
HAL Id: hal-03651209
https://hal.science/hal-03651209

Submitted on 26 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beyond Modelling: An Integrated Environment
Supporting Co-Execution of Tasks and Systems Models
Eric Barboni, Jean-François Ladry, David Navarre, Philippe Palanque, Marco

Winckler

To cite this version:
Eric Barboni, Jean-François Ladry, David Navarre, Philippe Palanque, Marco Winckler. Beyond
Modelling: An Integrated Environment Supporting Co-Execution of Tasks and Systems Models. 2nd
ACM SIGCHI symposium on Engineering interactive computing systems (EICS 2010), ACM SIGCHI :
Special Interest Group on Computer-Human Interaction, Jun 2010, Berlin, Germany. pp.165-174,
�10.1145/1822018.1822043�. �hal-03651209�

https://hal.science/hal-03651209
https://hal.archives-ouvertes.fr

Beyond Modelling: An Integrated Environment Supporting
Co-Execution of Tasks and Systems Models

Eric Barboni, Jean-François Ladry, David Navarre, Philippe Palanque, Marco Winckler
Institute of Research in Informatics of Toulouse (IRIT), University of Toulouse

{barboni, ladry, navarre, palanque, winckler}@irit.fr

declarative notations describing user knowledge and
activities) to more concrete ones (i.e. procedural notations
describing temporal relationships and the expected system
feedback [5]). System models describe important aspects of
the user interface such as the set of states the system can be
in, the actions the system is able to perform, the events to
which system is able to react and the state changes that
occur when events or actions are performed. More
generally, system models aims at helping designers to build
the application before it is implemented. These two models
can be embedded in the development process of interactive
systems in a complementary way as they correspond to
different views on the same world (one is centred on user
behaviour, the other is centred on system’s behaviour).

As tasks models and system models are needed to support
the design of usable and reliable interactive systems, one
should expect tools and techniques for checking whether if
these models match. For example, both models should be
cross-consistent, which means both descriptions refer to the
same system human-computer system. This requires
checking if, for each user action appearing in the system
model, there is an actual counterpart in the task model, and
each system output provided to the user has been
represented and is expected by the user in the task model.
This checking is particularly important when the models
were built by different people and/or at different moment in
time within the design and development process. Indeed, in
real case studies it happens that sometimes the task models
will be performed first while in other cases they might be
built after the system model has already been constructed.
In order to be able to support such a flexible design and
development process, we need an approach which does not
embed constraints on what is assumed to be available in
which phase of the system design.

This paper presents such an approach and focuses on the
possible articulations of task models and system models.
We present how these two views can be integrated at the
model level and additionally at the tool level. We focus on
the latter that raises new challenging issues but also
provides high benefits. Next section describes an overview
of previous research work devoted to the integration of
system models and task models. From that work we
identify the requirements for articulating tasks and system
models and we propose an approach fully supported by
open source tools that meet them.

ABSTRACT

This paper focuses on the articulations of task models and
system models. Tasks models are meant to be used by human
factor specialists whilst system models are supposed to be
produced by software engineers. However, tasks models and
systems models represent two different views on how users
interacting with a computing system to reach a goal. This
paper presents an integration framework aiming to take full
advantage of task models and system models that have been
developed initially in a separated manner and how these two
views can be integrated at the model level and additionally at
the tool level. The main contribution of the paper lies in the
definition of such integration at the tool level to be used at
runtime (while the user is operating the system). Indeed,
thanks to this integration contextual help can be offered to
the users supporting the construction of the mental bridge
between what they have to do (defined in the tasks model)
and what the interactive system allows (defined in the system
model). The approach, the tools and the integration are
presented on a case study of a Weather Radar System
(WXR) embedded in aircraft cockpits.

Author Keywords
Task and systems models, models integration, tool support.

INTRODUCTION
In the Human-Computer Interaction (HCI) field, there is
industrial and academic consensus on the importance and
usefulness of building task and system models in the design
and development process of interactive systems. Task
models are required as they allow expressing users’ goals
and activities that should be performed to reach such goals.
There are various notations (e.g. CTT [17, 18], MAD [22])
for modelling tasks, ranging from very abstract (i.e.

STATE OF THE ART
Several tools have tried to deal with the integration of task
models and system models. Mobi-D [19] and Trident [3]
are the first generation of tools aiming at using information
contained in models to support design and development of
user interfaces. Whilst in Mobi-D it is possible to combine
information contained in task and domain models to derive
the user interface, in Trident abstract interaction description
and guidelines are used to generate platform independent
user interfaces. Much work has been also devoted to the
generation of one model from another one such as in [8]
where the authors generates the system model from a task
model, or in [7] where the authors do the opposite.
However, as discussed in [12], tasks models lack of much
necessary information to reconstruct completely the system
models. Some authors [6] [20] propose recreate the dialog
part of the system models by compounding several models
and applying transformation rules according to a Model-
Driven Approach (MDA). Notwithstanding, without
designer intervention transformation rules often lead to
unrealistic descriptions of the user activity [23].

Whilst previous attempts focused on producing models,
some authors investigated techniques for measuring tasks
and system compatibility [21]. For example, in [16] authors
check the compatibility of UAN tasks translated into Petri
nets and system models described in Petri nets. In [15] it
was presented the use of CTT for abstract task modelling
and high level Petri nets for low-level task modelling. In
that paper the low-level task model was used in order to
evaluate the “complexity” of the tasks to be performed, by
means of performance evaluation techniques available from
Petri net theory. In order to provide a more synergistic
integration of task models and system models, Palanque et
al. [13] have introduced a method and a tool support for
playing scenarios extracted from task models (based on
CTT) into system models (based on the Interactive
Cooperative Objects (ICOs)). That approach enables to
check correspondence and completeness by means of
concrete scenarios that are a kind of "lingua franca" to
ensure actual correspondence between what has been
described within the models and what has been described in
the system model. The main drawback is that compatibility
between task models and system models requires scenarios
previously extracted from task models making that
integration asynchronous and thus not exploitable while the
system is in operation. In [9] the same authors envisioned
that work so that the simulation of system was controlled
by the on-the-fly execution of task models.

More recently, Blumendorf et al. [2] argued that a MDA
framework could support co-executing of models, ensure
consistency and bi-directional execution of models (i.e.
changes in one model trigger changes in all counter models
in the framework). However, the links and mappings
necessary for executing task models and system models
together are not fully described. So far, no tool supports
cross-execution of models as proposed in [2].

REQUIREMENTS FOR ARTICULATING TASK MODELS
AND SYSTEM MODELS
The successful integration of task and system models relies
on three main types of requirements:
1. Expressiveness power of the task models, including:
 The description of artefacts used to perform a task

should be close to the representation of objects
manipulated by the system;

 User tasks should include elements of the behaviour
expected from the system; e.g. user providing an input
to the system, requesting a feedback or any kind of
system output, or both actions at the same time.

 Task models should be able to express both qualitative
temporal relationships (e.g. task ordering) and
quantitative temporal relationships (e.g. amount of time
required to perform a task). These relationships are
needed to describe time constraints applied during
system execution;

 It must be possible to describe tasks models as unities
that cooperate rather than monolithic models. This
aspect would support a better mapping between tasks
and different system’s modules.

2. Expressiveness power of the system models, including:
 The formal description of both the "input" aspects of the

interaction (i.e. how user actions impact on the inner
state of the application, and which actions are enabled at
any given time) and its "output" aspects (i.e. when and
how the application displays information relevant to the
user)

 It should be able to represent all aspects of interactive
systems (dynamic instantiation, multimodal,
collaborative …)

 Models produced should be executable, so that system
models can be used as a prototype of the expected final
application.

3. Availability of tool support that should:
 Be open source, or at least provide a powerful API for

services enabling to control the models; this is critical to
make it possible for the research community to
contribute, extend and re-use such tools;

 Provide visual feedback on the current execution; this is
important too in order to support the assessment of the
adequacy of the task model with users’ real tasks.
Indeed, without tool support for simulation it is very
cumbersome to understand how the model behaves;

 Supports simulation of scenarios which supports the
compatibility assessment activities;

 Implement an API observed/observer of events. This is
mandatory for connection task modelling tools and
system modelling tools.

Many formal notations have been proposed for modelling
interactive systems [4], however only a few can represent

fine-grained system behaviour which is a requirement
allowing cross-execution of system and tasks models. ICO
[11, 12] is such as a formal description technique that fulfils
all the requirements related to system models requirements.
Moreover, it is provided with an open source development
environment called PetShop [1] that covers the requirements
identified earlier for the integration with task models.

Current task modelling techniques partially fulfils the above
requirements. Moreover most of the current available tools
are hardly extensible. We thus have proposed and defined the
HAMSTER notation which is briefly introduced hereafter.
The implementation of HAMSTERS was done with the
objective of making it easily extendable and it results in a
CASE tool that contributes to the engineering of task models.
In a nutshell, HAMSTERS is open source, featuring a task
simulator and provides a dedicated API for observing editing
and simulation events.

The HAMSTERS task modelling technique
HAMSTERS is heavily inspired by existing notations and
tools, including concepts such as abstract, system, user and
interactive tasks (see Figure 1). Notwithstanding it makes
explicit which tasks requests user input and/or system output.
a) Abstract Task b) User Tasks

c) System Task d) Interactive Task

Figure 1. Illustration of the task type within HAMSTERS

HAMSTERS offers two types of relationships between tasks:
the first one describes how tasks are related to other tasks
and the second one represents the information flow between
tasks. Objects (defined through a set of attributes) can be
attached to tasks through relationships (as illustrated by
Figure 2 where the PIN entered in the first task is conveyed
to the next task by means of input and output ports).

Figure 2. Tasks relationships in HAMSTERS

Similarly to MAD [22] and CTT [17, 18], qualitative time is
expressed using Lotos-like temporal operators while
quantitative time is represented by expressing task duration
(such as with CTT) and delay before tasks availability.

SYNERGY BETWEEN TASK AND SYSTEM MODELS
Interactive systems engineering can involve the production
of various models such as task model, user model, domain
model, dialog model, training model … that should not be
considered independently as they usually co-evolve and
represent different views of the same world. When formal
description techniques are used, the process of verification
and modification of models is iterative and iteration is
conditioned by the result of formal verification. This allows
proofs to be made on the system model in addition to
classical empirical testing once the system has been
implemented. Modelling systems in a formal way helps to
deal with issues such as complexity, helps to avoid the need
for a human observer to check the models and to write code.
It allows reasoning about the models via verification and
validation and also to meet three basic requirements notably:
reliability (generic and specific properties), efficiency
(performance of the system, the user and the two together)
and finally to address usability issues (by means of tasks
models for instance to assess effectiveness). Figure 3
presents an example of development process taking into
account the integration of system and task models.

As stated above, such a process should be extended to take
into account other types of models (e.g. training, requirement
…) and this extension is already part of our current work,
while the expression and verification of properties has been
previously studied for formal notations in the field of
interactive systems [4].

Preliminary
system model i

th
 iteration

Formal system modelling
Preliminary

task model

Quantitative
analysis

Check
Objectives

P roposals for
improving the
system model

Ok
Not Ok

Maintain task and system
models consistency

Towards
Usability
Testing

i
th

 iteration

Formal task modelling

Figure 3. The iterative model-based design life cycle using
both tasks and system models

Principles
Making possible the integration between task and system
models at tool level requires identifying basic bricks from
both notations and supporting tools. As stated in [9] the
integration at the tool level is divided into two parts: the first
is the editing of the correspondence between the two models
while the second consists in a co-simulation of these models.

Correspondence between models
On the task side, the integration relies on the HAMSTERS
environment that provides a set of tools for engineering task
models (editing and simulation of models). Similarly, on the
system side, the integration relies on the ICO environment
(PetShop) that provides means for editing and simulating the
system model:

 From the tasks specification we extract the set of
interactive tasks (input and output tasks) representing a
set of manipulations that can be performed by the user
on the system and outputs from the system to the user.

 From the ICO specification we extract the activation and
rendering function that may be seen as the set of inputs
and outputs of the system model.

The principle of editing the correspondences between the
two models is to put together interactive input tasks (from
the task model) with system inputs (from the system model)
and system outputs (from the system model) with interactive
output tasks (from the task model). Setting up this
correspondence may show inconsistencies between the task
and system model such as interactive tasks not supported by
the system or rendering information not useful for the task
performance. The correspondence editing process is
presented on the top part of Figure 4 where each tool feeds
the correspondence editor with information from the API in
order to notify it with modifications are done both in the task
model and in the system model.

Figure 4. Global architecture of the framework for the co-
execution of task and system model.

Co-execution of task and system models

Our framework allows the co-execution of task and system
models controlled by both the execution of the system model
and the execution of the task model as shown in Figure 4
(where the top part represents the correspondence edition).

Figure 4 highlights the two way communication allowed by
the services embedded within the four APIs:

 Through an API, HAMSTERS notifies the Simulation
controller of changes in the current scenario.

 Through another API, the Simulation controller fires the
corresponding activation adapter (according to the
correspondence provided by the Correspondence editor).

 Through an extended API, the PetShop interpreter
notifies the Simulation controller of the evolution of the

current execution of the system model (notifications
comes from both rendering and activation functions).

 Through an extended API, the HAMSTERS Simulation
controller performs the corresponding task (according to
the correspondence provided by the Correspondence
editor), simulating the user action.

When the task simulator controls the execution of the system
model, the framework behaves as follows: while building a
scenario, if the task performed within the scenario is one of
the identified interactive input tasks within the
correspondence editor, an event is sent to the activation
function (simulating the corresponding user event on the user
interface), resulting in a user action on the interactive
application (from the execution of the model). As a scenario
describes a sequence of tasks and as we are able to define a
correspondence between an interactive input task and an
activation adapter, it is now possible to convert the scenarios
into a sequence of firing of event handlers in the ICO
specification. In other words, a scenario performed from
these tasks can be converted into a sequence of firing of
event handlers that directly drive the execution of the ICO
specification in exactly the same way as user actions on the
user interface would have triggered the same event handlers.

Symmetrically, when the execution is controlled by the
execution of the system model, user actions are directly
linked to the corresponding tasks from the task model and
the user’s action on the user interface of the application
change the current state of the task model simulation.

CASE STUDY

To illustrate our approach, we use the example of an
interactive cockpit application (see Figure 5) called WXR
(for Weather Radar System).

Figure 5. Snapshot of the WXR application in civil
commercial aircrafts

The lower part of Figure 5 is dedicated to the adjustment of
the weather radar orientation (called tilt selection), while the
upper part allows the crew members changing the mode of
the weather radar (independently from the tilt selection).

Task modelling using Hamsters for WXR application
As shown in Figure 6, the high-level tasks for managing the
weather radar (i.e. “manage_WXR”) are decomposed into
two tasks, “setup” and “switch_off”. Task “setup” represents
the two activities of adjusting the weather radar orientation

and mode, while task “switch_off” may interrupt it at any
time. The two abstract tasks “change_mode” and
“manage_tilt_mode” are detailed in Figure 7 and Figure 8.
These two tasks are activated by the two cognitive tasks
“need_to_change_mode” and “decide_tilt_mode” to
represent the decision activity performed by the crew
members before interacting with the system. The
crewmembers can switch between five modes of the weather
radar itself (on, off, standby, test and focus alert, and task
“switch_off” as shown in Figure 6).

Figure 6. High-level set of tasks for weather radar
management.

In Figure 7, the task “change_to_On_mode” is detailed
whilst the other ones are folded (displayed as greyed out).

Figure 7. Detailed set of subtasks for "change_mode" task

The task “change_to_On_mode” encompasses the following
sub-tasks:

 Interactive input task “switch_to_On” represents the
crew members’ action on the system.

 System task “on_mode_update” represents the system
inner activity to take the mode switching into account.

 Interactive output task “verify_mode” models the fact
that crew members process system’s output to check
that their action has been taken into account.

As shown in Figure 8, the crew members may adjust the
orientation (the tilt angle) of the weather radar when required
(the main idea being to use this feature only if necessary as,
most of the time, the default behaviour is the correct one).
There are three possible modes for tilt angle selection: auto
adjustment, auto stabilization and setting up manually the tilt
angle (represented by the three tasks
“change_to_auto_mode”, “change_to_stabilization” and
“change_angle_manually”).

Figure 8. Subtasks for "manage_tilt_mode" abstract task

While the first two tasks are simple interactive input tasks,
changing the tilt angle manually implies four sub-tasks:

 Cognitive task “decide_angle_value” is the choice of a
value by the crew members.

 Interactive input task “insert_angle_value” is the
interaction for editing the value in the aircraft system.

 System task “update_angle_value” is the inner activity
of the system for checking the validity of the value.

 Interactive output task “verify_angle” provides crew
members with output from the system to check that the
entered value has been taken into account.

System models using ICO
WXR system was modelled using the ICOs formal notation
[11]. Hereafter we present the ICO modelling technique
including the dialog part and the presentation part (according
to arch architecture) and two functions (the activation and the
rendering functions) that are connecting these two parts.

Dialog part as an Interactive Cooperative Object
Figure 9 shows the entire behaviour of page WXR which is
made of two non connected parts:

 The upper part of the Petri net handles events received
from the 5 CheckButtons (see Figure 5 for the
presentation part). Even though they are CheckButtons,

the actual behaviour of that application makes it possible
to select only one of them at a time. The current
selection (an integer value from 1 to 5) is stored in the
token of place MODE_SELECTION and corresponds to
one the possible selected CheckButtons (OFF, STDBY,
TST, WXON, WXA). The token is modified by the
transitions (new_ms = 3 for instance) using variables on
the incoming and outgoing arcs as formal parameters.

 The Petri net in the lower part handles events from the 2
PicturePushButton and the EditBoxNumeric, changing
the state of the application. In the current state, this part
of the application is in the manual state (i.e. a token is in
place NOT_AUTO and a token is place
STABILIZATION_OFF). This configuration of tokens
is required in order for the edit box to be available to the
user (visible on the model as transition
change_Angle_T1 is in a darker colour).

Figure 9. Behaviour of the page WXR

Presentation part
In an ICO description, the presentation part corresponds to
the Logical Presentation, hidden by a set of rendering
methods (in order to render state changes and availability of
event handlers) and a set of user events, embedded in a
software interface.
Public interface WXR_PAGE extends ICOWidget {
 //List of user events.
 public enum WXR_PAGE_events {asked_off, asked_stdby, asked_wxa,
asked_wxon, asked_tst, asked_auto asked_stabilization, asked_changeAngle}
 //List of activation rendering methods.
 void setWXRModeSelectEnabled(WXR_PAGE_events, List<ISubstitution>);
 void setWXRTiltSelectionEnabled (WXR_PAGE_events,
List<ISubstitution>);
 //List of rendering methods.
 void showModeSelection (IMarkingEvent anEvent);
 void showTiltAngle (IMarkingEvent anEvent);
 void showAuto (IMarkingEvent anEvent);
 void showStab (IMarkingEvent anEvent);
}

Figure 10. Software interface of the page WXR from the user
application MPIA

Activation function
When considering WIMP interfaces, user system
interaction (inputs) only takes place through widgets. When
a user event is triggered, the Activation function is notified
and requires the ICO to fire the corresponding event handler
embedding the value received in the user event. When the
state of an event handler changes (i.e. becomes available or
unavailable), the Activation function is notified (via the
observer and event mechanism presented above) and calls
the corresponding activation rendering method from the
presentation part embedding the values from the event
handler.

Figure 11 shows the activation function for page WXR.

User Events Event handler Activation Rendering
asked_off Off setWXRModeSelectEnabled
asked_stdby Stdby setWXRModeSelectEnabled
asked_tst Tst setWXRModeSelectEnabled
asked_wxon Wxon setWXRModeSelectEnabled
asked_wxa Wxa setWXRModeSelectEnabled
asked_auto switchAUTO setWXRTiltSelectionEnabled
asked_stabilization switchSTABILIZATION setWXRTiltSelectionEnabled
asked_changeAngle changeAngle setWXRTiltSelectionEnabled

Figure 11. Activation Function of the page WXR

Each line in this table describes the three objects taking part
in the activation process. The first line, for instance,
describes the relationship between the user event ask_off
(produced by clicking on the CheckButton OFF), the event
handler off (represented in the model by transition off_t1)
and the activation rendering method
setWXRModeSelectEnabled from the presentation part.
More precisely:

 When the event handler off becomes enabled, the
activation function calls the activation rendering method
setWXRModeSelectEnabled providing it with data
about the enabling of the event handler. On the physical
interaction side, this method call leads to the activation
of the corresponding widget (i.e. presenting the
checkButton OFF as available to the user).

 When the button OFF of the presentation part is pressed,
the presentation part raises the event called asked_off.
This event is received by the activation function which
requires the behaviour part to fire the event handler off
(i.e. the transition off_T1 in the Petri net of Figure 9).

Rendering function
System user interaction (outputs) presents to the user the
state changes that occur in the system. The rendering
function maintains the consistency between the internal state
of the system and its external appearance by reflecting
system states changes on the user interface. Indeed, when the
state of the ICO changes (e.g. marking changes for at least
one place), the Rendering function is notified (via the
observer and event mechanism) and calls the corresponding
rendering method from the presentation part with tokens or
firing values as parameters.

ObCS Node name ObCS event Rendering method
MODE_SELECTION token_enter showModeSelection
TILT_ANGLE token_enter showTiltAngle
AUTO marking_reset showAuto
AUTO token_enter showAuto
AUTO token_remove showAuto
STABILIZATION_ON marking_reset showStab
STABILIZATION_ON token_enter showStab
STABILIZATION_ON token_remove showStab

Figure 12. Rendering Function of WXR page

Figure 12 presents the rendering function of the WXR
application in a table where each line features the objects
taking part in the rendering process. For instance, the first
line shows the link between the place MODE_SELECTION,
the event linked to this place (a token enters the place) and
the rendering method showModeSelection from the
presentation part component. It can be read as follows: when
a token enters the place MODE_SELECTION, the rendering
function is notified and the rendering method
showModeSelection is invoked with data concerning the new
marking of the place that is used as parameters of the
rendering method.

Demonstration of co-execution
In this section we illustrate the synergistic modelling
framework using the WXR case study. We present the
correspondence edition between the models and then the co-
execution of these models exploiting that correspondence.
Then we discuss validation and verification possibilities of
this framework.

The Correspondence editor
The edition of correspondences between the two models are
done by a dedicated editor (see Figure 13) making it possible
to put together interactive input tasks (from the task model)
with system inputs (from the system model) and system
outputs (from the system model) with interactive output tasks
(from the task model).

Figure 13. Snapshot of the correspondence editor

The left-hand side contains a tree structure with the relevant
items from both the task model and the system model
(interactive input and output tasks, activation and rendering
adapters). The case study only features one role (only one
task model) and only one ICO model; but the editor is able to

handle larger set of models at a time. The top right-hand side
is made up with two tables representing the current state of
the editing of the correspondence:

 The table on top represents the input correspondences
e.g. the link made between an input task and an
activation adapter (a user event). In the example, five
tasks are already connected to five user events (e.g.
“switch_off” is connected to user event “Off”).

 The bottom table represents the output correspondences
e.g. the link made between an output task and a
rendering adapter. In the example, two tasks are already
connected to two rendering events (“verify_mode” has
changed is connected to rendering event Token enters
SELECTION_MODE and “verify_angle” has changed
is connected to rendering event Token enters
TILT_ANGLE…).

The bottom right-hand part represents the current status of
the editing of correspondences. It is made up with a progress
bar showing the current coverage of task and system items
by the edited correspondences (i.e. the rate of used items: the
current editing of Figure 13 shows 14 items used among 26).
Below the progress bar, a set of warnings are displayed,
showing how many tasks and system items are not currently
used (for instance, in Figure 13, three).

At any time, the co-execution of models may be launched
(via a tool bar icon), even if correspondence editing is not
completed.

The co-execution monitoring interface
The execution of models in the framework can start either by
task models or system models. When the co-execution is
launched from the correspondence editing, a new set of
components allows to control and to monitor this co-
execution as presented by Figure 14 that can be decomposed
in three parts:

 The left-hand part is a set of tabs containing the ICOs
involved in the co-execution showing their evolution
during the execution (one tab per model).

 The central part contains on its top part a view of the
task model and at the bottom part the simulation
controller of HAMSTERS with an empty panel on its
right side that contains when necessary the means to
provide values for the task execution (i.e. numerical
values typed in a text field, or more complex objects
selected using a list box).

 The right-hand part contains a table featuring a logging
for events occurring during the execution and their
counter partner input or output correspondences.

Additionally, the window of the executed application
(WXR) is visible at the bottom of Figure 14, ready to react
to user events.

Figure 14. Snapshot of the co-execution monitoring interface

Task models execution controlling the system execution
The execution of a task model produces a sequence of tasks
including interactive (input and output) tasks. Non
interactive tasks are not related to the system execution as
they involve user without interaction with system or system
without feedback to the user. The correspondences identified
within the editor, make possible to convert the sequence of
interactive tasks into a sequence of user event triggering
within the ICO specification, controlling the system
execution as if the scenario played were a user.

For the case study, when the co-execution monitor starts, the
initial set of available tasks contains
“need_to_change_mode” and “decide_tilt_mode” (as shown
on Figure 15.a). Performing one of these two tasks is made
possible by double-clicking it or use the dedicated button.

a) available tasks b) unavailable tasks

Figure 15. Excerpt of the co-execution monitor featuring task
availability.

Cognitive task “decide_tilt_mode” means that the user
decides to setup the WXR orientation (such task is not
related to any user event). Performing this task makes
available the two interactive input tasks
“change_to_auto_tilt” and “change_to_stabilization” and the
cognitive task “decide_angle_value”.

The execution of the system model driven by the task model
is performed task after task within the HAMSTERS
simulation controller until it reaches the end of the scenario.

If no system item corresponds to one of the available tasks
then the co-execution monitor will display a warning (such
as illustrated by Figure 15.b where tasks
“change_to_stabilization” is available and corresponding
user event is disabled until the user press the CTRL button).
Such case could be normal as it would correspond to
sequence of actions forced by the system for safety purpose
for instance.

Figure 16. Excerpt of the co-execution monitor presented on
Figure 14 with object editing.

Task “decide_angle_value” has an output port that represents
the value the user wants to set the tilt angle with. Performing
this task activates the interactive output task
“insert_angle_value” that receives the tilt angle value
through its input port. If the corresponding user event for
task “insert angle value” is enabled (i.e. the editing of the tilt
angle using the edit box), performing the interactive task
requires runtime information. Such values may be system
values (values within the system model) or free values (such
as numbers). When performing such task, the co-execution
monitor provides means to enter or select the corresponding
value. The identification of the value type is done according
to the artefact description attached to the output port of the
corresponding interactive task within the HAMSTERS
model and the corresponding activation adapter. An example
of such execution is provided by Figure 16.

If none of the available task can be executed on the system
model, the simulation is stopped and an error is notified. The
simulation ends when there is a no longer available
interactive task.

Figure 17. Interaction between task model execution and
system model.

When system execution controls the task execution
A sequence of actions on the user application (played using
the ICO model) is able to control the execution of a task
model according to the edited correspondences, as each user
action may be related to an interactive input task (see Figure
17 where task “change_to_stabilization” is highlighted on
the task model after the user has pressed the button CTRL).

While interacting with the system, it is possible to point out
which task from the task model is performed. This makes it
possible to trace the system execution within the task model.
Ambiguity in pointing tasks may appear if there is more than
one task with the same name within the task model. In the
current design of the framework, when such ambiguities
appear, the co-execution monitor triggers warnings showing
the set of potential corresponding tasks.

This policy of co-execution allows knowing at any time
where a user is with respect to the described activity within
the task model. Knowing this, it is possible to provide the
user with a contextual help such as in [14].

Another possible use of the execution of task driven by the
system model could be to determine if going from one
interactive task to another (according to the system
execution) is possible, using path analysis on the task model.
An interesting output of such work is that it allows finding
inconsistencies such as sequences of user actions allowed by
the system model and forbidden by the task model.

DISCUSSION
While previous research activities done on the topic of
interactive systems modelling made ICO mature enough to
be the basis of the proposed framework, they pointed out the
need of an extension of current task modelling approaches
making possible the synergistic support of task and system
modelling activities. With Hamsters we propose a notation
and a tool to answer these needs, making it an independent
tool supporting task modelling activities, and enhancing it to
be part of the framework (by means of interactive input and
output tasks, explicit artifacts, dedicated API …).

The integration framework presented in this paper allows for
property checking during verification and validation phases
of the development process as described by Hix and Hartson
[5]. Validation phase relates to the question "do we have
modelled the right system?" while the verification phase
addresses the question "do we have modelled the system
right?" At notation and tool level, our approach provides the
first bricks for the validation and verification of the
synergistic exploitation of task and system modelling:

 It is possible to assess the structural compatibility
between models while editing the correspondences
between them.

 It is possible to verify if particular scenarios are playable
on the system model. This make it possible to highlight
or verify system behaviours that ensure the non
occurrence of particular tasks scenarios as this

impossibility could be required in the system (ex.
Getting card before getting cash using ATM to avoid
post completion errors or ensuring that an accident
scenario cannot reoccur). This work could be extended
to automatically extract scenarios from the task models
and assess automatically too their compatibility with the
system model.

 It is possible to execute the system model driven by the
simulation of the task model and it is possible to build
scenarios driven by the system execution, but, even if
the framework makes it possible, we did not present the
complete co-execution of the two models due to space
constraints. One of the possible use of such complete co-
execution could be to enhance the user providing
contextual help at runtime:

o While interacting with the system it is possible to
identify the current task in the task model, it is thus
possible to provide the user with information about
this task (for instance how many actions and which
actions are still required to reach the goal).

o A scenario from task model can drive the execution
of the system model, it is thus possible to extract
scenario that illustrates how to perform a task, and
play it on the system to interactively show to the
user how to achieve her goal (as training material
for instance).

Such model checking is part of the role of the
correspondence editor that notifies any inconsistency
between the HAMSTERS and the ICO specifications.

Amongst the advantages, such integration allows a real co-
evolution of the two models, as the execution of one tool
impacts the execution of the other tool. This integration can
provide designers with shorter iterations in the task and
system modelling process. It also represents an improvement
for the end user as the execution of the system should
support training and provide contextual help. As stated in
previous work [14], it thus allows the use the task model as
an input for providing the user support.

CONCLUSION AND FUTURE WORK
This paper has presented a tool supported approach for
bridging the gap between tasks and system views in the
design of interactive systems. To this end we have briefly
introduced a new notation called HAMSTERS for the
description of tasks models. For the system side we used the
ICO notation supported by the CASE tool PetShop.

While in earlier work [10] the bridge between task models
and system models was performed in an asynchronous way
by means of scenarios, the current paper has presented how
the full integration of two dedicated tools can be performed
and that it provides many benefits both for the verification of
the compatibility of the models and at runtime by supporting
users activity to reach their goals providing them with
contextual information.

The work presented here belongs to a longer term research
program targeting at the design of resilient interactive
systems using model-based approaches. Future work targets
at exploiting these two models to support the usability
evaluation of interactive systems and to provide task-based
training material in the field of satellite ground segments.

REFERENCES
1. Bastide, R., Navarre, D., and Palanque, P. 2002. A

model-based tool for interactive prototyping of highly
interactive applications. In CHI '02 Extended Abstracts
on Human Factors in Computing Systems. pp. 516-517.

2. Blumendorf, M., Lehmann, G., Feuerstack, S., and
Albayrak, S. 2008. Executable Models for Human-
Computer Interaction. In Proc. of DSV-IS 2008
Kingston, Canada. Springer LNCS v. 5136. pp. 238-251.

3. Bodart, F., Hennebert, A., Leheureux, J., and
Vanderdonckt, J. 1994. Towards a dynamic strategy for
computer-aided visual placement. In Proc. of the
Workshop on Advanced Visual interfaces (Bari, Italy,
June 01 - 04, 1994) at AVI '94. pp. 78-87

4. Dix, A. J., 1991 Formal Methods for Interactive Systems.
s.l: Academic Press. 0-12-218315-0.

5. Hix, D. and Rex Harston, H. 1993. Developing User
Interfaces: ensuring usability through product and
process. s.l. : Wiley, 1993. 978-0-471-57813-0.

6. Limbourg, Q., Vanderdonck J., Michotter, M., Bouillon,
L., Lopez-Jaquero, V., 2005. USIXML: A Language
Supporting Multi-path Development of User Interfaces In
proc. of EHCI-DSVIS 2004, LNCS 3425, pp. 200-220.

7. Lu S., Paris C., Vander Linden K. 1999. Towards the
automatic generation of task models from object oriented
diagrams. In Engineering for Human-Computer
Interaction, Kluwer academic publishers, Boston, 1999.

8. Lu S., Paris C., Vander Linden K., and Colineau N. 2003.
Generating UML Diagrams From Task Models. In Proc.
of CHINZ'03, Dunedin, New Zealand, 2003.

9. Navarre, D., Palanque, P., Barboni E. and Mistrzyk, T.
2007. On the Benefit of Synergistic Model-Based
Approach for Safety Critical Interactive System Testing.
In Proc. of TAMODIA 2007. (Toulouse, France),
Springer LNCS vol. 4849. pp. 140-154.

10. Navarre, D.; Palanque, P.; Bastide, R.; Paternó, F., and
Santoro, C. A tool suite for integrating task and system
models through scenarios. In DSV-IS'2001 (Glasgow,
Scotland, June 13-15, 2001). LNCS 2220. Springer; 2001

11. Navarre, D., Palanque, P., Ladry, J., and Barboni, E.
2009. ICOs: A model-based user interface description
technique dedicated to interactive systems addressing
usability, reliability and scalability. ACM TOCHI. V. 16,
4, 1-56

12. Navarre, D., Palanque, P., Winckler, M. Task Models and
System Models as a Bridge between HCI and Sofware
Engineering. In: Human-Centered Software Engineering
Software Engineering Models, Patterns and Architectures
for HCI. Springer, June 2009, pages 357-385.

13. Palanque, P., Bastide, R. Synergistic Modelling of Tasks,
Users and Systems Using Formal Specification
Techniques. Elsevier. Interacting With Computers 9 N. 2,
pp. 129-53, 1997.

14. Palanque, P., Bastide, R., Dourte L. Contextual Help for
Free with Formal Dialogue Design. In Proc. of HCI
International’93, Orlando, USA, 8-15 August 1993.

15. Palanque, P., Bastide, R. and Paternò, F. 1997. Formal
Specification As a Tool for the Objective Assessment of
Safety Critical Interactive Systems. In Proc. of
Interact'97, Sydney, Autralia, 1997, 323-330.

16. Palanque, P., Bastide, R. and Sengès, V. 1995. Validating
Interactive System Design Through the Verification of
Formal Task and System Models. In Proc. of EHCI'95,
Garn Targhee Resort, Wyoming, USA, August 14-18,
1995. Chapman et Hall, 1995.

17. Paternò F., Breedvelt-Schouten I., deKonig N. 1998.
Deriving Presentations from Task Models, In
Proceedings EHCI'98, Creete, Kluwiert Publisher.

18. Paternò, F., Mori, G., and Galiberti, R. 2001. CTTE: an
environment for analysis and development of task models
of cooperative applications. In CHI '01 Extended
Abstracts, Seattle, Washington, March 31 - April 05,
2001. CHI '01. ACM, New York, NY, 21-22.

19. Puerta, A. and Eisenstein, J. 1999. Towards a general
computational framework for model-based interface
development systems. In Proc. of IUI’99, Los Angeles,
CA, USA, January 05-08, 1999. pp. 171-178.

20. Reichart, D., Dittmar, A., Forbrig, P., Wurdel, M. Tool
Support for Representing Task Models, Dialog Models
and User-Interface Specifications. In Proc. of
DSVIS'2008. Kingston, Canada, July 16-18 2008.
Springer LNCS 5136. pp. 92-95.

21. Sawyer J. T., Minsk B., Bisantz A. M. 1996. Coupling
User Models and System Models: A Modeling
Framework for Fault Diagnosis in Complex Systems
Interacting with computer 1996.

22. Scapin, D.and Pierret-Golbreich, C. 1989. Towards a
method for task description: MAD. Work with
DisplayUnits WWU’89, 27–34.

23. Winckler, M., Vanderdonckt, J., Trindade, F.,
Stanciulescu, A. Cascading Dialog Modeling with
UsiXML. In Proc. of DSVIS'2008. Kingston, Canada,
July 16-18 2008. Springer LNCS 5136. pp. 121-135

