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Micro-and nano-electromechanical systems, allowing mechanical displacements to couple with electrical and optical signals, are extensively studied for various applications and fundamental research. 1,2 The specific features of tiny scale and high quality factor resonances are attractive for sensing applications. [3][4][5][START_REF] Chaste | A nanomechanical mass sensor with yoctogram resolution[END_REF] Their intrinsic nonlinearity and mechanical transduction design have been implemented for developing logic gates, [START_REF] Guerra | A noiseassisted reprogrammable nanomechanical logic gate[END_REF][START_REF] Mahboob | Interconnect-free parallel logic circuits in a single mechanical resonator[END_REF] radio frequency (RF) amplifiers 9 and memory nodes. 10 In recent years, the study of mode coupling, which exists between different mechanical modes in a single system but also between different resonators, attracts great research interests. Because they allow to transmit information between mechanical modes 11,12 and to filter signals in different frequency bands through controlling transfers of energy. 13 In addition to these applied possibilities, such devices can also be viewed as model systems to implement mechanical analogues of some other phenomena. 14 As such, one of the successful examples exploiting mechanical mode coupling is the concept of "phonon-cavity", 15,16 inspired by recent achievements in optomechanics. Optomechanics, which studies interactions between the mechanical vibrations and photons confined in a cavity, offers a powerful platform for many engineering applications, from sensing (e.g. detecting thermal Brownian motion) to the generation of mechanical self-sustained oscillations, and even the storage of light. [17][START_REF] Cattiaux | Beyond linear coupling in microwave optomechanics[END_REF][START_REF] Weis | Optomechanically induced transparency[END_REF] In order for the two coupled mechanical modes to exploit the rich physics available with optomechanics, the phonon-cavity scheme is built by implementing the mode with the higher resonance frequency Ω 1 as a phonon cavity in analogy with the optical/microwave one, and then pumping it with a signal at frequency ∼ Ω 1 ± Ω 2 .

Here, Ω 2 is the resonance frequency of the other mode. The concept of phonon-cavity not only enables the two coupled mechanical modes to inherit those interesting functions of optomechanics, but also further enriches existing optomechanical applications, in both classical and potentially the quantum regime. 16,[START_REF] Zeng | Strong phonon-cavity coupling and parametric interaction in a single microcantilever under ambient conditions[END_REF][START_REF] Fan | Cascaded optical transparency in multimode-cavity optomechanical systems[END_REF][START_REF] Shahidani | Control and manipulation of electromagnetically induced transparency in a nonlinear optomechanical system with two movable mirrors[END_REF] Up to now, in most phonon-cavity schemes, the coupling is created between different mechanical modes with a single resonator by means of an intrinsic nonlinearity, or between different resonators by using physical connections to transmit a displacement-induced tension. 3,11,16,[START_REF] Mahboob | Dispersive and dissipative coupling in a micromechanical resonator embedded with a nanomechanical resonator[END_REF][START_REF] Karabalin | Nonlinear dynamics and chaos in two coupled nanomechanical resonators[END_REF][START_REF] De Alba | Tunable phonon-cavity coupling in graphene membranes[END_REF] However, mechanical coupling design yields implementation complexities in optimizing the coupling between distinct and distributed resonators, and poses a challenge for electromechanical devices desiring higher resonance frequencies and flexible tunability.

Compared to mechanical coupling designs, electrostatic coupling schemes are widely implemented in diverse electrical integrated systems. It allows to implement the coupling of distributed resonators experiencing nano-scale displacements, but also to drive/detect independently each resonator of the coupled system. [START_REF] Šiškins | Tunable strong coupling of mechanical resonance between spatially separated FePS3 nanodrums[END_REF][START_REF] Huang | Demonstration of motion transduction based on parametrically coupled mechanical resonators[END_REF] However, it is still challenging to achieve directly coupled distinct mechanical resonators via capacitive coupling, especially for compact schemes.

In this work, we present coherent energy transfers between two capacitively coupled and distinct electromechanical resonators, consisting of an Al drum suspended on top of a SiN membrane drum. Both resonators can be driven and detected independently. We explore phonon-cavity electromechanics based on a simple theoretical model which is analogous to optomechanics. At room temperature (RT), we experimentally demonstrate electromechanically induced transparency and amplification of the input signal through controlling the electromechanical energy transfers (in the form of phonons) to create signal interferences in the coupled system. We observe mechanical anti-damping effects (with respect to the applied driving tone) in both coupled drums generated by the phonon-cavity force, exhibiting the trend expected by the theoretical model. These results indicate that this new type of device design could serve for phonon-based information processing in both classical and quantum regimes, and is potentially useful for building multifunctional compact mechanical systems.

The device structure investigated in this work consists of two distinct electromechanical resonators. One of them is a silicon nitride (SiN) circular membrane nanomechanical resonator, ≈ 80 nm in thickness and ≈ 36 µm in diameter, covered with an aluminum (Al) thin film ≈ 25 nm in thickness, which has been fabricated from a silicon substrate covered with a stoichiometric SiN thin film, ∼ 1 GPa tensile stress. The other resonator is an Al drum having a diameter of ≈ 40 µm suspended on the top of a SiN membrane. Its mechanical property approaches to a plate model (details in SI), as shown in Figure 1 Electromechanical capacitive coupling model. The whole device structure can be viewed as a parallel plate capacitor C g (X 1 , X 2 ), where each plate is a membrane drum resonator, as shown in Figure 1 (a). The mechanical displacement of each membrane is described by X 1 (t) and X 2 (t) resonating at the frequency Ω 1 and Ω 2 respectively far from each other, with Ω 1 > Ω 2 . Driven by the electrostatic force we therefore model these two capacitively coupled drums in the linear response regime via the following coupled equations of motion for the displacements X 1 (t) and X 2 (t),

F 1,2 (t) = [V dc +Vac(t)] 2 2 ∂ ∂X 1,2 C g [X 1 (t) , X 2 (t)],
Ẍ1 + γ 1 Ẋ1 + Ω 2 1 X 1 = V ac V dc m 1 d C g0 1 - 2(X 2 -X 1 ) d , Ẍ2 + γ 2 Ẋ2 + Ω 2 2 X 2 = V ac V dc m 2 d C g0 -1 + 2(X 2 -X 1 ) d . (1) 
Here, γ 1,2 are the mechanical damping rates and m 1,2 are the effective masses of each drum.

The driving force, acting on a simple parallel plate capacitor, is truncated at the second order in a Taylor expansion, and C g0 is the initial capacitance between the two membranes separated by a distance d. In Eq.1, the approximation 2V dc V ac + V 2 ac ≈ 2V dc V ac has been made by considering the typical situation encountered in measurements: V dc ≫ |V ac |. The static contribution V 2 dc has been dropped of the equation since it cannot drive resonantly the modes. Following the concept of cavity optomechanics, the mechanical resonator having the higher resonance frequency in the coupled system is chosen as the phonon-cavity. In a two-tone driving scheme, we exploit one driving tone with frequency Ω d to weakly probe one of the coupled membranes around its resonance frequency (Ω 1 or Ω 2 ), and the other tone with frequency Ω p to pump the phonon-cavity at its sideband ∼ Ω 1 ± Ω 2 . The V ac carrying the two tones therefore can be written in the form V ac (Ω p , Ω d ) = µp 2 e -iΩpt + µ d 2 e -iΩ d t + c.c. The µ p and µ d are complex amplitudes corresponding to the V ac (Ω p ) and the V ac (Ω d ) components, respectively. Eq.1 is solved in the rotating frame through looking for the mechanical

displacement X 1(2) (t)= x 1(2) (t) 2
e -iΩ d t + c.c mainly driven by the probe signal, and the displacement X 2(1) (t) also depends on the interaction between the probe tone and the pump tone. The x 1,2 are the slowly varying complex amplitudes of the mechanical displacement, corresponding to each membrane's motion. In analogy with microwave optomechanics, we define the coupling strength between the phonon-cavity (SiN membrane, with index 1) and its coupled Al drum (with index 2) as G = ∂Ω 1 ∂X 2 and the single phonon coupling strength g 0 =G h 2m 2 Ω 2 , where h 2m 2 Ω 2 is the zero-point fluctuations of the mechanical mode indexed 6 2 with resonance frequency Ω 2 . While the experiment is by no means anywhere close to the quantum regime, we introduce this language as a commodity for a direct comparison with the usual formalism of optomechanics. We first consider a two-tone driving scheme, which has been generally investigated in optomechanics. The phonon-cavity is probed with a frequency Ω d =Ω 1 + δ and is pumped at the frequency Ω p =Ω 1 ± Ω 2 + ∆. The δ parameter is therefore a frequency detuning from frequency Ω 1 for the probe tone. The ∆ parameter is a frequency detuning for the pump, from the frequency Ω 1 ± Ω 2 . Solving Eq.1, the probed mechanical displacement x 1 is given by

x 1 = f d 2m 1 Ω 1 1 χ -1 1 ± n p g 2 0 χ 2 , (2) 
where

n p = 2|fp| 2 m 1 Ω 2 1 1
hΩp is the phonon number generated by the pumping force f p = C g0 V dc µp d and

f d = C g0 V dc µ d d
is the driving force generated by the probe signal. Both f d and f p are complex amplitudes. The

χ 1 = 1 -δ-i γ 1 2 and χ 2 = 1 ∆-δ-i γ 2 2
are susceptibilities of the phonon-cavity and the coupled electromechanical resonator. The "-" and "+" symbols in Eq.2 correspond to a "red" or "blue" sideband pumping scheme, respectively. Similarly, the probe tone can be applied at Ω d = Ω 2 + δ in order to excite the Al drum response.

The probed mechanical displacement exhibits a behavior similar to optomechanically induced transparency and amplification. [START_REF] Weis | Optomechanically induced transparency[END_REF][START_REF] Hocke | Electromechanically induced absorption in a circuit nano-electromechanical system[END_REF] In this two-tone scheme, the mechanical interactions can be decomposed into two coherent steps for transfers of energy (in the form of phonons) between two coupled resonators, as indicated in the Figure 2(a) and 2(b), where each graph corresponds to one of our two different probing cases. In a first step, the probe and pump tone create a phonon-cavity force acting on the unprobed membrane that excites its mechanical vibrations, corresponding to the process < 1 > in the Figure 2(a) and 2(b).

Then, these generated mechanical phonons are fed back to the probed resonator, corresponding to the process < 2 >. An interference therefore is built between these phonons described by the term n p g 2 0 χ 2 acting on the unprobed membrane in Eq. 2 and the initial probe sig- For a blue sideband pumping scheme Ω p =Ω 1 +Ω 2 +∆, the Ω p arrow therefore is above Ω 1 , detuned by Ω 2 (not shown). < 1 > corresponds to the probe and the pump tone frequency up-conversion process in (a) and down-conversion process in (b), which excites the un-probed mechanical vibrations marked as dashed grey arrows. < 2 > feed back process of the generated phonons, corresponding to the frequency down-conversion process in (a) and up-conversion process in (b). An interference is created between these fed back phonons marked as dashed blue arrows and the initial probe signal marked with green arrows. Simulated mechanical response of (c) the Al drum and (d) the SiN drum, corresponding to the red and blue sideband pumping of the phonon cavity (see Ω p in legend). Details of formula derivation are shown in the SI. The gray curves are the mechanical responses when there is no pump tone, n p =0. Both blue and red curves are computed with

W p = W 1 -W 2 W p = W 1 + W 2 W 2 W 1 Al drum W p Phonon cavity: SiN drum W 2 <1> 0 1 2 3 0 2 4 6 (d) -6 -4 -2 0 6 2 4 d/g 1 W p = W 1 -W 2 W p = W 1 + W 2 Amplitude (a.u.) Probe Al drum Probe SiN drum (a) W 2 W 1 W p W 2 <2> (b) W 2 W 1 W p W 2 <2>
n p g 2 0 =γ 2 γ 1 /7, f d /(2m 2 Ω 2 )= f d /(2m 1 Ω 1 )
, and ∆=0. Besides, we also consider γ Al ∼ 10 γ SiN in all simulated mechanical responses, including the case of no pump tone. nal corresponding the term χ 1 . This interference can be destructive or constructive, which depends on pumping the cavity at its red or blue sideband. Impacts of this interference on the resonance peaks measured with the two probe configurations are illustrated in Figure 2(c) and 2(d), taking taking into account the fact that the phonon cavity linewidth γ SiN is about two orders smaller than that of the coupled Al drum (our experimental conditions).

As indicated in Eq.2, the linewidth of the unprobed mechanical resonator determines the frequency bandwidth of the transparency and amplification effects. For instance, when the phonon-cavity is red sideband pumped, the Lorentzian curve of the Al drum mechanical response exhibits a narrow dip inside its lineshape due to the fact γ SiN < γ Al , as shown in Figure 2(c). On the contrary, the probed signal propagating through the SiN drum is fully suppressed, as the γ Al determines the linewidth of the transparency window. This phenomenon is quite different from conventional optomechanical systems in which the mechanical damping rate is usually much smaller than that of the coupled cavity. These results demonstrate that both transparency and amplification windows can be controlled through engineering the mechanical damping rate in the phonon-cavity system.

Electromechanically induced transparency and amplification. In order to build the interference process, one of the key points is that the unprobed mechanical resonator should provide enough phonons to be fed back by the pump tone, generating the interference with the initial probe tone. The motion equation Eq.1 indicates that the energy transferred between the two movable membranes is determined by the effective pumping force f p

X 1(2) (t) d ,
when the probe tone is driving the mechanical displacement X 1(2) (t) around its resonance frequency Ω 1 (2) . Therefore, the probe tone should have a large amplitude V ac (Ω d ) in order to increase the pump efficiency and provide a large number of phonons for the interference process. To demonstrate it, the phonon-cavity is red sideband pumped at a frequency Ω p /2π=Ω 1 /2π -Ω 2 /2π + ∆ using ∆=-2.5 kHz with a fixed pump amplitude V ac (Ω p ) = 100 mV p and V dc = 2 V. Figure 3 shows the linear response of the Al drum probed by different Electromechanical responses of these coupled resonators have been measured as a function of the pump tone detuning ∆ and the probe frequency detuning δ, for both red and blue sideband pumping schemes, as shown in Figure 4(a)-4(d). These measurement results clearly indicate that the linewidth of the interference window corresponding to the pump tone tuning ∆ is related to the unprobed membrane. This is because the unprobed membrane in the coupled system acts as a phonon transfer station. Within the bandwidth of the unprobed resonator, phonons can be generated from the interaction between the pump and the probe tone and can coherently create constructive or destructive interferences with the probe tone. The calculated mechanical displacements are converted into electrical signal amplitude in a microwave measurement scheme and are shown in Figure 4(e)-(h), by using the relation [START_REF] Zhou | High-Q silicon nitride drum resonators strongly coupled to gates[END_REF] Here, ω and V µw are the frequency and the amplitude of the microwave signal for detection, respectively. The parameter Z 0 is the impedance of the measurement chain (here, 50 Ohm). The measurement results have been quantitatively fitted within ∼10% error bar by taking effective masses for the SiN membrane of m 1 ≈ 4.4×10 -14 kg and for the Al drum of m 2 ≈ 4.41×10 -13 kg, and by using the experimental parameters mentioned above.

V ac (Ω d ),
V out = ωZ 0 C g0 X 1(2) V µw /(2d).
Besides, we also evaluate the maximum coupling rate g = g 0 √ n p by taking the largest pump force performed in this measurement, which has been generated by applying V dc = 4 V and V ac (Ω p ) = 70 mV p . It gives g ≈ 1024 rad/s , which remains smaller than

γ SiN = Ω SiN /Q SiN and γ Al = Ω Al /Q Al .
It means that the pumping force does not provide enough phonons to drive the coupled mechanical system into the so-called strong coupling regime. 11,[START_REF] Šiškins | Tunable strong coupling of mechanical resonance between spatially separated FePS3 nanodrums[END_REF] In the present RT measurement, the pumping force is mainly limited by the large thermal background noise due to the heating effects brought in by the high pumping power. On the contrary, in the cryogenic temperature range, this limitation will be greatly suppressed. In addition, the typical damping rates of both SiN and Al mechanical resonators are ∼10 2 Hz in mK range with resonance frequencies in the MHz range, [START_REF] Zhou | On-chip Thermometry for Microwave Optomechanics Implemented in a Nuclear Demagnetization Cryostat[END_REF][START_REF] Teufel | Sideband cooling of micromechanical motion to the quantum ground state[END_REF] which could allow this device to access the strong coupling regime.

Phonon-cavity force effects on mechanical damping rate. In optomechanical systems, the cavity force has been implemented to decrease mechanical damping rate in order to improve sensing resolutions, through pumping the coupled cavity at its sideband. [START_REF] Pan | Radiation-pressureantidamping enhanced optomechanical spring sensing[END_REF] Our device gives more degrees of freedom and provides an opportunity to observe the cavity force acting on both resonators, including the one acting as a phonon-cavity. Here, we exploit a large ac signal to pump the blue sideband of the phonon-cavity, and apply a small ac one to respectively excite mechanical displacements of the SiN or Al drum to be just above the noise floor of the measurement chain. As shown in Figure 5, the linewidth of both coupled membranes decreases with increasing the pump power (V 2 ac ), exhibiting the typical "optical anti-damping effect". [START_REF] Aspelmeyer | Cavity optomechanics[END_REF] We can use a single-tone driving scheme to model this effect in two capacitively coupled membranes based on Eq. 1, in which the phonon cavity is pumped at the frequency Ω 1 + β. Here, the β is a global frequency detuning, with β ∼ Ω 2 for the blue sideband and β ∼ -Ω 2 for the red sideband. The sideband scheme pumping the cavity gives rise to two satellite signals, corresponding to Stokes-and anti-Stokes scattering. [START_REF] Zhou | Electric circuit model of microwave optomechanics[END_REF] The mechanical susceptibility is altered due to the phonon-cavity force generated by interactions between the pump tone and these generated Stokes and anti-Stokes processes, yielding modulations of the mechanical damping rates. [START_REF] Aspelmeyer | Cavity optomechanics[END_REF][START_REF] Zhou | Electric circuit model of microwave optomechanics[END_REF] By employing a similar approach as the one applied to the electric circuit modeling of microwave optomechanics, [START_REF] Zhou | Electric circuit model of microwave optomechanics[END_REF] we therefore deduce the additional damping term γ 2opt of the Al drum (with index 2) due to the back-action force of the phonon-cavity, but also the additional damping term γ 1opt for the phonon-cavity (see details in SI), as shown in Eq.3. The additional damping terms make the initial mechanical damping rate γ 1(2) become γ 1(2)ef f =γ 1(2) +γ 1(2)opt ,

γ 2opt = |f p | 2 4m 1 m 2 d 2 Ω 1 Ω 2 γ 1 (Ω 2 + β) 2 + γ 2 1 4 - γ 1 (Ω 2 -β) 2 + γ 2 1 4 , γ 1opt = |f p | 2 4m 1 m 2 d 2 Ω 1 Ω 2 γ 2 (Ω 2 -2Ω 1 -β) 2 + γ 2 2 4 - γ 2 (Ω 2 -β) 2 + γ 2 2 4 . (3) 
In our measurement of a blue sideband pumping scheme with β=Ω 2 , Eq.3 demonstrates the fact that the effective damping rate of the Al drum γ 2ef f is inversely proportional to the initial damping rate of the coupled phonon-cavity, γ 1 , in accordance with the "optical damping effect" in an optomechanical system. While conversely, for the damping rate of the phonon-cavity,

γ 1ef f is ∝ 1/γ 2 . If we consider the experimental condition Ω SiN , Ω Al ≫ γ SiN , γ Al , Eq. 3 leads to γ 1ef f /γ 2ef f ≈ γ 1 /γ 2 .
In our measurement, slopes of the linewidth versus V 2 ac can be obtained from the linear fit of the measurement results shown in Figure 5, for both membranes. The ratio between these slopes gives ≈11.8, which is in extremely good agreement with the value of γ SiN /γ Al ≈12.0 expected from our analytic model.

In conclusion, we have built a "phonon-cavity" optomechanical analogue, made of two distinct electrostatically coupled nano-mechanical resonators. Following the concept of phononcavity, we manipulate the electromechanical energy transfer between the modes (in the form of phonons) to create destructive or constructive interferences that control the signal propagation, leading to electromechanically induced transparency and amplification. By exploiting sideband pumping techniques, anti-damping effect has also been demonstrated in both coupled mechanical objects, which is potentially useful for sensing applications. This device scheme is compact for integration and manipulations, which could make it an ideal platform for exploring phonon based multi-function systems through combining signal processing and sensing functions, and enriching optomechanical systems. Besides, parametric coupling model is built, which captures optomechanical features and provides theoretical analyses that quantitatively fit our measurement results. These investigations establish connections between a setup with two directly coupled movable objects and a standard optomechanical system in the classical regime that can be further extended to other parametrically coupled systems (e.g. electrical circuit modeling of optomechanics [START_REF] Zhou | Electric circuit model of microwave optomechanics[END_REF] ) and be developed to facilitate today's quantum engineering. 

Ẍ1 + γ 1 Ẋ1 + Ω 2 1 X 1 = V ac V dc d m 1 C g0 1 - 2(X 2 -X 1 ) d , Ẍ2 + γ 2 Ẋ2 + Ω 2 2 X 2 = V ac V dc d m 2 C g0 -1 + 2(X 2 -X 1 ) d .
(S.2)

Here, the γ 1,2 is the mechanical damping rate, the m 1,2 is the effective mass, and C g0 is the initial capacitance between two membranes separated by a distance d. The driving force of the equation since it cannot drive resonantly the modes; note however that this term can be employed to tune the resonance frequencies. 1 We shall not refer to this possibility in the present work.

F 1,2 ( 
To demonstrate phonon-cavity in a two-tone driving scheme, the membrane having the higher resonance frequency is chosen as phonon-cavity (with index 1). The other coupled mechanical resonator with the lower resonance frequency is marked with index 2. We exploit one driving tone with frequency Ω d to weakly probe one of the coupled membranes around Ω 1 or Ω 2 and the other one with frequency Ω p to pump the phonon-cavity at its sideband ∼ Ω 1 ±Ω 2 . Therefore, we also write V ac in the form of V ac (ω p , ω d ) = µp 2 e -iΩpt + µ d 2 e -iΩ d t +c.c. The Eq.S.2 can be analytically solved in the rotating frame through looking for the displacement driven by the probe signal, X 1(2

) (t)= x 1(2) (t) 2 
e -iΩ d t + c.c and the displacement of the other coupled membrane generated by the frequency mixing between the probe and the pump signals,

X 2(1) (t)= x 2(1) (t) 2 
e -i(Ωp∓Ω d )t + c.c. The x 1(2) is the slowly varying complex amplitudes of mechanical displacements.

First, we drive the phonon-cavity at the frequency with small amplitude around its resonance frequency Ω 1 with the frequency detuning δ, Ω d =Ω 1 +δ. (a) Pump the photoncavity at its red sideband with the frequency ∆ detuned from Ω

1 -Ω 2 , Ω p =Ω 1 -Ω 2 +∆. Based S3 on an approximation that Ω 2 1 -Ω 2 d ≈ 2Ω 1 (Ω 1 -Ω d )
, the analytical solution of Eq.S.2 gives

x 1 = f d 2m 1 Ω 1 1 1 χ 1 - |fp| 2 χ 2 4m 1 m 2 d 2 Ω 1 Ω 2 , x 2 = - f * p 2m 2 Ω 2 x 1 d χ 2 (S.3) (b)
For pumping the photon-cavity at its blue sideband at the frequency Ω p =Ω 1 +Ω 2 +∆, it

arrives x 1 = f d 2m 1 Ω 1 1 1 χ 1 + |fp| 2 χ 2 4m 1 m 2 d 2 Ω 1 Ω 2 , x * 2 = f * p 2m 2 Ω 2 x 1 d χ 2 (S.4)
Here, we define the susceptibility of the phonon-cavity χ 1 and the mechanical susceptibility χ 2 corresponding to both red and blue sideband pumping the phonon-cavity. ℏΩp , generated by the pump tone. Then, Eq.S.4 becomes:

χ 1 = 1 -δ -i γ 1 2 , χ 2 = 1 ∆ -δ -i γ 2
x 1 = f d 2m 1 Ω 1 1 χ -1 1 ± n p g 2 0 χ 2 , (S.6)
where "-" and "+" symbols correspond to "red" and "blue" sideband pumping scheme.

Second, we probe the coupled membrane at the frequency around its resonance frequency Ω 2 with the frequency detuning δ, Ω d =Ω 2 +δ. Similarly, an approximation of Ω 2 2 -Ω 2 d ≈ S4 2Ω 2 (Ω 2 -Ω d ) has been made. For pumping the photon-cavity at its red sideband, the analytical solution of Eq.S.2 gives

x 2 = - f d 2m 2 Ω 2 1 χ -1 2 -n p g 2 0 χ 1 , x 1 = - f * p 2m 1 Ω 1 x 2 d χ 1 , χ 1 = 1 -∆ -δ -i γ 1 2 , χ 2 = 1 -δ -i γ 2 2 .
(S.7)

For the blue sideband pumping, it arrives

x 2 = - f d 2m 2 Ω 2 1 χ -1 2 -n p g 2 0 χ * 1 , x * 1 = - f * p 2m 1 Ω 1 x 2 d χ * 1 , χ * 1 = 1 δ -∆ + i γ 1 2 , χ 2 = 1 -δ -i γ 2 2 .
(S.8)

Analytical calculation for single-tone sideband pumping scheme: analogy to optomechanical damping effect Here, we define the phonon-cavity is sideband pumped at Ω p = Ω 1 + β, where β is the frequency detuning from the resonance frequency of the phonon-cavity Ω 1 . The mechanical displacement of the coupled membrane (with the index 2) is written as x 2 (t) = 1 2 δx 2 (t)e -iΩ 2 t + c.c, where the complex amplitude of δx 2 (t) is the Brownian motion of the the membrane(2). 5 The terms where motion x 2 (t) multiplies pump amplitude in Eq.S.2 generate harmonics at Ω n = Ω p + nΩ 2 , with n ∈ Z. The solution can be found in the form of the ansatz, Both expressions of Eq.S.12 and Eq.S.13 refer to "optical damping effect" and "optical spring effect" in optomechanics. The f cav corresponds to the phonon-cavity force, originating from energy confined in the capacitor that consistsof two capacitively coupled membranes.

x(t) =
χ 2 (Ω) = 1 2m 2 Ω 2 1 (-Ω -i γ 2 2 ) + Σ , Σ = |f p | 2 4m 1 m 2 d 2 Ω 1 Ω 2 ( Ω 2 + β -i γ 1 2 (Ω 2 + β) 2 + γ 2 1 4 - Ω 2 -β -i γ 1 2 (Ω 2 -β) 2 +

S6

Using same method, we could get the dynamical backaction effects on the phonon-cavity,

γ opt(cavity) = n p g 2 0 γ 2 (Ω 2 -2Ω 1 -β) 2 + γ 2 2 4 - γ 2 (Ω 2 -β) 2 + γ 2 2 4
,

δΩ 1 = n p g 2 0 Ω 2 -2Ω 1 -β (Ω 2 -2Ω 1 -β) 2 + γ 2 2 4 + Ω 2 -β (Ω 2 -β) 2 + γ 2 2 4
.

(S.14)

  (a). The measurement setup is schematically depicted in Figure1 (b). Mechanical motions of both electromechanical resonators can be independently excited by passing RF signals V ac combined with dc voltages V dc to generate an electrostatic driving force. All the measurements are performed at RT, under vacuum (∼ 10 -6 mbar) to minimize air damping. Figure1 (c)shows linear responses of both Al drum and SiN drum resonators, for their fundamental modes. For the Al drum, the resonance frequency is Ω Al /(2π) ≈ 2.95 MHz with a quality factor Q Al ≈ 358. A finite element simulation is consistent with a low tensile stress in the Al film ∼40 MPa. The SiN drum, a high-stress thin membrane, vibrates at high frequency Ω SiN /(2π) ≈ 11.792 MHz with a high quality factor Q SiN ≈ 1.8×10 4 . In the experiment, we take the SiN nanomechanical resonator as a phonon cavity, as Ω SiN > Ω Al . It presents an energy leaking rate much smaller than that of the coupled Al drum, thus contrary to standard optomechanical systems.

Figure 1 :

 1 Figure 1: (a) Above, a scanning electron microscope (SEM) image of an Al drum resonator, ≈ 550 nm in thickness, which is suspended on top of a SiN circular membrane covered with an Al thin film. 28 The Al drum is designed to have a "X"-shaped clamping structure covering ∼50% of the circumference. Below, a magnified SEM image of the vacuum gap region marked by the green box in the above image. The distance between the Al drum and the SiN one is d ≈ 600 nm. At the bottom, an optical image of a SiN drum resonator covered with an Al thin film, before the Al drum was fabricated on top of it. There is no physical connection between the two drums. More details of device fabrication are shown in SI: Device fabrication and basic mechanical properties (b) Schematic diagram of the measurement setup. Both electromechanical resonators are driven by low frequency signals combined with RF and dc signals. The mechanical displacement is imprinted in the reflected microwave signals and read out by a lockin amplifier through frequency down-conversion. 28 The inset schematic shows a cross-sectional view of the device structure. (c) Linear resonance response of the Al drum resonator (upper) and SiN drum resonator (lower), which are measured at V dc =2 V, V ac =2 mV p and 0.2 mV p respectively. The inset figures show the corresponding mechanical mode shapes obtained from finite element simulations.

Figure 2 :

 2 Figure 2: Diagram of the red sideband pumping scheme of the phonon-cavity SiN drum Ω p =Ω 1 -Ω 2 +∆, while probing (a) the Al drum at frequency Ω d = Ω 2 + δ and (b) the SiN drum at frequency Ω d = Ω 1 + δ.For a blue sideband pumping scheme Ω p =Ω 1 +Ω 2 +∆, the Ω p arrow therefore is above Ω 1 , detuned by Ω 2 (not shown). < 1 > corresponds to the probe and the pump tone frequency up-conversion process in (a) and down-conversion process in (b), which excites the un-probed mechanical vibrations marked as dashed grey arrows. < 2 > feed back process of the generated phonons, corresponding to the frequency down-conversion process in (a) and up-conversion process in (b). An interference is created between these fed back phonons marked as dashed blue arrows and the initial probe signal marked with green arrows. Simulated mechanical response of (c) the Al drum and (d) the SiN drum, corresponding to the red and blue sideband pumping of the phonon cavity (see Ω p in legend). Details of formula derivation are shown in the SI. The gray curves are the mechanical responses when there is no pump tone, n p =0. Both blue and red curves are computed with n p g 2 0 =γ 2 γ 1 /7, f d /(2m 2 Ω 2 )= f d /(2m 1 Ω 1 ), and ∆=0. Besides, we also consider γ Al ∼ 10 γ SiN in all simulated mechanical responses, including the case of no pump tone.

20 Figure 3 :

 203 Figure 3: Mechanical response of the Al drum when the phonon-cavity is pumped at its red sideband at a frequency Ω p /2π = Ω 1 /2π -Ω 2 /2π -2.5 kHz with an ac pump amplitude V ac (Ω p ) = 100 mV p . These curves were measured with different probe ac voltages µ d applied to the Al drum, from 0.5 mV p to 2.0 mV p . The δ is the probe frequency detuning from the resonance frequency of Al drum, Ω d = Ω 2 + δ. When the detuning δ matches ∆ = -2.5 kHz, a clear dip is visible (arrow, see text).
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 4 Figure 4(c) and 4(d) show the simultaneous measurement results of the electromechanical responses of the probed and the unprobed membranes, in which the phonon-cavity is driven at a frequency Ω d =Ω 1 + δ and is pumped at its blue sideband Ω p =Ω 1 + Ω 2 + ∆. Figure 4(c) clearly shows a constructive interference result as the probed signals have been amplified

Figure 4 :

 4 Figure 4: Electromehanically induced transparency and amplification in two capacitively coupled membranes. In a red sideband pumping scheme, (a) electromechanical response of the phonon-cavity measured with driving amplitudes V dc = 4 V, V ac (Ω d ) = 1 mV p , V ac (Ω p ) = 70 mV p , and probed at Ω d = Ω 1 + δ; (b) mechanical response of the Al drum measured with driving amplitudes V dc = 2 V, V ac (Ω d ) = 3 mV p , V ac (Ω p ) = 100 mV p , and probed at Ω d = Ω 2 + δ. In a blue sideband pumping scheme, (c) the phonon-cavity response obtained with driving amplitudes V dc = 4 V, V ac (Ω d ) = 0.7 mV p , V ac (Ω p ) = 70 mV p , and probed at Ω d = Ω 1 + δ; (d) simultaneously measured the corresponding spectra at the frequency Ω p -Ω d . The spectra correspond to the process < 1 > marked in Figure 2 (b), in a blue sideband pumping scheme. The ∆ is the frequency detuning regarding the pump tone, with Ω p =Ω 1 ± Ω 2 +∆ for a red or blue sideband pumping scheme. (e)-(h) Simulation results for the measurements shown in (a)-(d), which were performed by using the theoretical model described in Eq.1 and all experimental parameters mentioned above.

Figure 5 :

 5 Figure 5: In a blue sideband pumping scheme Ω p = Ω 1 + Ω 2 , the linewidth of the Al drum and the SiN drum are decreasing as a function of the ac pump power [V 2ac (Ω p )], as shown in black squares. The dc bias is V dc = 4V, the probing voltage V ac (Ω d ) ≈ 500 µV for the Al drum and the probing voltage V ac (Ω d ) ≈ 200 µV for the SiN drum. Red lines are linear fits of the data (see text). The white squares with blue edges are calculation results based on our model and experimental parameters mentioned above. There is a small offset between the measurement and calculation results, which could be induced from inaccuracy in the device parameters, e.g. d, m 1 , and m 2 .
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 2521211 The f p = C g0 V dc µp d and f d = C g0 V dc µ d d are complex amplitudes respectively corresponding to the pumping and driving force. To have analogues of optomechanical system, we define thecoupling strength as G = ∂Ω 1 ∂X 2 ≈ ∂Ω 1 ∂Cg ∂Cg ∂X 2 ≈-Ω 1 2d. It gives single phonon coupling strength g 0 =G ℏ 2m 2 Ω 2 , where ℏ 2m 2 Ω 2 is the zero-point fluctuations of the coupled membrane with resonance frequency Ω 2 . Therefore, the term of |fp| m 2 d 2 Ω 1 Ω 2 can be re-written as n p g 2 0 through making a definition of the phonon number n p ≈ 2|fp|

2 f p δx * 2 2 --iΩ -γ 1 + 2 f p δx 2 m 1 d 1 Ω 2 1 -Ω 2 + -iΩ + γ 1 +

 222121221 +∞ n=-∞ δx(t) 2 e -i(Ωp+nΩ 2 )t + c.c. (S.9) S5 In this work, we are interested only in schemes of n = ±1, corresponding to the "down" and "up" sideband of the pump signals at the frequency Ω -= Ω p -Ω 2 and Ω + = Ω p + Ω 2 . The solution of the phonon-cavity motion equation in Eq.S.2 is given by x -= e -iΩ -t c.c, x + = e -iΩ + t c.c. (S.10) It yields an extra force, f cav = fp d x * -+ f * p d x + +c.c, biasing on the membrane(2), which modifies the initial mechanical susceptibility to become

γ opt γ opt = n p g 2 0 γ 1 (Ω 2 + β) 2 + γ 2 1 4 - γ 1 (Ω 2 -δΩ 2 = -n p g 2 0β + Ω 2 (Ω 2 + β) 2

 12241222222 of Σ modifies the mechanical damping rate γ 2 , yielding additional damping of Σ contributes to a frequency shift of Ω 2 ,

  t) is modeled as a simple parallel plate capacitor, and the force is truncated at the second order Taylor expansion of theC g (x), ≈ C g0 (1 -x d + x 2 d 2 ), with x(t)=X 2 (t) -X 1 (t)In the Eq.S.2, an approximation 2V dc V ac + V 2 ac ≈ 2V dc V ac has been made by considering a general case in measurements: V dc ≫ |V ac |. The static contribution V 2 dc has been dropped
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Device fabrication and basic mechanical properties

The device, measured in this work, consists of a SiN membrane drum resonator capacitively coupled to an Al drum. The device fabrication process starts with a substrate covered with a stoichiometric SiN thin film (80 nm in thickness) having ∼1 GPa tensile stress.

Circularly symmetric holes, with 300 nm in diameter, are patterned on its top by using electron beam lithography. In order to release SiN drum from the substrate through these holes, reactive iron etching is used to remove the SiN layer, followed by a XeF 2 selective etching process to partly remove Si substrate. Then, about 25 nm Al thin film is deposited on SiN drum as a conductive layer. An Al drum resonator is fabricated by using PMMA (polymethyl methacrylate) resist as sacrifice layer through soft-bake and reflowed process.

S1

The Al drum is patterned by using MMA (methyl methacrylate) and PMMA resist through using EB lithography, followed with Al deposition and lift-off process. 1 To verify whether the plate or membrane model is suitable for our drums, we evaluate the ratio between the tension in the drum and its bending rigidity, σ2πhR/(D r /R), where σ2πhR is the tension with the drum and D r = Erh 3 12(1-v 2 ) is the flexural rigidity in the plane of the drum, v is the Poisson's ratio, h is the thickness of the film, E r is Young's modulus, and R is the radius of the drum. 2,3 For the SiN drum, by using parameters of σ ∼ in the range from 0.8 GPa to 1.0 GPa, R = 18 µm, h = 80 nm, v ∼0.3, E r = 240 GPa (for SiN), the value of σ2πhR/(D r /R) will be in the range from 1.1 4 to 1.4×10 4 , exhibiting the tension-dominant property. Therefore, SiN drum follows membrane model. While, for our Al drum, it gives ∼26 by using device parameters of σ ∼ 15 MPa, 4 R = 20 µm, h ∼ 550 nm, v ∼0.3, and E r = 69 GPa (for Al). Comparing with the SiN drum, this Al drum approaches to the plate model, but is still a membrane.

Analytical calculation for two-tone driving scheme

This simple device structure allows to consider two parametrically coupled electromechanical resonators as a single capacitor C g (X 1 , X 2 ) consisting of two parallel and movable membranes. The mechanical displacement of each membrane is described by X 1 (t) and X 2 (t) resonating at the frequency Ω 1 and Ω 2 , with Ω 1 > Ω 2 . We therefore model these two coupled drums in the linear response regime, driven by an electrostatic force

C g (X 1 , X 2 ) , (S.1) via the following equations of motion for the displacement X 1 (t) and X 2 (t),