
drum resonator (upper) and SiN drum resonator (lower), which are measured at Vdc=2 V,
Vac=2 mVp and 0.2 mVp respectively. The inset figures show the corresponding mechanical
mode shapes obtained from finite element simulations.
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we therefore model these two capacitively coupled drums in the linear response regime via

the following coupled equations of motion for the displacements X1(t) and X2(t),

Ẍ1 + γ1Ẋ1 + Ω2
1X1 =

VacVdc

m1 d
Cg0

[
1− 2(X2 −X1)

d

]
,

Ẍ2 + γ2Ẋ2 + Ω2
2X2 =

VacVdc

m2 d
Cg0

[
−1 +

2(X2 −X1)

d

]
.

(1)

Here, γ1,2 are the mechanical damping rates and m1,2 are the effective masses of each drum.

The driving force, acting on a simple parallel plate capacitor, is truncated at the second

order in a Taylor expansion, and Cg0 is the initial capacitance between the two membranes

separated by a distance d. In Eq.1, the approximation 2VdcVac + V 2
ac ≈ 2VdcVac has been

made by considering the typical situation encountered in measurements: Vdc ≫ |Vac|. The

static contribution V 2
dc has been dropped of the equation since it cannot drive resonantly

the modes. Following the concept of cavity optomechanics, the mechanical resonator having

the higher resonance frequency in the coupled system is chosen as the phonon-cavity. In a

two-tone driving scheme, we exploit one driving tone with frequency Ωd to weakly probe one

of the coupled membranes around its resonance frequency (Ω1 or Ω2), and the other tone

with frequency Ωp to pump the phonon-cavity at its sideband ∼ Ω1 ± Ω2. The Vac carrying

the two tones therefore can be written in the form Vac (Ωp,Ωd) =
µp

2
e−iΩpt + µd

2
e−iΩdt + c.c.

The µp and µd are complex amplitudes corresponding to the Vac (Ωp) and the Vac(Ωd) compo-

nents, respectively. Eq.1 is solved in the rotating frame through looking for the mechanical

displacement X1(2)(t)=
x1(2)(t)

2
e−iΩdt + c.c mainly driven by the probe signal, and the dis-

placement X2(1)(t) also depends on the interaction between the probe tone and the pump

tone. The x1,2 are the slowly varying complex amplitudes of the mechanical displacement,

corresponding to each membrane’s motion. In analogy with microwave optomechanics, we

define the coupling strength between the phonon-cavity (SiN membrane, with index 1) and

its coupled Al drum (with index 2) as G = ∂Ω1

∂X2
and the single phonon coupling strength

g0=G
√

h̄
2m2Ω2

, where
√

h̄
2m2Ω2

is the zero-point fluctuations of the mechanical mode indexed
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2 with resonance frequency Ω2. While the experiment is by no means anywhere close to

the quantum regime, we introduce this language as a commodity for a direct comparison

with the usual formalism of optomechanics. We first consider a two-tone driving scheme,

which has been generally investigated in optomechanics. The phonon-cavity is probed with

a frequency Ωd=Ω1 + δ and is pumped at the frequency Ωp=Ω1 ±Ω2 +∆. The δ parameter

is therefore a frequency detuning from frequency Ω1 for the probe tone. The ∆ parameter is

a frequency detuning for the pump, from the frequency Ω1 ± Ω2. Solving Eq.1, the probed

mechanical displacement x1 is given by

x1 =
fd

2m1Ω1

1

χ−1
1 ± npg20χ2

, (2)

where np=
2|fp|2
m1Ω2

1

1
h̄Ωp

is the phonon number generated by the pumping force fp=
Cg0Vdcµp

d
and

fd =
Cg0Vdcµd

d
is the driving force generated by the probe signal. Both fd and fp are complex

amplitudes. The χ1 = 1
−δ−i

γ1
2

and χ2 = 1
∆−δ−i

γ2
2

are susceptibilities of the phonon-cavity

and the coupled electromechanical resonator. The “-” and “+” symbols in Eq.2 correspond

to a “red” or “blue” sideband pumping scheme, respectively. Similarly, the probe tone can

be applied at Ωd = Ω2 + δ in order to excite the Al drum response.

The probed mechanical displacement exhibits a behavior similar to optomechanically

induced transparency and amplification.19,29 In this two-tone scheme, the mechanical inter-

actions can be decomposed into two coherent steps for transfers of energy (in the form of

phonons) between two coupled resonators, as indicated in the Figure 2(a) and 2(b), where

each graph corresponds to one of our two different probing cases. In a first step, the probe

and pump tone create a phonon-cavity force acting on the unprobed membrane that excites

its mechanical vibrations, corresponding to the process < 1 > in the Figure 2(a) and 2(b).

Then, these generated mechanical phonons are fed back to the probed resonator, correspond-

ing to the process < 2 >. An interference therefore is built between these phonons described

by the term npg
2
0χ2 acting on the unprobed membrane in Eq. 2 and the initial probe sig-
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Figure 2: Diagram of the red sideband pumping scheme of the phonon-cavity SiN drum
Ωp=Ω1-Ω2+∆, while probing (a) the Al drum at frequency Ωd= Ω2+δ and (b) the SiN drum
at frequency Ωd= Ω1+δ. For a blue sideband pumping scheme Ωp=Ω1+Ω2+∆, the Ωp arrow
therefore is above Ω1, detuned by Ω2 (not shown). < 1 > corresponds to the probe and the
pump tone frequency up-conversion process in (a) and down-conversion process in (b), which
excites the un-probed mechanical vibrations marked as dashed grey arrows. < 2 > feed back
process of the generated phonons, corresponding to the frequency down-conversion process
in (a) and up-conversion process in (b). An interference is created between these fed back
phonons marked as dashed blue arrows and the initial probe signal marked with green arrows.
Simulated mechanical response of (c) the Al drum and (d) the SiN drum, corresponding to
the red and blue sideband pumping of the phonon cavity (see Ωp in legend). Details of
formula derivation are shown in the SI. The gray curves are the mechanical responses when
there is no pump tone, np=0. Both blue and red curves are computed with npg

2
0=γ2γ1/7,

fd/(2m2Ω2)= fd/(2m1Ω1), and ∆=0. Besides, we also consider γAl ∼ 10 γSiN in all simulated
mechanical responses, including the case of no pump tone.
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nal corresponding the term χ1. This interference can be destructive or constructive, which

depends on pumping the cavity at its red or blue sideband. Impacts of this interference on

the resonance peaks measured with the two probe configurations are illustrated in Figure

2(c) and 2(d), taking taking into account the fact that the phonon cavity linewidth γSiN is

about two orders smaller than that of the coupled Al drum (our experimental conditions).

As indicated in Eq.2, the linewidth of the unprobed mechanical resonator determines the

frequency bandwidth of the transparency and amplification effects. For instance, when the

phonon-cavity is red sideband pumped, the Lorentzian curve of the Al drum mechanical

response exhibits a narrow dip inside its lineshape due to the fact γSiN < γAl, as shown

in Figure 2(c). On the contrary, the probed signal propagating through the SiN drum is

fully suppressed, as the γAl determines the linewidth of the transparency window. This

phenomenon is quite different from conventional optomechanical systems in which the me-

chanical damping rate is usually much smaller than that of the coupled cavity. These results

demonstrate that both transparency and amplification windows can be controlled through

engineering the mechanical damping rate in the phonon-cavity system.

Electromechanically induced transparency and amplification. In order to build

the interference process, one of the key points is that the unprobed mechanical resonator

should provide enough phonons to be fed back by the pump tone, generating the interference

with the initial probe tone. The motion equation Eq.1 indicates that the energy transferred

between the two movable membranes is determined by the effective pumping force fp
X1(2)(t)

d
,

when the probe tone is driving the mechanical displacement X1(2)(t) around its resonance

frequency Ω1(2). Therefore, the probe tone should have a large amplitude Vac(Ωd) in order

to increase the pump efficiency and provide a large number of phonons for the interfer-

ence process. To demonstrate it, the phonon-cavity is red sideband pumped at a frequency

Ωp/2π=Ω1/2π −Ω2/2π +∆ using ∆=-2.5 kHz with a fixed pump amplitude Vac(Ωp) = 100

mVp and Vdc = 2 V. Figure 3 shows the linear response of the Al drum probed by different

Vac(Ωd), as a function of the frequency detuning δ. At the largest drive amplitudes, a clear

9



-20000 -10000 0 10000 20000

0.00000

0.00001

0.00002

0.00003  2.0 mV

 1.5 mV

 1.0 mV

 0.5 mV

-10 0 10 20

d/2p (kHz)

0

10

20

A
m

p
li
tu

d
e

 (
m

V
) 0.5 mVp

1.0 mVp

1.5 mVp

2.0 mVp30 md :

-20

Figure 3: Mechanical response of the Al drum when the phonon-cavity is pumped at its red
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Vac(Ωp) = 100 mVp. These curves were measured with different probe ac voltages µd applied
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resonance frequency of Al drum, Ωd = Ω2 + δ. When the detuning δ matches ∆ = -2.5 kHz,
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dip is visible when the two detunings are matched, δ = ∆.

Electromechanical responses of these coupled resonators have been measured as a func-

tion of the pump tone detuning ∆ and the probe frequency detuning δ, for both red and blue

sideband pumping schemes, as shown in Figure 4(a)-4(d). These measurement results clearly

indicate that the linewidth of the interference window corresponding to the pump tone tun-

ing ∆ is related to the unprobed membrane. This is because the unprobed membrane in the

coupled system acts as a phonon transfer station. Within the bandwidth of the unprobed

resonator, phonons can be generated from the interaction between the pump and the probe

tone and can coherently create constructive or destructive interferences with the probe tone.

Figure 4(c) and 4(d) show the simultaneous measurement results of the electromechanical

responses of the probed and the unprobed membranes, in which the phonon-cavity is driven

at a frequency Ωd=Ω1 + δ and is pumped at its blue sideband Ωp=Ω1 +Ω2 +∆. Figure 4(c)

clearly shows a constructive interference result as the probed signals have been amplified
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with driving amplitudes Vdc = 2 V, Vac(Ωd) = 3 mVp, Vac(Ωp) = 100 mVp, and probed at
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within the interference window and the Figure 4(d) indicates phonon generation (displace-

ments in the nano-meter scale) in the mechanical mode of the Al drum. The mechanical

displacements of both membranes X1(2), corresponding to different driving and pumping

schemes, have been calculated based on the capacitive coupling model described by Eq. 1.

The calculated mechanical displacements are converted into electrical signal amplitude in

a microwave measurement scheme and are shown in Figure 4(e)-(h), by using the relation

Vout = ωZ0Cg0X1(2)Vµw/(2d).
28 Here, ω and Vµw are the frequency and the amplitude of the

microwave signal for detection, respectively. The parameter Z0 is the impedance of the mea-

surement chain (here, 50 Ohm). The measurement results have been quantitatively fitted

within ∼10% error bar by taking effective masses for the SiN membrane of m1 ≈ 4.4×10−14

kg and for the Al drum of m2 ≈ 4.41×10−13 kg, and by using the experimental parameters

mentioned above.

Besides, we also evaluate the maximum coupling rate g = g0
√
np by taking the largest

pump force performed in this measurement, which has been generated by applying Vdc

= 4 V and Vac(Ωp) = 70 mVp. It gives g ≈ 1024 rad/s , which remains smaller than

γSiN = ΩSiN/QSiN and γAl = ΩAl/QAl. It means that the pumping force does not provide

enough phonons to drive the coupled mechanical system into the so-called strong coupling

regime.11,26 In the present RT measurement, the pumping force is mainly limited by the

large thermal background noise due to the heating effects brought in by the high pumping

power. On the contrary, in the cryogenic temperature range, this limitation will be greatly

suppressed. In addition, the typical damping rates of both SiN and Al mechanical resonators

are ∼102 Hz in mK range with resonance frequencies in the MHz range,30,31 which could

allow this device to access the strong coupling regime.

Phonon-cavity force effects on mechanical damping rate. In optomechanical

systems, the cavity force has been implemented to decrease mechanical damping rate in

order to improve sensing resolutions, through pumping the coupled cavity at its sideband.32

Our device gives more degrees of freedom and provides an opportunity to observe the cavity
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parameters, e.g. d, m1, and m2.

force acting on both resonators, including the one acting as a phonon-cavity. Here, we

exploit a large ac signal to pump the blue sideband of the phonon-cavity, and apply a small

ac one to respectively excite mechanical displacements of the SiN or Al drum to be just

above the noise floor of the measurement chain. As shown in Figure 5, the linewidth of

both coupled membranes decreases with increasing the pump power (V 2
ac), exhibiting the

typical “optical anti-damping effect”.33 We can use a single-tone driving scheme to model

this effect in two capacitively coupled membranes based on Eq. 1, in which the phonon

cavity is pumped at the frequency Ω1 + β. Here, the β is a global frequency detuning, with

β ∼ Ω2 for the blue sideband and β ∼ −Ω2 for the red sideband. The sideband scheme

pumping the cavity gives rise to two satellite signals, corresponding to Stokes- and anti-

Stokes scattering.34 The mechanical susceptibility is altered due to the phonon-cavity force

generated by interactions between the pump tone and these generated Stokes and anti-Stokes

processes, yielding modulations of the mechanical damping rates.33,34 By employing a similar

approach as the one applied to the electric circuit modeling of microwave optomechanics,34
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we therefore deduce the additional damping term γ2opt of the Al drum (with index 2) due

to the back-action force of the phonon-cavity, but also the additional damping term γ1opt for

the phonon-cavity (see details in SI), as shown in Eq.3. The additional damping terms make

the initial mechanical damping rate γ1(2) become γ1(2)eff=γ1(2)+γ1(2)opt,

γ2opt =
|fp|2

4m1m2 d2Ω1Ω2

[
γ1

(Ω2 + β)2 +
γ2
1

4

− γ1

(Ω2 − β)2 +
γ2
1

4

]
,

γ1opt =
|fp|2

4m1m2 d2Ω1Ω2

[
γ2

(Ω2 − 2Ω1 − β)2 +
γ2
2

4

− γ2

(Ω2 − β)2 +
γ2
2

4

]
.

(3)

In our measurement of a blue sideband pumping scheme with β=Ω2, Eq.3 demonstrates

the fact that the effective damping rate of the Al drum γ2eff is inversely proportional to

the initial damping rate of the coupled phonon-cavity, γ1, in accordance with the “optical

damping effect” in an optomechanical system. While conversely, for the damping rate of the

phonon-cavity, γ1eff is ∝ 1/γ2. If we consider the experimental condition ΩSiN ,ΩAl ≫ γSiN ,

γAl, Eq. 3 leads to γ1eff/γ2eff ≈ γ1/γ2. In our measurement, slopes of the linewidth versus

V 2
ac can be obtained from the linear fit of the measurement results shown in Figure 5, for

both membranes. The ratio between these slopes gives ≈11.8, which is in extremely good

agreement with the value of γSiN/γAl ≈12.0 expected from our analytic model.

In conclusion, we have built a ”phonon-cavity” optomechanical analogue, made of two dis-

tinct electrostatically coupled nano-mechanical resonators. Following the concept of phonon-

cavity, we manipulate the electromechanical energy transfer between the modes (in the form

of phonons) to create destructive or constructive interferences that control the signal propa-

gation, leading to electromechanically induced transparency and amplification. By exploiting

sideband pumping techniques, anti-damping effect has also been demonstrated in both cou-

pled mechanical objects, which is potentially useful for sensing applications. This device

scheme is compact for integration and manipulations, which could make it an ideal plat-

form for exploring phonon based multi-function systems through combining signal processing

and sensing functions, and enriching optomechanical systems. Besides, parametric coupling

14



model is built, which captures optomechanical features and provides theoretical analyses

that quantitatively fit our measurement results. These investigations establish connections

between a setup with two directly coupled movable objects and a standard optomechanical

system in the classical regime that can be further extended to other parametrically coupled

systems (e.g. electrical circuit modeling of optomechanics34) and be developed to facilitate

today’s quantum engineering.19,21
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de Lépinay, L. M.; Sillanpää, M.; Armour, A.; Fefferman, A., et al. Beyond linear

coupling in microwave optomechanics. Physical Review Research 2020, 2, 033480.
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Device fabrication and basic mechanical properties

The device, measured in this work, consists of a SiN membrane drum resonator capacitively

coupled to an Al drum. The device fabrication process starts with a silicon substrate covered

with a stoichiometric SiN thin film (80 nm in thickness) having ∼1 GPa tensile stress.

Circularly symmetric holes, with 300 nm in diameter, are patterned on its top by using

electron beam lithography. In order to release SiN drum from the substrate through these

holes, reactive iron etching is used to remove the SiN layer, followed by a XeF2 selective

etching process to partly remove Si substrate. Then, about 25 nm Al thin film is deposited

on SiN drum as a conductive layer. An Al drum resonator is fabricated by using PMMA

(polymethyl methacrylate) resist as sacrifice layer through soft-bake and reflowed process.
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The Al drum is patterned by using MMA (methyl methacrylate) and PMMA resist through

using EB lithography, followed with Al deposition and lift-off process.1

To verify whether the plate or membrane model is suitable for our drums, we evaluate

the ratio between the tension in the drum and its bending rigidity, σ2πhR/(Dr/R), where

σ2πhR is the tension with the drum and Dr =
Erh3

12(1−v2)
is the flexural rigidity in the plane of

the drum, v is the Poisson’s ratio, h is the thickness of the film, Eris Young’s modulus, and

R is the radius of the drum.2,3 For the SiN drum, by using parameters of σ ∼ in the range

from 0.8 GPa to 1.0 GPa, R = 18 µm, h = 80 nm, v ∼0.3, Er = 240 GPa (for SiN), the value

of σ2πhR/(Dr/R) will be in the range from 1.14 to 1.4×104, exhibiting the tension-dominant

property. Therefore, SiN drum follows membrane model. While, for our Al drum, it gives

∼26 by using device parameters of σ ∼ 15 MPa,4 R = 20 µm, h ∼ 550 nm, v ∼0.3, and Er

= 69 GPa (for Al). Comparing with the SiN drum, this Al drum approaches to the plate

model, but is still a membrane.

Analytical calculation for two-tone driving scheme

This simple device structure allows to consider two parametrically coupled electromechanical

resonators as a single capacitor Cg (X1, X2) consisting of two parallel and movable mem-

branes. The mechanical displacement of each membrane is described by X1(t) and X2(t)

resonating at the frequency Ω1 and Ω2, with Ω1 > Ω2. We therefore model these two coupled

drums in the linear response regime, driven by an electrostatic force

F1,2(t) =
(Vdc + Vac)

2

2

∂

∂X1,2

Cg (X1, X2) , (S.1)

via the following equations of motion for the displacement X1(t) and X2(t),
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Ẍ1 + γ1Ẋ1 + Ω2
1X1 =

VacVdc

dm1

Cg0

[
1− 2(X2 −X1)

d

]
,

Ẍ2 + γ2Ẋ2 + Ω2
2X2 =

VacVdc

dm2

Cg0

[
−1 +

2(X2 −X1)

d

]
.

(S.2)

Here, the γ1,2 is the mechanical damping rate, the m1,2 is the effective mass, and Cg0 is the

initial capacitance between two membranes separated by a distance d. The driving force

F1,2(t) is modeled as a simple parallel plate capacitor, and the force is truncated at the

second order Taylor expansion of the Cg(x), ≈ Cg0(1 − x
d
+ x2

d2
), with x(t)=X2(t) − X1(t)

In the Eq.S.2, an approximation 2VdcVac + V 2
ac ≈ 2VdcVac has been made by considering a

general case in measurements: Vdc ≫ |Vac|. The static contribution V 2
dc has been dropped

of the equation since it cannot drive resonantly the modes; note however that this term can

be employed to tune the resonance frequencies.1 We shall not refer to this possibility in the

present work.

To demonstrate phonon-cavity in a two-tone driving scheme, the membrane having the

higher resonance frequency is chosen as phonon-cavity (with index 1). The other coupled

mechanical resonator with the lower resonance frequency is marked with index 2. We exploit

one driving tone with frequency Ωd to weakly probe one of the coupled membranes around

Ω1 or Ω2 and the other one with frequency Ωp to pump the phonon-cavity at its sideband ∼

Ω1±Ω2. Therefore, we also write Vac in the form of Vac(ωp, ωd) =
µp

2
e−iΩpt+ µd

2
e−iΩdt+c.c. The

Eq.S.2 can be analytically solved in the rotating frame through looking for the displacement

driven by the probe signal, X1(2)(t)=
x1(2)(t)

2
e−iΩdt + c.c and the displacement of the other

coupled membrane generated by the frequency mixing between the probe and the pump

signals, X2(1)(t)=
x2(1)(t)

2
e−i(Ωp∓Ωd)t + c.c. The x1(2) is the slowly varying complex amplitudes

of mechanical displacements.

First, we drive the phonon-cavity at the frequency with small amplitude around its

resonance frequency Ω1 with the frequency detuning δ, Ωd=Ω1+δ. (a) Pump the photon-

cavity at its red sideband with the frequency ∆ detuned from Ω1-Ω2, Ωp=Ω1-Ω2+∆. Based
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on an approximation that Ω2
1 − Ω2

d ≈ 2Ω1(Ω1 − Ωd), the analytical solution of Eq.S.2 gives

x1 =
fd

2m1Ω1

1
1
χ1

− |fp|2χ2

4m1m2d2Ω1Ω2

,

x2 = −
f ∗
p

2m2Ω2

x1

d
χ2

(S.3)

(b) For pumping the photon-cavity at its blue sideband at the frequency Ωp=Ω1+Ω2+∆, it

arrives

x1 =
fd

2m1Ω1

1
1
χ1

+ |fp|2χ2

4m1m2d2Ω1Ω2

,

x∗
2 =

f ∗
p

2m2Ω2

x1

d
χ2

(S.4)

Here, we define the susceptibility of the phonon-cavity χ1 and the mechanical susceptibility

χ2 corresponding to both red and blue sideband pumping the phonon-cavity.

χ1 =
1

−δ − iγ1
2

,

χ2 =
1

∆− δ − iγ2
2

,

(S.5)

The fp = Cg0Vdcµp

d
and fd = Cg0Vdcµd

d
are complex amplitudes respectively corresponding to

the pumping and driving force. To have analogues of optomechanical system, we define the

coupling strength as G = ∂Ω1

∂X2
≈ ∂Ω1

∂Cg

∂Cg

∂X2
≈-Ω1

2d
. It gives single phonon coupling strength

g0=G
√

ℏ
2m2Ω2

, where
√

ℏ
2m2Ω2

is the zero-point fluctuations of the coupled membrane with

resonance frequency Ω2. Therefore, the term of |fp|2
4m1m2d2Ω1Ω2

can be re-written as npg
2
0 through

making a definition of the phonon number np ≈ 2|fp|2
m1Ω2

1

1
ℏΩp

, generated by the pump tone. Then,

Eq.S.4 becomes:

x1 =
fd

2m1Ω1

1

χ−1
1 ± npg20χ2

, (S.6)

where ”-” and ”+” symbols correspond to ”red” and ”blue” sideband pumping scheme.

Second, we probe the coupled membrane at the frequency around its resonance frequency

Ω2 with the frequency detuning δ, Ωd=Ω2+δ. Similarly, an approximation of Ω2
2 − Ω2

d ≈
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2Ω2(Ω2 − Ωd) has been made. For pumping the photon-cavity at its red sideband, the

analytical solution of Eq.S.2 gives

x2 = − fd
2m2Ω2

1

χ−1
2 − npg20χ1

,

x1 = −
f ∗
p

2m1Ω1

x2

d
χ1,

χ1 =
1

−∆− δ − iγ1
2

,

χ2 =
1

−δ − iγ2
2

.

(S.7)

For the blue sideband pumping, it arrives

x2 = − fd
2m2Ω2

1

χ−1
2 − npg20χ

∗
1

,

x∗
1 = −

f ∗
p

2m1Ω1

x2

d
χ∗
1,

χ∗
1 =

1

δ −∆+ iγ1
2

,

χ2 =
1

−δ − iγ2
2

.

(S.8)

Analytical calculation for single-tone sideband pumping

scheme: analogy to optomechanical damping effect

Here, we define the phonon-cavity is sideband pumped at Ωp = Ω1 + β, where β is the

frequency detuning from the resonance frequency of the phonon-cavity Ω1. The mechanical

displacement of the coupled membrane (with the index 2) is written as x2(t) =
1
2
δx2(t)e

−iΩ2t+

c.c, where the complex amplitude of δx2(t) is the Brownian motion of the the membrane(2).5

The terms where motion x2(t) multiplies pump amplitude in Eq.S.2 generate harmonics at

Ωn = Ωp + nΩ2, with n ∈ Z. The solution can be found in the form of the ansatz,

x(t) =
+∞∑

n=−∞

δx(t)

2
e−i(Ωp+nΩ2)t + c.c. (S.9)
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In this work, we are interested only in schemes of n = ±1, corresponding to the ”down” and

”up” sideband of the pump signals at the frequency Ω− = Ωp − Ω2 and Ω+ = Ωp +Ω2. The

solution of the phonon-cavity motion equation in Eq.S.2 is given by

x− =
e−iΩ−t

2

fpδx
∗
2

m1d

1

Ω2
1 − Ω2

− − iΩ−γ1
+ c.c,

x+ =
e−iΩ+t

2

fpδx2

m1d

1

Ω2
1 − Ω2

+ − iΩ+γ1
+ c.c.

(S.10)

It yields an extra force, fcav =
fp
d
x∗
−+

f∗
p

d
x++c.c, biasing on the membrane(2), which modifies

the initial mechanical susceptibility to become

χ2(Ω) =
1

2m2Ω2

1

(−Ω− iγ2
2
) + Σ

,

Σ =
|fp|2

4m1m2d2Ω1Ω2

(
Ω2 + β − iγ1

2

(Ω2 + β)2 +
γ2
1

4

−
Ω2 − β − iγ1

2

(Ω2 − β)2 +
γ2
1

4

)

(S.11)

The imaginary part of Σ modifies the mechanical damping rate γ2, yielding additional damp-

ing γopt

γopt = npg
2
0

[
γ1

(Ω2 + β)2 +
γ2
1

4

− γ1

(Ω2 − β)2 +
γ2
1

4

]
. (S.12)

The real part of Σ contributes to a frequency shift of Ω2,

δΩ2 = −npg
2
0

[
β + Ω2

(Ω2 + β)2 +
γ2
1

4

− Ω2 − β

(Ω2 − β)2 +
γ2
1

4

]
. (S.13)

Both expressions of Eq.S.12 and Eq.S.13 refer to ”optical damping effect” and ”optical spring

effect” in optomechanics. The fcav corresponds to the phonon-cavity force, originating from

energy confined in the capacitor that consistsof two capacitively coupled membranes.
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Using same method, we could get the dynamical backaction effects on the phonon-cavity,

γopt(cavity) = npg
2
0

[
γ2

(Ω2 − 2Ω1 − β)2 +
γ2
2

4

− γ2

(Ω2 − β)2 +
γ2
2

4

]
,

δΩ1 = npg
2
0

[
Ω2 − 2Ω1 − β

(Ω2 − 2Ω1 − β)2 +
γ2
2

4

+
Ω2 − β

(Ω2 − β)2 +
γ2
2

4

]
.

(S.14)
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