
HAL Id: hal-03651207
https://hal.science/hal-03651207

Submitted on 27 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UsiXML Concrete Behaviour with a Formal Description
Technique for Interactive Systems

Eric Barboni, Célia Martinie, David Navarre, Philippe Palanque, Marco
Winckler

To cite this version:
Eric Barboni, Célia Martinie, David Navarre, Philippe Palanque, Marco Winckler. UsiXML Concrete
Behaviour with a Formal Description Technique for Interactive Systems. IFIP WG 2.7/13.4 Workshop
on User Interface Description Languages (UIDL 2011), IFIP: International Federation for Information
Processing, Sep 2011, Lisbonne, Portugal. pp.(electronic medium). �hal-03651207�

https://hal.science/hal-03651207
https://hal.archives-ouvertes.fr

UsiXML Concrete Behaviour with a Formal Description
Technique for Interactive Systems

Eric Barboni, Célia Martinie, David Navarre, Philippe Palanque, Marco Winckler
Institute of Research in Informatics of Toulouse, University of Toulouse

Interactive Critical Systems (ICS) team
118 route de Narbonne

31042 Toulouse Cedex 9, France
{barboni, martinie, navarre, palanque, winckler}@irit.fr

ABSTRACT
In the last years User Interface Description Languages
(UIDL) such as UsiXML appeared as a suitable solution for
developing interactive systems. So far, there have been
several attempts for exploring the potential of UsiXML as a
language for describing user interface components for
multi-target platforms. In this paper we are concerned by
the behavioural aspect of interactive system built using
UsiXML. In order to implement reliable and efficient
applications, we propose to employ a formal description
technique called ICO (Interactive Cooperative Objects) that
have been developed to cope with complex behaviours of
interactive systems including event-based and multimodal
interaction. Our approach offers a bridge between UsiXML
descriptions of the user interfaces components and a robust
technique for describing behaviour using ICO modelling.
Beyond that, this paper highlights how it is possible to take
advantage from the two approaches to make possible to
provide a model-based approach for prototyping interactive
systems. The approach is fully illustrated by a case study
using the ARINC 661 specification for User Interface
components embedded into interactive aircraft cockpits.
Keywords
Interactive systems, Behavioural modelling, User Interface
Description Languages (UIDLs), UsiXML, ARINC 661.

1. INTRODUCTION
In the last years User Interface Description Languages
(UIDL) appeared as a suitable solution for developing
interactive systems [7][8][18]. In this scenario UsiXML
[10] appears as an emergent standard for describing
interactive system, in particular those sought to be
deployed in different platforms [21]. It is widely agreed
that a UIDL must cover three different aspects of the User
Interface (UI): to describe the static structure of the user
interfaces (i.e. presentation part which ultimately includes
the description of user interface elements, e.g. widgets, and
their composition), to describe the dynamic behaviour (i.e.
the dialog part, describing the dynamic relationships
between components including event, actions, and
behavioural constraints) and to define the presentation
attributes (i.e. look & feel properties for rendering the UI
elements). Among the models involved in User Interface

(UI) development, dynamic behaviour is one of the most
misunderstood and one of the most difficult to exploit
[6][23]. Dialog models play a major role on UI design by
capturing the dynamic aspects of the user interaction with
the system which includes the specification of: relationship
between presentation units (e.g. transitions between
windows) as well as between UI elements (e.g.
activate/deactivate buttons), events chain (i.e. including
fusion/fission of events when multimodal interaction is
involved) and integration with the functional core which
requires mapping of events to actions according to
predefined constraints enabling/disabling actions at
runtime. These problems related to the description of
behavioural aspects of interactive systems have been
discussed in detail in [15]. Among the techniques
presented, it is worth of mention the Interactive
Cooperative Objects (ICO) formalism which is a formal
description technique designed to the specification,
modelling and implementation of interactive systems. ICO
has been demonstrated efficient for describing several
techniques including 3D, multimodal interaction techniques
and dynamic reconfiguration of interactive systems [16].
ICO models are executable and fully supported by the
CASE tool PetShop [4] which has been shown effective for
prototyping interactive techniques [14].
In this paper we propose a model-driven approach to
integrate behaviour described using ICO models and user
interface components described with UsiXML. By using
ICO models is possible to run the Petshop environment to
control the execution of the application. This approach has
already been demonstrated efficient to model the behaviour
of user interface components based on the standard ARINC
661 for interactive aircraft cockpits [1][2][3][13]. In section
2 we present an overview of behavioural aspects in
UsiXML and how these issues have been treated by the
research community. Section 3 introduces the standard
ARINC 611 and how user interface components described
by this standard can be implemented using UsiXML.
Section 4 introduces the case study. Section 5 is devoted to
the specification of the behaviour of user interface
components. In section 6 we present a proposal for
extending the concrete behavioural description within
UsiXML. Finally, section 7 presents conclusions and future
work.

2. USIXML AND BEHAVIOURAL DESCRIPTIONS
UsiXML (USer Interface eXtensible Markup Language) is
defined in a set of XML schemas where each schema
corresponds to one of the models containing attributes and
relationships in the scope of the language [10]. UsiXML
schemas are used to describe at a high level of abstraction
the constituting elements of the UI of an application
including: widgets, controls, containers, modalities,
interaction techniques, etc. The UsiXML language is
structured according to the four levels of abstractions as
proposed by the framework Cameleon [7], as follows: task
models, abstract user interfaces (AUI), concrete user
interface (CUI) and final user interface (FUI). Several
tools [12] exist for editing specification using UsiXML at
different levels of abstraction. Notwithstanding, developers
can start using UsiXML schemas at the abstraction level
that better suits their purposes.
As far as the behaviour is a concern, there are some
dedicated schemas in UsiXML. At the task level, behaviour
is covered by task models featuring operators in a similar
way as it is done by CTT [11]. At the AUI and CUI levels
several schemas allows to describe basic elements of the
dialog behaviour including events, triggers, conditions, and
source and target components. These elements can be
refined at the FUI level to reach final constructs
implemented by the target platform.
So far there is limited support for UsiXML schemas related
to behavioural aspect of interactive systems beyond the task
model level. Some extensions have been proposed to
describe high level dialog behaviours such as those
implemented by transitions between windows [22] and
between states of workflow-based applications [9].
However, all these extensions are more or less related to
task models. The description of fine-grained behaviour in
UsiXML is awkward as the behavioural aspect and the user
interface composition are interleaved in a single
description. So that, the description of events, triggers and
actions is scattered along the components of the user
interface with makes extremely difficult to visualize the
behaviour of the current state of the application being
modelled. Another conceptual issue with dialog modelling
with UsiXML is related to the different levels of
abstraction; whilst abstract containers can be easily mapped
to windows, it is not so easy to envisage abstract behaviour
and how to refine them into more concrete actions on the
user interface.
A few works [17][23] have addressed the behaviour aspect
of interactive system described with UsiXML. Schaefer,
Bleul, and Mueller (2006) [17], propose an extension of
UsiXML by the means of a dedicated language called
Dialog and Interface Specification Language (DISL). The
main contribution of that work is to propose clear
separation between presentation, user interface composition
and dialog parts of the interface. Winckler et al (2008) [23]
suggest there is no need of new dialog language as
UsiXML can be coupled with existing dialog modelling

techniques such as StateWebCharts (SWC) [24] to deal
with the behaviour of interactive systems. Those authors
propose a set of mappings that allows SWC specification to
be used as running engine for the behaviour of UsiXML
specifications. Notwithstanding, the work was limited to
navigation between web pages in Web-based user
interfaces.

3. ARINC 661 SPECIFICATION AND USIXML
Even if the main topic of this contribution is to make a
bridge between a description of the user interface using
UsiXML and an external behavioural description, we firstly
propose an overview of a similar work done on an aircraft
standard for interactive application. Making a parallel with
this previous work, we then highlight the basic bricks
making possible to enhance UsiXML with a behavioural
description. As illustrated in the next paragraphs, services
offered by the ARINC 661 widgets and the definition of
User Application (UA) are very close to UsiXML Concrete
User Interface model.
The Airlines Electronic Engineering Committee (AEEC)
(an international body of airline representatives leading the
development of avionics architectures) formed the ARINC
661 Working Group to define the software interfaces to the
Cockpit Display System (CDS) used in all types of aircraft
installations. The standard is called ARINC 661 - Cockpit
Display System Interfaces to User Systems [1][2]. In
ARINC 661, a user application is defined as a system that
has two-way communication with the CDS:
 Transmission of data to the CDS, possibly displayed

to the flight deck crew.
 Reception of input from interactive items managed by

the CDS.
According to the classical decomposition of interactive
systems into three parts (presentation, dialogue and
functional core) defined in [5], the CDS part (in Figure 1)
may be seen as the presentation part of the whole system,
provided to the crew members, and the set of UAs may be
seen as the merge of both the dialogue and the functional
core of this system. ARINC 661 then puts on one side input
and output devices (provided by avionics equipment
manufacturers) and on the other side the user applications
(designed by aircraft manufacturers). Indeed, the
consistency between these two parts is maintained through
the communication protocol defined by ARINC 661.

User inputs

CDS

ARINC 661

UA

events

setParameters

Rendering

Crew

Figure 1. Abstract architecture and communication protocol
between Cockpit Display System and a User Application.

The ARINC 661 Specification uses a windowing concept
which can be compared to a desktop computer windowing
system, but with many restrictions due to the aircraft
environment constraints (see Figure 2).

Figure 2. ARINC 661 Specification windowing architecture.

The windowing system is split into 4 components:
 The display unit (DU) which corresponds to the

hardware part,
 The format on a Display Unit (DU), consists of a set

of windows and is defined by the current
configuration of the CDS,

 The window is divided into a set of layers (with the
restriction of only one layer activated and visible at a
time) in a given window,

 The widgets are the smallest component on which
interaction occurs (they corresponds to classical
interactors on Microsoft Windows system such as
command buttons, radio buttons, check buttons,
among others).

In ARINC 661, a widget is defined with an identifier
(widget type, widget identifier and widget parent), states
(informal description of the relationship between these
states) and some other descriptions:
 A definition section provides general information on

the widget such as the categories it belongs to, a
functional description of its behaviour and restrictions
(if any) with respect to ARINC 661 principles.

 A parameter table provides the list of the widget
parameters (position, size, availability…).

 A creation structure table presents the parameters
required for the instantiation of the widget (kind,
restrictions…).

 An event structure table presents the event
notification structure. It describes the parameters that
may be held by the events.

 A run-time modifiable parameter table presents the
sets of parameters that may be changed at run-time.

For instance, a PushButton is defined as followed (only a
subpart of the entire description is provided hereafter):

Categories:
Graphical representation, Interactive, Text

string.
Description:

A PushButton widget is a momentary switched
button, which enables a crew member to launch
an action. A PushButton has only one inner
state, so there is no need for an inner state
parameter.

Restriction:
None.

PushButton event structure:

Event structure Size(bits) Value/Description

EventId 16 A661_EVT_SELECTION

PushButton Runtime Modifiable Parameters:

Parameter Type Size Parameter Ident Type of
structure

Enable Uchar 8 A661_ENABLE …
Visible Uchar 8 A661_VISIBLE …
…

…

In ARINC 661, a UA communicates with the CDS asking
for modification of widgets parameters and receiving
events from them. On the CDS side, the set of widgets is
created and their layout is related to the use of the User
Application Definition File (UADF). The content of this
file, as well as the description of widgets is really close to
the UsiXML model for a Concrete User Interface (even if it
is not expressed using an XML-based format).

4. INFORMAL DESCRIPTION OF THE CASE STUDY
In order to illustrate our approach, we briefly introduce the
MPIA application (which stands for Multi-Purpose
Application) that we employ as case study (see Figure 3).

Figure 3. WXA User Interface of the MPIA application.

The MPIA is an application embedded into aircraft cockpits
(see Figure 4) and it aimed for handling several flight
parameters. It is made up of three pages (called WXR,
GCAS and AIRCOND) between which a crew member is
allowed to navigate. WXR page is in charge managing
weather radar information; GCAS is in charge of the

Display Unit
 - Screen -

Window
(managed
by the CDS) Layer

(owned by one
User Application)

Widget

Format

Application 1
Application 3
Application 2
Application 1

Ground Anti Collision System parameters while
AIRCOND deals with settings of the air conditioning. Due
to space reasons, we only focus on the WXR page. For the
same reasons, we only on the ARNC 611 component
PushButton that is used to build the buttons WXR, GCAS
and AIRCOND as shown in the bottom-side of Figure 3.

Figure 4. The MPIA application in aircraft cockpit.

5. BEHAVIOURAL DESCRIPTION OF ARINC 661 WITH
ICO
Such as UsiXML CUI model, ARINC 661 does not provide
an explicit description of both the application and widgets
behaviour. Previous works based on the ICO formal
description technique [15] have been done in order to
enhance ARINC 661 specification. In [13] we provide the
basis for mapping parts of the ARINC 661 Specification
into ICO constructs used to describe the behaviour of both
widgets and UA. In [3] we present architecture to explicit
rendering concerns based on SVG [19]. In [16] we improve
the previous architecture to support both multimodal
interaction and reconfiguration of input and output devices.
In this section, we present an overview of this work.

5.1 The ICO formalism
The Interactive Cooperative Objects (ICO) formalism is
based on concepts borrowed from the object-oriented
approach (i.e. dynamic instantiation, classification,
encapsulation, inheritance, and client/server relationships)
to describe the structural or static aspects of systems, and
uses high-level Petri nets to describe their dynamics or
behavioural aspects. In the ICO formalism, an object is an
entity featuring five components: a cooperative object
(CO), an available function, a presentation part and two
functions (the activation function and the rendering
function) that correspond to the link between the
cooperative object and the presentation part.
The Cooperative Object (CO) models the behaviour of an
ICO. It states (by means of a high-level Petri net) how the
object reacts to external stimuli according to its inner state.
Figure 5 shows the concepts of the Cooperative Object
models including: places (i.e. used as variables for tracking
the system state), transitions (i.e. elements processing
changes in the system state) and arcs (i.e. connecting
places and transitions in a graph). Arcs can indicate
input/output for tokens circulating in the graph; notice that
an input arc (i.e. InputArc) can be extended to feature

preconditions such as testing the availability of tokens in a
place (i.e. TestArc) or preventing the movement of token
accordingly to special conditions (i.e. InhibitorArc). The
variables associated to an arc are expressed by the concept
EString. Tokens can hold values of any class in the system.
The types of tokens that can circulate in a given place are
denoted through the relationship with the concept EClass.

Figure 5. The Cooperative Objects meta-model.

The presentation part describes the external appearance of
the ICOs. It is a set of widgets embedded into a set of
windows. Each widget can be used for interacting with the
interactive system (user interaction system) and/or as a
way to display information about the internal state of the
object (system user interaction).
The activation function (user inputs: user interaction
system) links users’ actions on the presentation part (for
instance, a click using a mouse on a button) to event
services.
The rendering function (system outputs: system user
interaction) maintains the consistency between the internal
state of the system and its external appearance by reflecting
system states changes through functions calls.
Additionally, an availability function is provided to link a
service to its corresponding transitions in the ICO, i.e., a
service offered by an object will only be available if one of
its related transitions in the Petri net is available.
5.2 Architecture
The architecture presented in Figure 6 proposes a structured
view on the findings from of a project dealing with formal
description techniques for interactive applications
compliant with the ARINC 661 specification.

Server

Widget
Widget

Widget

User inputs

Methods call

CDS ARINC 661 UA

events

setParameters

Activation Function

Rendering Function

UA Behaviour

events

events

events

DOM

Renderer

SVG

Modify
XSL

Transformation

eventsRendering

Crew

Figure 6. Detailed architecture compliant with ARINC 661
specification.

The ICOs notation is exploited to model the behaviour of
all the components of an interactive application compliant
with ARINC 661 specification. This includes each
interactive component (i.e. widgets), the user application
(UA) and the entire window manager (responsible for the
handling of input and output devices, and the dispatching of
events (both those triggered by the UAs and by the pilots)
to the recipients (the widgets or the UAs). The two main
advantages of the architecture presented in Figure 6 are:
 Every component that has an inner behaviour (server,

widgets, UA, and the connection between UA and
widgets, e.g. the rendering and activation functions) is
fully modelled using the ICO formal description,

 The rendering part is delegated to a dedicated language
and tool (such as SVG, Scalable Vector Graphics
[19]), thus making the external look of the user
interface independent from the rest of the application,
providing a framework for easy adaptation of the
graphical aspect of cockpit applications. In this
architecture the basic principle is to associate a
document object model (DOM) to the set of widgets
and to produce a SVG document using an XSLT
transformation [26].

5.3 Overview of the formal description using ICO
As illustrated by the above architecture, ICO is used to
model several parts of the entire interactive system. In this
section, we present the modelling of a simple widget and its
link to the SVG rendering, then we briefly present the
classical modelling of a user application, and finally we
present parts of the server. The purpose here is to present a
brief extracts to show all bricks of the modelling.
Modelling ARINC 661 widgets
For each widget in ARINC 661 specification document, we
model:
 Its behaviour using a Petri net.
 Its states (by the distribution of tokens in the places of

the Petri net).
 The transition between the states.
 The rendering and activation function (which links the

behaviour to the presentation part).

Modelling a widget follows the following process:
 Extract from ARINC 661 specification document the

list of all the parameters
 Extract from ARINC 661 specification document the

list of all the events it raises
 Build a software interface that exposes its run-time

modifiable parameters, by providing an accessor for
each parameter (i.e. a setXXX method for each XXX
run-time modifiable parameter)

 Edit the Petri net model for which a skeleton has been
generated from the previous information.

By applying this process, we modelled 12 widgets (from
classical buttons, to complex containers such as a
Tabbed_Panel_Group). Hereafter we present the modelling

of a widget called Picture_Push_Button as an example. A
Picture_Push_Button is a widget that is made up of 5 run-
time modifiable parameters (Enable, Visible, StyleSet,
LabelString and PictureReference) and raises 1 event
(A661_EVT_SELECTION).
The upper side of the Figure 7 presents a zoom on the
behaviour of this widget that handles the modification of
the two parameters Visible and Enable. The bottom part of
Figure 7 shows the connections of this widget and model
describing the whole behaviour of the WXR application.

Figure 7. Behaviour model of the PicturePushButton.

Figure 8 presents the rendering function associated to the
widget Picture_Push_Button. The third column presents
the DOM attribute modified when the inner state of the
button changes (e.g. when the state of the Petri net
changes). An XSLT transformation is then used to produce
the SVG document that renders the widget.

ObCSNode ObCS event Modified DOM attribute

Visible token_enter Visible = true

Visible token_remove Visible = false

Enabled token_enter Enabled = true

Enabled token_remove Enabled = false
…

Figure 8. Rendering function of the PicturePushButton

Modelling User Applications
Modelling a user application using ICO is quite simple as
ICO has already been used to model such kind of
interactive applications. Indeed, UAs in the area of
interactive cockpits correspond to classical WIMP-based
user interfaces1.
Figure 9 shows the entire behaviour of page WXR which is
made up of two non-connected parts:

 The upper part aims at handling events from the 5
CheckButtons and the modification implied of the
MODE_SELECTION that might be one of five
possibilities (OFF, STDBY, TST, WXON, WXA).
Value changes of token stored in place Mode-
Selection are described in the transitions while
variables on the incoming and outgoing arcs play the
role of formal parameters of the transitions.

 The lower part concerns the handling of events from
the 2 PicturePushButton and the EditBoxNumeric.
Interacting with these buttons will change the state of
the application, allowing changing the tilt angle of the
weather radar.

Figure 9. Behaviour of the page WXR

1 WIMP stands for Window, Icon, Menu, Pointing device.

Figure 10 shows an excerpt of the activation function for
page WXR, which describes the link between events
availability and triggering and the behaviour of the
application. For instance, the first line represents the link
between the event A661_EVT_SELECTION produced by
the button auto_PicturePushButton and the event handler
switch from the behavioural model of WXR (see Figure 9).
If the event handler is available, the corresponding event
producer (the button) should be enabled.

Widget Event Event Handler

auto_PicturePushButton A661_EVT_SELECTION switchAUTO

stab_PicturePushButton A661_EVT_SELECTION switchSTABILIZATION

tiltAngle_EditBox A661_STRING_CHANGE changeAngle

…

Figure 10. Activation Function of the page WXR

From this textual description, we can derive the ICO model
as presented in [3]. The use of Petri nets to model the
activation function is made possible thanks to the event
communication available in the ICO formalism. As this
kind of communication is out of the scope of this paper, we
do not present the models responsible in the registration of
events-handlers needed to allow the communication
between behaviour, activation function and widgets.
Figure 11 shows an excerpt of the rendering function,
which describes how state changes within the WXR
behaviour lead to rendering changes. For instance, when a
token (<float a>) enters (i.e. token_enter) the place
TILT_ANGLE, it calls the rendering method
showTiltAngle(a) which displays the angle value into a
textbox.

ObCSNode name ObCS event Rendering method

MODE_SELECTION token_enter <int m> showModeSelection(m)

TILT_ANGLE token_enter <float a> showTiltAngle(a)
…

Figure 11. Rendering Function of the page WXR

The modelling of the rendering function into Petri nets
works the same way as for the activation function, i.e. for
each line in the rendering function, there is a pattern to
express that in Petri nets (the interested reader may find
more details in [3]).

Modelling User Interface Server
An important part of the above architecture is the user
interface server that manages the set of widgets and the
hierarchy of widgets used in the User Applications. More
precisely, the user interface server is responsible in
handling:
 The creation of widgets.
 The graphical cursors of both the pilot and his co-

pilot.
 The edition mode.

 The mouse and keyboard events and dispatching it to
the corresponding widgets.

 The highlight and the focus mechanisms.
 …

As it handles much functionality, the complete model of
such a server is complex and difficult to manipulate
without an appropriate tool, and cannot be illustrated with a
figure.

In previous works [16], this server has been improved to
support reconfiguration policies for both input and output
devices and it has been enhanced too to support multiple
mice interaction.

6. A PROPOSAL FOR CONCRETE BEHAVIOURAL
DESCRIPTION WITHIN USIXML
Beyond the obvious link that exists between the domain
model of UsiXML and the behavioural description of an
ICO, the work presented in the previous sections shows that
there are common concerns between UsiXML CUI model
and ARINC 661 specification (such as description of high
level widgets and user interface, independent from
implementation), and it shows that it is possible to enhance
such descriptions with behavioural aspects.

With respect to the UsiXML architecture, the work done
with ARINC 661 may be divided into two distinct parts,
making possible to ease the design path from the concrete
user interface to the final user interface.

6.1 An architecture making the bridge between ICO and
UsiXML
As stated when discussing the architecture of Figure 6, it is
possible to clearly separate behavioural aspects from
rendering aspects. Figure 12 presents a first proposal for
making UsiXML and ICO cooperate.

Server

Widget
Widget

Widget

User inputs

Methods call events

setParameters

Activation Function

Rendering Function

CUI Behaviour

events

events

events

UsiXML
CUI

DOM

Renderer

SVG

Modify
XSL

Transformation

eventsRendering

Figure 12. Detailed architecture compliant with UsiXML CUI.

As with ARINC 661, the main idea is to explicitly
introduce behavioural models and make a clear link with
the graphical representation. A successful integration
should then lead to a UsiXML-based prototyping approach,
inheriting from the prototyping capability of ICO.

6.2 Introducing behaviour at CUI level
Mapping state changes described using ICO description
technique with UsiXML model attributes can be done
easily. We illustrate the principle of introducing
behavioural aspects at the CUI level with the example of
the WXR application. These illustrations provide the key
features allowing integration of ICO and UsiXML.

Figure 13 introduces a subpart of the CUI model of the
WXR application, showing only a classical text box and a
button:

 The inputText element txt_tiltAngle aims at containing
a number representing a tilt angle. In order to include
such as information into the description of the user
interface built using UsiXML we propose the
inclusion of an attribute “text” that does not exist in
the current version of UsiXML. Thus attribute “text”
is used to host the corresponding rendering function
as shown by Figure 15.

 When clicked, the button btn_switchAUTO produces
an event “switchAUTO”. Both the availability of this
event and its occurrence are related to the behaviour
of the application (as stated by the next paragraphs).

<cuiModel id="WXR-cui_1" name="WXR-cui">

<window id="window_component_0"
name="window_component_0" width="456"
height="416">

<inputText id="txt_tiltAngle"
name="txt_tiltAngle" isVisible="true"
isEnabled="true" textColor="#000000"
maxLength="50" numberOfColumns="15"
isEditable="true" text=””/>
<button id="btn_switchAUTO" name="btn_switchAUTO"
isVisible="true" isEnabled="true"
textColor="#000000">

<behavior>

<event id="switchAUTO" eventType="action"
eventContext=""/>

</behavior>

</button>

…
</window>

</cuiModel>

Figure 13. Part of the CUI model of the WXR application

Making the link between the behaviour of the application
expressed using ICO (as illustrated by Figure 9) is quite
easy as there can be a direct mapping of the event produced
by the button (“switchAUTO”) and the available event
handler of the behaviour of WXR (“switchAUTO”), as
shown by Figure 14.

Widget Event Event Handler

btn_switchAUTO switchAUTO switchAUTO

…

Figure 14. Activation Function of the page WXR

When the event handler is enabled, the attribute enabled of
the button is thus set to “true”, “false” otherwise.

Describing the rendering of the application is linked to
attribute modification of the CUI DOM such as described
by Figure 15.

ObCSNode name ObCS event CUI attribute

TILT_ANGLE token_enter <float a> “text” of txt_tiltAngle

…

Figure 15. Rendering Function of the page WXR

When the token enters the place TILT_ANGLE, the
attribute “text” of the inputText element of the CUI is
modified with the value hold by the token.

6.3 An executable CUI as a prototype for FUI
Thanks to the possibility of executing Petri nets, ICO
allows prototyping when connected to the graphical
representation of an application [14]. For instance, the
MPIA application (from which WXR is extracted) has been
fully modelled and can be executed on the CDS modelled
using the ICO formalism. However, it has also been
connected on a CDS developed on an experimental test
bench as shown in Figure 4.

Providing a graphical representation of the CUI makes
possible to build a prototype based our approach.
Associating ICO and the CUI model has been discussed in
the previous section, but it is possible too, in a similar way,
to do this association at widget level, while proposing a
way to render a CUI model based on a previous work
integrating SVG [3].

Such a work should then allow the prototyping of the final
UI (FUI) based on the bridge between ICO and a CUI
model, shortening the design path to the FUI.

Rendering based on SVG

As stated in the previous section, any state change of the
application is rendered via the modification of the CUI
DOM, based on the mapping described by both the
rendering and activation function. Figure 16 illustrates the
run-time architecture that supports FUI prototyping based
on the association of UsiXML and ICO.

ICO
specification

<xsl:stylesheet>

<xsl:template> <xsl:template>

<xsl:...> <xsl:template>

XSLT

<cui ...>

<panel ...> <button x=...>

<...> <radiobutton...>

CUI DOM

<svg>

<rect ...> <rect x= ...>

<...> <...>

SVG DOM

SVG Renderer
+ Input devices

User inputs

Mapping /
Modification

Transformation

Rendering

Event notification

Figure 16. The run-time architecture

To provide a rendering to each CUI element, we propose
the use of declarative descriptions of the graphical part that
support transformations from conceptual models to
graphical representations. The approach exploits both the
SVG language [19] for graphical representation, and the
XSLT language for transformation (called a “stylesheet”).

In order to write a stylesheet, one has to design the
rendering of a particular widget, using Illustrator for
example. When ready, the textual description of the widget
is included in the stylesheet.

In our case, the source is the CUI DOM, built at start-up
time, together with the instantiation of the ICOs
components. Before running the application, the system
must compile the stylesheet to an XSLT transformer. While
running the application, every time the state of a CUI DOM
variable changes, it is transformed into a DOM SVG tree,
which in turn is passed to the SVG renderer and displayed.

Introduction of behaviour for widgets

To go further with a precise prototyping of the FUI, it is
necessary to describe each widget, including its behaviour
(such as already done with ARINC 661). As illustrated by
Figure 7 and Figure 8, it is possible to describe the fine
grain behaviour of a widget and the link of its inner state
changes with rendering.

In its current state, UsiXML, via the CUI model, describes
widgets as a type and a set of attributes (a button is defined
by an id, a name…), making it abstract enough to be
independent from the targeted platform for the FUI. But
when considering prototyping, it may be interesting to
provide a finer description of the kind of widget that is
expected, and a less coarse grain description of the widgets
attributes (for instance, it is possible to introduce rendering
for any inner state of a button: armed, pressed…). Another
interesting point when dealing with widget is the
introduction of new widgets that may request a precise
description of how it should work on the targeted
platforms.

One possible way to allow such description within
UsiXML could be to enhance the current platform model of
the context model with a precise widget description. Even
if no effort has already been put on it, this way is an
important part of our future works.

7. DISCUSSION AND OUTLOOK
Most of the recent work on UsiXML have been focused on
mapping UsiXML schemas between several levels of
abstraction [11][20] or proving automatic user interface
generation of components to multi-target devices [12][21].
Indeed, very few works have focused on the behavioural
aspect of interactive systems modelled with UsiXML.
This paper has presented a bridge between an already
existing formal description technique for behavioural
aspects of interactive systems and an approach for
describing the presentation part of such system. Beyond

that, it highlights how it is possible to take advantage from
the two approaches to make possible to provide a model-
based approach for prototyping interactive systems.
Such as highlighted by the Arch architecture, this approach
allows a clear separation between graphical aspects,
behavioural aspects and functional aspects. It allows too a
clear separation with tasks such as with the work done in
[4]. Such a separation is necessary as, depending on the
functional part of the interactive system, constraints
independent from task concerns can appear. In the example
used in this paper, the value of the tilt angle must meet the
system requirements and the dialogue is thus specially
designed to support this constraint. If the functional part
changes, the dialog part must be modified, but not the
user’s tasks.
It is noteworthy that the use of ICO models to describe the
behaviour of user interfaces allows overcoming of some of
the limitations of other UIDL languages such as SCXML
[25] XUL [27] such as the easier management of infinite
states, the encapsulation of variables as objects of any kind
and dynamic instantiation of objects. Moreover, properties
of UI descriptions can be formally assessed using the
underlying Petri Net formalism.
Three ways of improvement for this work could be:
 As presented in the previous section, a possible
extension of our work is to introduce a notation or to
enhance the current context model of UsiXML with a
precise widget description, including its behaviour,
making possible to build prototypes of the FUI.
 As presented with classical widgets, such an approach
can be used to precisely describe new interactive
components.
 A link from task models and abstract UI to concrete UI
could be done based on the work we have already done
about putting into correspondence task models and
system model [4]

To make this work more “concrete” a particular effort has
to be performed to integrate already existing tool support or
to point out new developments. These issues are currently
being addressed by our team at the IRIT (Institute of
Research in Informatics of Toulouse) and the CNES
(Centre National d’Etudes Spatiales) in a recently started
Research & Technology project called ALDABRA.

ACKNOWLEDGEMENTS
This work is supported by the Research & Technology
Project (RT) ALDABRA (IRIT-CNES).

REFERENCES
1. ARINC 661, Prepared by Airlines Electronic

Engineering Committee. Cockpit Display System
Interfaces to User Systems. ARINC Specification 661.
(2002).

2. ARINC 661-2, Prepared by Airlines Electronic
Engineering Committee. Cockpit Display System

Interfaces to User Systems. ARINC Specification 661-
2; (2005).

3. Barboni, E., Conversy, S., Navarre, D., Palanque, P.
Model-Based Engineering of Widgets, User
Applications and Servers Compliant with ARINC 661
Specification. Proceedings of the 13th conference on
Design Specification and Verification of Interactive
Systems (DSVIS 2006), LNCS, Springer Verlag.

4. Barboni, E., Ladry, J-F, Navarre, D., Palanque, P.,
Winckler, M. Beyond Modelling: An Integrated
Environment Supporting Co-Execution of Tasks and
Systems Models. In Proc. Of the ACM SIGCHI
conference Engineering Interactive Computing Systems
(EICS 2010), Berlin, Germany, June 19-23, 2010, ACM
SIGCHI, p. 143-152.

5. Bass L. et al. A metamodel for the runtime architecture
of an interactive system: the UIMS tool developers
workshop. SIGCHI Bulletin, vol. 24(1):32–37, 1992.

6. Book, M., Gruhn, V.: Fine-Grained Specification and
Control of Data Flows in Web-based User Interfaces.
Journal of Web Engineering (JWE) Vol. 8, No. 1.
Rinton Press, Paramus, NJ, USA 2009, pp. 48-70.

7. Calvary, G., Coutaz J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J. A. Unifying Reference
Framework for Multi-Target User Interfaces, Interacting
With Computers, Vol. 15/3, pp 289-308, 2003.

8. Guerrero-Garcia, J., Gonzalez-Calleros, J. M.,
Vanderdonckt, J., Munoz-Arteaga, J. 2009. A
Theoretical Survey of User Interface Description
Languages: Preliminary Results. In Proceedings of the
2009 Latin American Web Congress (LA-WEB '09).
IEEE Computer Society, Washington, DC, USA, 36-43.
DOI=10.1109/LA-WEB.2009.40

9. Guerrero-García, J., Vanderdonckt, J., González-
Calleros, J. M. FlowiXML: a step towards designing
workflow management systems. In: Int. J. Web Eng.
Technol., Vol. 4, Nr. 2 (2008), p. 163-182.

10. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., Víctor López Jaquero, UsiXML: a Language
Supporting Multi-Path Development of User Interfaces,
Proc. of 9th IFIP Working Conference on Engineering
for Human-Computer Interaction jointly with 11th Int.
Workshop on Design, Specification, and Verification of
Interactive Systems, EHCI-DSVIS'2004 (Hamburg, July
11-13, 2004), Springer LNCS 3425. pp. 200-220.

11. Montero, M., López-Jaquero, V., Vanderdonckt,
Gonzalez, P. Lozano, Solving the Mapping Problem in
User Interface Design by Seamless Integration in
IdealXML, Proc. of DSV-IS’2005 (Newcastle upon
Tyne, 13-15 July 2005), S.W. Gilroy, M.D. Harrison
(eds.), Lecture Notes in Computer Science, Vol. 3941,
Springer-Verlag, Berlin, 2005, pp. 161-172.

12. Michotte, B., Vanderdonckt, J., GrafiXML, A Multi-
Target User Interface Builder based on UsiXML, Proc.

of 4th International Conference on Autonomic and
Autonomous Systems ICAS’2008 (Gosier, 16-21 March
2008), IEEE Computer Society Press, Los Alamitos,
2008, pp. 15-22.

13. Navarre, D., Palanque, P., Bastide, R. A Formal
Description Technique for the Behavioural Description
of Interactive Applications Compliant with ARINC 661
Specifications. HCI-Aero'04 Toulouse, France, 29
September-1st October 2004

14. Navarre, D., Palanque, P.; Bastide, R., and Sy, O. A
Model-Based Tool for Interactive Prototyping of Highly
Interactive Applications. 12th IEEE, International
Workshop on Rapid System Prototyping; Monterey
(USA). IEEE; 2001.

15. Navarre, D., Palanque, P., Ladry, J.F., Barboni, E.
ICOs: A model-based user interface description
technique dedicated to interactive systems addressing
usability, reliability and scalability, in Journal ACM
Transactions on Computer-Human Interaction
(TOCHI), Volume 16 Issue 4, November 2009, ACM
New York, NY, USA

16. Navarre, D., Palanque, P., Ladry, J.F., Basnyat, S. An
Architecture and a Formal Description Technique for
User Interaction Reconfiguration of Safety Critical
Interactive Systems. The XVth International Workshop
on the Design, Verification and Specification of
Interactive Systems (DSVIS 2008). Kingston, Ontario,
Canada. July 16-18 2008.

17. Schaefer, R., Bleul, S., Mueller, W. 2006. Dialog
modeling for multiple devices and multiple interaction
modalities. In Proceedings of the 5th international
conference on Task models and diagrams for users
interface design (TAMODIA'06), Karin Coninx, Kris
Luyten, and Kevin A. Schneider (Eds.). Springer-
Verlag, Berlin, Heidelberg, 39-53.

18. Shaer, O., Green, M., Jacob, R.J.K, and Luyten, K.,
User Interface Description Languages for Next
Generation User Interfaces. In Proc. of Extended
Abstracts of CHI'08, ACM Press, New York (2008), pp.
3949-3952.

19. SVG W3C 2003: Scalable Vector Graphics (SVG) 1.1
Specification http://www.w3.org/TR/SVG11/

20. Tran, V., Vanderdonckt, J., Kolp, M., Wautelet, Y.,
Using Task And Data Models For User Interface
Declarative Generation, Proc. of 12th International
Conference on Enterprise Information Systems
ICEIS’2010 (Funchal, 8-10 June 2010), J. Filipe, J.
Cordeiro (Eds.), Vol. 5, SciTePress, 2010, pp. 155-160.

21. Trindade, F. M., Pimenta, M. S. RenderXML - A Multi-
platform Software Development Tool. TAMODIA
2007, Springer LNCS 4849, p. 293-298.

22. Vanderdonckt, J., Limbourg, Q., Florins, M. Deriving
the Navigational Structure of a User Interface, Proc. of
Interact’ 2003 (Zurich, 1-5 September 2003), IOS Press,
Amsterdam, 2003, pp. 455–462.

23. Winckler, M., Trindade, F.M., Stanciulescu, A.,
Vanderdonckt, J., Cascading Dialog Modeling with
UsiXML, Proc. of 15th Int. Workshop on Design,
Specification, and Verification of Interactive Systems
DSV-IS’2008 (Kingston, July 16-18, 2008), Lecture
Notes in Computer Sciences, Vol. 5136, Springer,
Berlin, 2008, pp. 121-135.

24. Winckler, M.; Palanque, P. StateWebCharts: a Formal
Description Technique Dedicated to Navigation
Modelling of Web Applications. International
Workshop on Design, Specification and Verification of
Interactive Systems - DSVIS'2003, Funchal, Portugal,
June 2003.

25. World Wide Web Consortium. State Chart XML
(SCXML): State Machine Notation for Control
Abstraction. Working Draft 26 April 2011 Available at:
http://www.w3.org/TR/2011/WD-scxml-20110426/

26. XSL Transformations (XSLT). Version 1.0. W3C
Recommendation 16 November 1999. Available at:
http://www.w3.org/TR/xslt

27. XUL (XML User Interface Language). Available at:
http://www.mozilla.org/projects/xul/ (August 10, 2011).

