

Reservoir depressurization driven by passive gas emissions at Ambrym volcano

Tara Shreve, R. Grandin, Marie Boichu

▶ To cite this version:

Tara Shreve, R. Grandin, Marie Boichu. Reservoir depressurization driven by passive gas emissions at Ambrym volcano. Earth and Planetary Science Letters, 2022, 584, pp.117512. 10.1016/j.epsl.2022.117512 . hal-03651200

HAL Id: hal-03651200 https://hal.science/hal-03651200

Submitted on 25 Apr 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Reservoir depressurization driven by passive gas
2	emissions at Ambrym volcano
3	T. Shreve ^{a, o} , R. Grandin ^{a} , M. Boichu ^{c}
4	$^a \mathrm{Universit\acute{e}}$ de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
5	$^b\mathrm{Earth}$ and Planets Laboratory, Carnegie Institution for Science, Washington, District of Columbia, USA
6	$^c \mathrm{Universit\acute{e}}$ de Lille, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, F-59000, Lille, France
7	Highlights:
8	• Persistent volcanic degassing explains steady subsidence at Ambrym from 2015–
9	2017
10	• Subsidence ends in 2017, as magma influx balances depressurization from degassing
11	+ We estimate a magma influx of ${\sim}0.16~{\rm km}^3$ over 14 months before the 2018 erup-
12	tion
13	Keywords: Subsidence, Degassing processes, Magma replenishment

 $Corresponding \ author: \ Tara \ Shreve, \verb"tshreve@carnegiescience.edu"$

14 Abstract

15	Despite being a widespread and common process, the impact of passive volcanic degassing
16	on the pressurization state of a magma reservoir is not well understood. If mass loss due
17	to gas emissions results in reservoir depressurization and surface subsidence, the pres-
18	sure difference between a shallow reservoir and deep magma source may result in magma
19	recharge and eventually trigger an eruption. It is therefore important to determine how
20	a simplified reservoir-conduit system responds to such degassing processes. Here we use
21	an extreme example of persistent volcanic degassing—Ambrym—as a case study to re-
22	late sulphur dioxide mass flux with reservoir depressurization and edifice-scale subsidence,
23	both measured from satellite-based remote sensing observations. A geodetic inversion
24	of surface displacements measured with Interferometric Synthetic Aperture Radar mod-
25	eled using the Boundary Element Method provides bounds on the reservoir pressure change
26	during an episode of subsidence at Ambrym from 2015 to 2017. These results are input
27	into a lumped parameter theoretical model developed by Girona et al. (2014), and the
28	free parameters (e.g., reservoir size and conduit radius) are systematically explored. We
29	find that the 2015–2017 subsidence episode is consistent with pressure decreasing at a
30	rate of -5.2 to -2.0 MPa year $^{-1}$ in a reservoir at ${\sim}2$ km b.s.l., as a result of passive de-
31	gassing. The subsidence episode is observed to end abruptly in October 2017, and no sig-
32	nificant deformation is detected in the 14 months leading up to a rift zone intrusion and
33	submarine eruption in December 2018, despite substantial degassing. We explain this
34	lack of pre-eruptive deformation by an influx of ${\sim}0.16~{\rm km}^3$ of magma into a shallow ($<$
35	2 km b.s.l.) reservoir that counterbalances the depressurization caused by degassing. This

-2-

recharge volume is comparable with the volume of magma subsequently extracted from
Ambrym's reservoir in December 2018. We conclude that at some open-vent passively
degassing volcanoes, deflation caused by degassing may reduce or even cancel any inflation signal caused by magma influx. Nonetheless, detection of pre-eruptive recharge can
be achieved by monitoring changes in the long-term deformation rate.

41 1 Introduction

42	Persistent passive degassing is observed at volcanoes worldwide (Carn et al., 2017).
43	From 2005–2015, of the 1500 terrestrial volcanoes with possible activity in the Holocene
44	(Siebert et al., 2015), at least 6% (91) were passively degassing above the detection thresh-
45	old of satellite measurements (~30 tons day^{-1}) (Carn et al., 2017). Degassing-related
46	hazards depend on gas composition, dispersion, and emission duration. In cases of per-
47	sistent passive (non-eruptive) degassing, areas of $>1000 \text{ km}^2$ (e.g., Masaya volcano, Nicaragua)
48	can be affected by acid rain or noxious volcanic smog, as well as fluoride contamination
49	of water (Williams-Jones & Rymer, 2015; Cronin & Sharp, 2002; Allibone et al., 2012).
50	Cases of sustained high gas flux are mainly observed at volcanoes characterized by
51	open-system degassing. In such systems, exsolved gas within a magma conduit or reser-
52	voir segregates from the melt and is released into the atmosphere during non-eruptive
53	periods (Cashman, 2004). Theoretical models show that gas emission can result in a pres-
54	sure change of a magmatic reservoir, and that pressure changes can also influence gas
55	exsolution (Tait et al., 1989; Boichu et al., 2008, 2011; Anderson & Segall, 2011; Kaza-
56	haya et al., 2015). As we show in this study, contrary to the inter-eruptive uplift typ-

-3-

ical of the 'classic volcano deformation cycle' (Biggs & Pritchard, 2017), eruptions may
be counterintuitively preceded by periods of reservoir depressurization (Girona et al., 2014,
2015).

60	From 2005–2015, Ambrym (Vanuatu), Kīlauea (Hawai'i), and Nyiragongo (Demo-
61	cratic Republic of Congo) volcanoes were among the ten strongest passively degassing
62	volcanoes on Earth, influenced by the presence of lava lake activity (Carn et al., 2017).
63	At these open-vent volcanoes, surface deformation can be measured by satellite using
64	interferometric synthetic aperture radar (InSAR). While deformation can be used to con-
65	strain reservoir overpressure through geodetic modeling, estimates must account for un-
66	certainties on the host rock elastic moduli and reservoir geometry. Combining InSAR
67	deformation measurements with remote sensing gas measurements may provide an open-
68	ing for long-term studies linking changes in reservoir pressure (and potentially uplift or
69	subsidence) and volcanic degassing. Our study demonstrates this possibility using a mul-
70	tiparametric approach to investigate the effect of volcanic degassing on reservoir pres-
71	surization at Ambrym volcano in Vanuatu from 2015–2018. Ambrym is a basaltic vol-
72	canic island which hosts a 12-km wide caldera and two main volcanic cones (Marum and
73	Benbow), within which are semi-permanent lava lakes that have been active since at least
74	the 1980's (Robin et al., 1993; Allard et al., 2015). In particular, we investigate a period
75	of inter-eruptive ground subsidence, coinciding with high gas flux, at Ambrym. The sub-
76	sidence episode preceded a major intrusion crisis that led to the extinction of the lava
77	lakes for more than 2.5 years (at the time of writing, February 2022) (Shreve et al., 2019)
78	after they had been active for at least 3 decades.

-4-

79	To explore physical mechanisms explaining ground subsidence at Ambrym, we first
80	estimate reservoir depressurization rates using geodetic modeling. Then, we use a lumped
81	parameter theoretical model that couples gas emissions with reservoir depressurization,
82	developed in Girona et al. (2014) , to explain the estimated depressurization rates and
83	their variation over time. This is the first time the theoretical model of Girona et al. (2014)
84	is applied using observations at an active volcano. The effect of magma replenishment
85	will also be considered to explain an abrupt change in depressurization rate that occurred
86	around October 2017, 14 months before a large dike intrusion and submarine eruption
87	that occurred in December 2018 (Shreve et al., 2019; Hamling et al., 2019; Moussallam
88	et al., 2021). We posit that pre-eruptive reservoir pressurization, associated with magma $% \left({{{\mathbf{x}}_{i}}} \right)$
89	recharge, may have been balanced by reservoir depressurization due to passive degassing,
90	resulting in a net pressure change of zero prior to the 2018 rift zone eruption, explain-
91	ing the lack of pre-eruptive uplift.

⁹² 2 Data and Methods

93

2.1 2015–2017 Subsidence Episode and 2018 Eruption

94	In SAR measures ground displacements after a VEI 2 eruption in February 2015,
95	when an intra-caldera vent opened and fed a lava flow (Figure 1a) (Hamling & Kilgour,
96	2020; Shreve et al., 2021). A time series is processed with the software MintPy (Yunjun
97	et al., 2019) using images acquired by the European Space Agency's satellite constella-
98	tion Sentinel-1 (S1) (Figure 1a,b and Section 2.3). The first available Sentinel-1 image
99	was acquired on 30 October 2015. The S1 time series and an interferogram from the Japanese

100	Space Agency's satellite ALOS-2 spanning 21 March 2015 to 28 October 2017 both es-
101	timate a maximum subsidence velocity of ${\sim}10~{\rm cm}$ year-1. An additional ALOS-2 inter-
102	ferogram indicates the subsidence began between March and June 2015 (Figure S1), af-
103	ter the February 2015 eruption (Section 2.3). The subsidence continued until October
104	2017, after which it ended abruptly (Figure 1b).

105	Starting 14 December 2018, 14 months after the end of the subsidence episode, an
106	intra-caldera eruption began at Ambrym, followed by a rift zone intrusion and subma-
107	rine eruption (Shreve et al., 2019; Hamling et al., 2019; Moussallam et al., 2021). Am-
108	brym's caldera subsided by up to 3 meters, and the lava lakes were completely drained
109	(Shreve et al., 2019; Hamling et al., 2019). Although ${>}0.4~\rm km^3$ of magma was intruded
110	into the rift zone (Shreve et al., 2019; Hamling et al., 2019), causing drastic changes to
111	the activity at Ambrym (e.g., lava lake drainage), less than 5 cm of precursory deforma-
112	tion occurred in the year before the event (Figure 1b). Despite a lack of pre-eruptive up-
113	lift, two primary observations indicate an increase in magma and gas supply to the sys-
114	tem, which may have been precursors to the 2018 eruption. First, a new thermal anomaly
115	${\sim}1~{\rm km}$ to the south of the main lava lake hosted in Marum crater is detected using Sentinel-
116	$2~{\rm images}$ sometime between 23 June 2016 and 10 March 2018 (Video S1). This indicates
117	either a new vent for gas emissions or the presence of magma close to the surface, although
118	discriminating between the two is ambiguous without additional observations. While the
119	new vent may be a redirection of gas or magma that was already present at depth, its
120	surface manifestation indicates a deviation from background activity. Second, the lava
121	lake level rose rapidly in the weeks before the 2018 eruption, as documented by Moussallam

-6-

et al. (2021), which can indicate an increase in magma influx to the system, according to Patrick et al. (2019); Burgi et al. (2020); Global Volcanism Program (2017c).

124

2.2 2015–2018 SO₂ Gas Emissions

125	To estimate temporal variation of the sulphur dioxide (SO_2) budget emitted by Am-
126	brym, we calculate the daily SO_2 mass by integrating OMI/Aura SO_2 Total Column over
127	a 150 km-radius circular area centered on Ambrym. We use the Level 2 Version 003 lower
128	tropospheric (TRL) products (corresponding to a center of mass altitude at 3 km (Li et
129	al., 2020)), keeping pixels with a cloud fraction lower than 30% and a column amount
130	greater than 0.3 DU, and removing acquisitions affected by OMI row anomalies. We also
131	remove acquisitions affected by emissions from nearby Ambae volcano in 2017–2018, by
132	discarding dates coinciding with a thermal anomaly at Ambae by MODIS (from MOD-
133	VOLC (Wright et al., 2004)), and by applying an additional automated procedure re-
134	lying on the ratio between the gas mass around Ambrym and Ambae (see details in Text
135	S1).
136	We observe that the daily SO_2 mass burden released passively by Ambrym remains
137	nearly constant between the February 2015 and December 2018 eruptions (Figure 1b).
138	As shown in Figure S2, this observation is consistent with the steadiness of the annual
139	mean SO ₂ flux over the 2015–2018 time interval according to the NASA database (https://

so2.gsfc.nasa.gov/kml/OMI_Catalogue_Emissions_2005-2019.xls, updated follow-

- ing Carn et al. (2017)). The consistency between SO₂ mass and flux also holds from 2005
- through to 2019, even if SO_2 flux varied substantially before 2015 (Figure S2). This ex-

-7-

143	cellent consistency indicates that our estimates of SO_2 mass burden at Ambrym, once
144	averaged over several months, are a good proxy of, and nearly proportional to, the SO_2
145	flux. Since January 2019, SO_2 emissions have reduced to below the detection threshold
146	of satellites, in stark contrast with Ambrym's persistent degassing over the past decade.
147	We conclude that the SO_2 flux at Ambrym remained essentially constant in the 2015
148	2018 time interval. Because the major volcanic gas species is H_2O , we assume that the
149	mean SO ₂ gas flux in the 2015–2018 time interval (7 kt day ⁻¹) can reasonably approx-
150	imate the mean water vapor gas flux using the mass ratio of $\frac{\rm H_2O}{\rm SO_2}\approx 15$ from the aver-
151	age molar ratios obtained during two field campaign measurements of Ambrym's bulk
152	gas emissions in October 2007 (Table 1 in Allard et al. (2015)). Since there are no es-
153	timates of this ratio during the time period of interest, we assume it is constant and dis-
154	cuss the possible effects of a 50% increase or decrease in H_2O flux on our results in Sec-
155	tion 4.1.1. We proceed under the assumption that $\hat{Q} = \hat{Q}_{\text{H}_2\text{O}} \approx 110 \text{ kt day}^{-1}$.

156

2.3 Geodetic Inversion

To estimate magma reservoir depressurization, we invert surface displacements measurements spanning March 2015 to October 2017 measured by ALOS-2 and S1. Interferograms were processed using the Interferometric SAR scientific computing environment (ISCE) (Rosen et al., 2012). We multilook ascending S1 interferograms (Track 81) 36 times in range and 12 times in azimuth, filter with a power spectrum filtering strength of 0.3 and unwrap with SNAPHU (Chen & Zebker, 2001). The ascending ALOS-2 interferograms (Track 101) are multilooked 8 times in range and 16 times in azimuth, fil-

-8-

164	tered with a power spectrum filtering strength of 0.2, and unwrapped with a coherence-
165	based NSBAS module ("MPD") described in Shreve et al. (2021). A 12 m TanDEM-X
166	Global DEM is used to remove the topographic phase contribution (Wessel, 2016).
167	We calculate an S1 InSAR small baseline time series using MintPy with 63 acqui-
168	sitions to generate and invert 169 interferograms in radar geometry, with temporal base-
169	lines ranging from 12 days to 1 year (interferogram network shown in Figure S3) (Yunjun
170	et al., 2019). It is common practice to fit and remove a phase ramp, which may be due
171	to orbital or timing inaccuracies. However, we skip this step because the lack of a non-
172	deforming reference area results in an unstable ramp estimate, which biases the displace-
173	ment measurements. A comparison of different inversion strategies indicates no mean-
174	ingful difference between an inversion with uniform weighting and an inversion weighted
175	by the inverse of the phase variance, most likely due to the redundancy of the dense in-
176	terferometric network (Yunjun et al., 2019) (Figures S3, S4, and Text S3). The two in-
177	version strategies result in different temporal coherence estimates, which determine pixel
178	masking (Figure S4), and we proceed with the time series weighted by the inverse of the
179	phase variance. Finally, we correct the time series for atmospheric effects using the ERA-
180	5 atmospheric model implemented in MintPy with the PyAPS software (Yunjun et al.,
181	2019). The ERA-5 correction is an improvement to the empirical correction based on
182	the relationship between phase delay and elevation (also available in MintPy), which causes
183	spurious jumps in the time series (Figure S5).
184	Figure 1b shows the displacement time series (acquisitions every 12 days) for var-

ious locations at Ambrym from 30 October 2015 to 13 December 2018. Subsidence is mea-

186	sured, elongated SE-NW within the caldera. The average velocity of the point of max-
187	ium subsidence is ~10 cm year-1, calculated from 30 October 2015 to 31 October 2017,
188	after which subsidence ends. We note that the subsidence stops two months after a seis-
189	micity increase on 25 August 2017 (accompanied by a change in eruptive activity), ac-
190	cording to a Vanuatu Meteorology and Geo-Hazards Department report (Global Volcan-
191	ism Program, 2017a) (green vertical line, Figure 1b). Seismicity declined and eruptive
192	activity stabilized by the end of November 2017 (Global Volcanism Program, 2017b). Us-
193	ing the <i>Defvolc</i> 3D Mixed Boundary Element Method (BEM) code (Cayol & Cornet, 1997;
194	Fukushima et al., 2005) and Neighborhood Algorithm (Sambridge, 1999b, 1999a) (See
195	Shreve et al. (2021) for a summary of the BEM and Text S2 for a description of the in-
196	version scheme and uncertainty estimation), we perform a joint inversion of the Sentinel-
197	1 velocity map and ALOS-2 ascending interferogram (scaled to obtain displacement in
198	cm year ⁻¹). See Text S3 for a detailed description of data preparation for the geodetic
199	modeling, which includes downsampling, estimating the data covariance matrix, and cre-
200	ating the topography mesh.

201

2.4 Model Coupling Gas Emissions and Reservoir Depressurization

202	Numerous theoretical models exist to explain pressure change due to degassing pro-
203	cesses (i.e., volatile exsolution and escape from a magmatic system) (Tait et al., 1989;
204	Boichu et al., 2008, 2011; Anderson & Segall, 2011). In particular, a theoretical model
205	developed by Girona et al. (2014) addresses the relationship between passive degassing
206	and inter-eruptive reservoir depressurization on timescales of years. Girona et al. (2014)
207	assume the reservoir is connected to the surface by an open conduit, and that the pres-

Figure 1: Time series of InSAR LOS displacement, thermal anomalies, and SO₂ emissions. a. A tectonic map showing the location of Ambrym island (from Shreve et al. (2019)) and a zoom on Ambrym's caldera, showing the velocity map of the Sentinel-1 ascending time series, assuming deformation spans 30 October 2015–31 October 2017. The caldera is outlined in black, and the extent of the lava flows emplaced in 2015 and 2018 are shown in pink and purple, respectively. The points plotted in the LOS displacement time series are identified with the colored circles (magenta measures displacement inside the deforming caldera, while green and blue measure background displacement near the borders or outside the caldera). The reference point is the black square. b. Top figure: The colored dots correspond to the cumulative LOS displacement calculated from a Sentinel-1 ascending time series in three different locations. The triangles outlined in black indicate the cumulative LOS displacement of an ALOS-2 interferogram.

Figure 1: (cont.) The three triangles plotted on 21 March 2015 overlap at 0 m. At each location, the mean of a 3 \times 3 pixel box (~0.6×0.6 km) is calculated. The black dotted lines indicate the (at least partly) cloud-free Sentinel-2 images available during this time period (see Video S1). The orange dots are the excess radiation of thermal anomalies detected within Benbow and Marum craters by the Moderate Resolution Imaging Spectroradiometer (MODIS), which has a pixel size of ~1×1 km at nadir (Wright et al., 2004; Wright, 2016), and processed using the MODVOLC algorithm. The grey line shows temporal averages calculated using a sliding window of 30 days. Bottom figure: Empty grey dots represent the time-series of raw SO₂ mass burden integrated in an 150 km radius disk around Ambrym from OMI data (TRL product). Red-filled dots represent selected SO₂ mass burden estimates, after removing measurements affected by emissions from the nearby Ambae volcano. The period of elevated volcanic activity at Ambae is indicated by the grey area. Figure adapted from Shreve (2020).

Model	Center (UTM)	Depth (m b.s.l.)	Axis 1 (m)	Ratio Axis 1:Axis 2	Ratio Axis 2:Axis 3	Rotation $(^{\circ})$	$\mathbf{V}_{r}~(\mathrm{km}^{3})$	$\Delta V~(\times 10^6~{\rm m^3~year^{-1}})$	$\Delta P \ (\mathrm{MPa} \ \mathrm{year}^{-1})$
Best-fit	192210 E, 8199170 N	-1880	4700	10	3.6	147	1.2	-3	-2.15
Mean	192367 E \pm 1571, 8199425 N \pm 1228	-2075 ± 1018	4597 ± 1159	7.9 ± 1.5	5.1 ± 1.9	142 ± 25	N/A	N/A	-3.56 ± 1.63
able 1:	The estimated best-fit ellipso	id model para	meters, as v	vell as the mean	model and unce	rtainties (o	ne standar	d deviation from t	the mean). Ob-

ō
Ξ.
1
aı
le
Я
he
Ę
В
ē
Ĥ
Ц
.9
at
.2
q-
~
ĭ
<u>5</u>
ğ
ta
ŝ
ne
Ö
S.
ŢĢ.
nt.
aii
rti
ŭ
Ц
þ
an
de
ŏ
В
d
Sa.
ne
H
Ъ
τ.
as
_
ſ
12
3S
~
\mathbf{rs}
te
le
ц
λĽέ
þ
de
Õ
В
D.
<u>.</u>
\mathbf{ps}
i.
el
Зť,
Ŧ
SS
Ъ
-
ĕ
lat
Ш
ť.
G
ē
L'
÷
е
pl
പ

5.
igure
Ч
d ii
alize
visu
l is
llipsoid
t e]
best-fi
The
lc.
Defvo
h l
ı wit
erferogran
int
-2
õ
ЧI
and
e series
time
el-1
entin
e G
s tŀ
verting
y in
ntŀ
n joi
l froi
tainec

Symbol	Description	Range used in this study	Reference
$\frac{\mathrm{d}\Delta P}{\mathrm{d}t}$	pressure change rate during quiescence	-5.2 to -2.0 MPa year $^{-1}$	This study
Q	total mean gas flux	$110 {\rm ~kt~d^{-1}}$	Carn et al. (2017), Allard et al. (2015)
t	time of passive degassing	~ 4 years	This study
R_c	volcanic conduit radius	$\leq 300 \ {\rm m}$	Allard et al. (2016)
V_r	volume of the reservoir	$5 \times 10^8 - 3 \times 10^{10} \text{ m}^3$	Shreve et al. (2021)
L	length of the magma column (up to the average reservoir depth)	$\sim 2 \text{ km}$	This study
α	mass fraction of dissolved volatiles in parent melt	1.3 wt%	Allard et al. (2015)
k_r	bulk modulus accounting for chamber compressibility (Text S4)	5×10^8 – 1×10^{10} Pa	Heap et al. (2019)
g	gravity	9.8 m s^{-2}	
$\hat{\rho}_{m,c}$	mean density of melt inside the magma column	$2550 {\rm ~kg} {\rm ~m}^{-3}$	Girona et al. (2014)
$\hat{\rho}_{g,c}$	mean density of gas inside the magma column	\leq 200 kg m $^{\text{-3}}$	Girona et al. (2014)
ρ_c	density of fully degassed melt in the column	$2670 {\rm ~kg~m^{-3}}$	Girona et al. (2014)
ρ_{nd}	density of the parent undegassed magma	2430 kg m^{-3}	Girona et al. (2014)
γ_c	volume fraction of degassed melt in the magma column	0.5	Girona et al. (2014)

Table 2: A description of the symbols used in Cases 1–3, as well as the ranges chosen for the parameters in this study. Symbols with no range presented are calculated from the defined parameters.

Figure 2: Inversion results. a. Geodetic observations (top row), synthetic displacements (middle row) and residuals (bottom row) of an ellipsoid at ~1.9 km b.s.l (2.8 km beneath the vents). Left column is the Sentinel-1 velocity map, and right column is the ALOS-2 interferogram scaled to obtain displacement in centimeters year⁻¹. The caldera and craters are outlined in black, and the 2015 and 2018 lava flows are shown in pink and purple, respectively. b. A map and aerial view of the geometry of the depressurized ellipsoid estimated using *Defvolc*. Plot created with PyVista (Sullivan & Kaszynski, 2019).

208	sure in the reservoir equilibrates the weight of the magma in the conduit. Consequently,
209	mass changes within the system (either in the conduit or reservoir) due to degassing re-
210	sult in reservoir depressurization, causing ground subsidence. This model takes into ac-
211	count whether volatiles are degassed from the conduit or reservoir, as well as the viscoelas-
212	tic behavior of the host rock, magma replenishment, and magma density changes. We
213	proceed with this theoretical model to couple passive degassing and reservoir depressur-
214	ization at Ambrym volcano.
215	This model simplifies the relationship between mass loss by degassing and reser-
216	voir depressurization by assuming the following:
217	1. A magma reservoir is connected to an open, magma-filled cylindrical conduit with
218	a fixed length L . The reservoir's magma pressure is magmastatic (Figure 3a).
219	2. Gas mass in the conduit is much smaller than the (incompressible) melt (liquid
220	and solid phase) mass in the conduit (i.e., $m_{m,c}(t) \gg m_{g,c}(t)$).
221	3. The melt in the conduit is a mixture of an undegassed parent melt and a denser,
222	degassed melt.
223	4. Gas separation may occur in the conduit or reservoir. Without magma recharge,
224	degassing can continue until the total degassed volatile mass equals that of the
225	initial mass of bulk dissolved volatiles in the undegassed magma.
226	5. We assume a mean degassing rate \hat{Q} that is constant over months to years. In Sec-
227	tion 2.2, we demonstrate that the mean SO_2 flux is constant, while temporal vari-
228	ations in the $\frac{H_2O}{SO_2}$ ratio are unknown and henceforth assumed constant.

229	6. Crystal content is neglected, temperature (T) of the system is constant, gas sol-
230	ubility depends only on pressure, and the gas mass within the reservoir is calcu-
231	lated at a mean depth.
232	7. Melt volume decreases during degassing of H_2O . No other volatiles are considered.
233	8. The host rock of the system is a half-space with a Maxwell viscoelastic rheology
234	(with a bulk modulus k and an effective viscosity μ).
235	Using these assumptions, this model can be used to gain a first-order understand-
236	ing of the relationship between a system's degassing flux and depressurization. We in-
237	vestigate whether this model can explain the reservoir depressurization estimated from
238	geodetic models at Ambrym. We then discuss the role of magma replenishment and its
239	effect on the reservoir pressurization rate.

Based on the first assumption above, the pressure change at the base of the conduit at time t can be written as

$$\Delta P(t) = P(t) - P(t_0) = \frac{g(m_{m,c}(t) + m_{g,c}(t))}{\pi R_c(t)^2} - P(t_0), \tag{1}$$

where P(t) and $P(t_0)$ are the pressure within the reservoir at time t and t_0 , $m_{m,c}(t)$ is the melt mass within the conduit of constant length L (Figure 3a), $m_{g,c}(t)$ is the gas mass within the conduit, $R_c(t)$ is the conduit radius, and g is gravity. Equation 1 describes a pressurized reservoir which is sustaining the weight of the magma-filled cylindrical conduit, which acts on a surface area of $\pi R_c(t)^2$ (Girona et al., 2014).

Taking the time derivative of this equation, we can obtain the rate of pressure change:

$$\frac{\mathrm{d}\Delta P(t)}{\mathrm{d}t} = \frac{g\hat{\rho}_{m,c}(t)V_{m,c}(t)}{\pi R_c(t)^2} \left\{ \frac{1}{\hat{\rho}_{m,c}(t)V_{m,c}(t)} \left[\hat{\rho}_{g,c}(t)\frac{\mathrm{d}V_{g,c}(t)}{\mathrm{d}t} + V_{g,c}(t)\frac{\mathrm{d}\hat{\rho}_{g,c}(t)}{\mathrm{d}t} + \hat{\rho}_{m,c}(t)\frac{\mathrm{d}V_{m,c}(t)}{\mathrm{d}t} + V_{m,c}(t)\frac{\mathrm{d}\hat{\rho}_{m,c}(t)}{\mathrm{d}t} \right] - \frac{2}{R_c(t)}\frac{\mathrm{d}R_c(t)}{\mathrm{d}t} \right\}.$$
(2)

We have substituted $m_{m,c}(t) = \hat{\rho}_{m,c}(t)V_{m,c}(t)$ and $m_{g,c}(t) = \hat{\rho}_{g,c}(t)V_{g,c}(t)$, where $\hat{\rho}_{m,c}(t), V_{m,c}(t), \hat{\rho}_{g,c}(t), V_{g,c}(t)$ are the mean melt and gas density and volume in the con-249 duit, respectively. 250

248

We further simplify Equation 2 by assuming an elastic host rock, a constant gas 251 and melt density in the conduit $(\frac{\mathrm{d}\hat{\rho}_{g,c}(t)}{\mathrm{d}t} = 0 \text{ and } \frac{\mathrm{d}\hat{\rho}_{m,c}(t)}{\mathrm{d}t} = 0)$, a conduit radius that 252 does not change significantly over time $\left(\frac{\mathrm{d}R_c(t)}{\mathrm{d}t} = 0\right)$, and that the mean gas density 253 in the conduit is significantly smaller than the mean melt density $(\hat{\rho}_{g,c}(t) \ll \hat{\rho}_{m,c}(t))$. 254 We then obtain: 255

$$\frac{\mathrm{d}\Delta P(t)}{\mathrm{d}t} = \frac{g\hat{\rho}_{m,c}(t)}{\pi R_c(t)^2} \frac{\mathrm{d}V_{m,c}(t)}{\mathrm{d}t}.$$
(3)

After considering the relationship between the volume of magma in the reservoir 256 and the partial density of water in a silicate melt, ρ_w , we can rewrite the above equa-257 tion as: 258

$$\frac{\mathrm{d}\Delta P(t)}{\mathrm{d}t} \left(\frac{\pi R_c(t)^2}{g\hat{\rho}_{m,c}(t)} + \frac{V_r(t)}{k_r} \right) = -\frac{\hat{Q}}{\rho_w},\tag{4}$$

which yields, by integration, assuming \hat{Q} is constant, Equation 45 from Girona et 259 al. (2014): 260

$$\Delta P(t) = -\frac{g\hat{\rho}_{m,c}(t_0)k_r\hat{Q}t}{\pi R_c(t_0)^2\rho_w k + g\rho_w\hat{\rho}_{m,c}(t_0)V_r(t_0)}.$$
(5)

The full derivation can be found in Text S4.

262	Equation 5 can be used to compare the depressurization measured with geodetic
263	modeling (average $\Delta P \propto$ surface deformation) at Ambrym to the theoretical depres-
264	surization of the magmatic system by passive degassing (using \hat{Q} as input, using OMI
265	to measure SO_2 mass, then converting to H_2O mass). The remaining parameters nec-
266	essary to calculate $\Delta P(t)$ are fixed based on previous studies (Table 2—without magma
267	replenishment, Cases 1–3— and Table S1—with magma replenishment, Case 4).

268 3 Results

269

3.1 Geodetic Source Estimation

270	We invert for the location, depth, axes lengths, and pressure change per year of a
271	sub-horizontal ellipsoid beneath Ambrym's caldera (dip fixed to $0^\circ).$ See Table 1 for the
272	inverted parameters and final geometries. The final estimated source geometry is an el-
273	lipsoid elongated N°147 at a depth of ${\sim}2.8~{\rm km}$ beneath the craters (1.9 km b.s.l., Fig-
274	ure 2). The northwest tip of the source is located beneath Benbow, and the source ex-
275	tends beneath the caldera for more than 9 km to the SE, oblique to the N°110 rift zone.
276	The mean pressure change per year of the ellipsoid is -3.56 MPa year $^{-1},$ ranging be-
277	tween -5.2 to -2.0 MPa year $^{-1}$ when including an error of one standard deviation from
278	the mean (Table 1), given a Young's modulus of 5 GPa and Poisson's ratio of 0.25. The

279	best-fit model has a pressure change of -2.15 MPa year $^{\rm -1}$ (Table 1). The Young's mod-
280	ulus is estimated from laboratory measurements, according to Heap et al. (2019), yet this
281	parameter is still unconstrained at the scale of the volcanic edifice. These errors are prop-
282	agated into both the geodetic and theoretical modeling. The Young's modulus may re-
283	alistically range from 0.5 to 10 GPa. This will affect the estimated pressure change, due
284	to the relationship $\Delta V_r \propto \frac{V_r \Delta P}{G}$ (Anderson & Segall, 2011), where V_r is the volume of
285	the reservoir, ΔV_r and ΔP are its volume and pressure change, respectively, and G is
286	the host rock shear modulus. It follows that the pressure change of the best-fit model
287	may range from -4.2 to -0.2 MPa year $^{-1}.$ A pressure change of -4.2 MPa is within the range
288	of uncertainties from the theoretical model discussed in Section 3.2, while -0.2 MPa could
289	only be obtained with unreasonably large ($V_r > 300 \text{ km}^3$) reservoir volumes (Section
290	3.2 and Figure S8). Such uncertainties emphasize the sensitivity of this model to the vol-
291	canic conduit and reservoir geometries, which are often unknown. Future studies using
292	seismic wave velocities to calculate the dynamic shear modulus, then converted to the
293	static shear modulus (e.g., Grandin et al., 2010), or using experimental studies of rock
294	samples from the edifice (e.g., Heap et al., 2019), could further constrain the host rock
295	properties.
296	Because the subsidence rate is approximately constant, we assume that the depres-
297	surization rate bounds of -5.2 to -2.0 MPa year $^{-1}$ and the source geometry also remain
298	constant. By combining the depressurization rate with the mean degassing SO_2 flux es-

timated in Section 2.2, we investigate whether a model coupling mass loss by passive de-299

gassing and reservoir depressurization reasonably explains these estimates. We acknowl-300

-20-

301	edge that other physical mechanisms may drive subsidence on time scales of months to
302	years, including viscoelastic response of the reservoir tapped during the 2015 eruption
303	(depending on the viscoelastic shell radius and whether the reservoir is refilled) (Segall,
304	2019), as well as cooling and crystallization of magma (Caricchi et al., 2014; Townsend,
305	2022). In addition, deformation rates can change abruptly due to energy released from
306	seismic swarms, although typically this occurs during uplift episodes. We conclude that
307	these mechanisms are unlikely because of the relatively short time period of subsidence
308	(2.5 years), the high deformation rate ($\sim 1 \text{ cm month}^{-1}$), and the abrupt end to the sub-
309	sidence.

310 3.2 Reservoir Depressurization Rate With No Magma Replenishment

We explore various cases to investigate the effect of the fixed model parameters on reservoir depressurization rate. This includes fixing whether the host-rock is either elastic or viscoelastic, or if gas exsolution occurs in the conduit or reservoir. Finally, we discuss the effect of magma replenishment on the reservoir depressurization rate.

315

3.2.1 Elastic Rheology (Case 1)

We calculate the theoretical reservoir depressurization rate at Ambrym in an elastic halfspace, for a range of reservoir volumes $V_r(t_0)$ and conduit radii $R_c(t_0)$, given a water vapor flux of $\hat{Q} \approx 110$ kt day⁻¹. The higher the gas flux \hat{Q} , the higher the depressurization rate. We also explore a range of reasonable values for the free parameters. For example, the reservoir bulk modulus k_r may realistically vary from 5×10^8 to 1×10^{10} MPa. As k_r increases, the host rock becomes more rigid. On the contrary, if the reser-

322	voir is compliant, reservoir deformation helps sustain the reservoir's internal pressure.
323	Finally, we fix the initial bulk volatile content, α (used to calculate ρ_w ; see Text S4), to
324	1.3 wt% (Allard et al., 2015). For a given \hat{Q} , the lower the value of α , the higher the de-
325	pressurization rate. This is because for a lower α , a greater volume of magma will need
326	to lose gas to sustain the same \hat{Q} . However, for a lower α , the melt density change af-
327	ter degassing would be smaller, which could partly compensate, or even counterbalance,
328	the higher depressurization rate. The density of the parent melt is assumed to be $\rho_{nd} =$
329	2430 kg m $^{-3}$ and the density of the degassed melt is $\rho_c~=~2670$ kg m $^{-3}$ (values imple-
330	mented in Girona et al. (2014)). The influence of ρ_{nd} and ρ_c on depressurization rate
331	is shown in Figure S6. Following Girona et al. (2014), we assume steady-state convec-
332	tion in a conduit that consists of 50% parent melt (undegassed) and 50% degassed melt,
333	and the constant mean melt density is $\hat{\rho}_{m,c}(t) = \hat{\rho}_{m,c}(t_0) = 2550 \text{ kg m}^{-3}$.
334	Figure 3b shows the theoretical depressurization rates for Case 1 when $k_r = 5 \times$
335	10^8 Pa, $\hat{Q}=110$ kt day-1, $\alpha=$ 1.3 wt%. According to Shreve et al. (2021), Ambrym's
336	reservoir has a minimum size of 1 km^3 . For completeness, we assume a range of reser-
337	voir volumes from 1–35 $\rm km^3$ and conduit radii from 10–700 m. While Allard et al. (2016)
338	inferred a 3 m radius for the upper section of Benbow's conduit to sustain the magma
339	convection needed to explain the SO_2 flux, there have been no direct measurements of
340	the conduit diameter. We therefore investigate a wide range of conduit radii to explore
341	the effect of this parameter on the model outputs. Our models indicate that the depres-
342	surization rates at Ambrym inferred from geodesy (between -5.2 and -2 MPa) can be reached
343	for large conduit radii ($R_c > 400$ m) when reservoir volumes are small ($V_r \approx 1$ km ³).

For larger reservoirs ($V_r > 12 \text{ km}^3$), the conduit radius connecting the lava lakes to the reservoir may be as low as 10 m.

346

3.2.2 Viscoelastic Rheology, Gas Exsolves in Conduit (Case 2)

Case 1 assumes an elastic half-space, and we wish to investigate how viscoelasticity affects the response of the host rock to mass loss by degassing. We still assume that there is no exsolved gas in the reservoir and introduce a host rock with a Maxwell viscoelastic rheology. Gas is exsolved in and degassed from the conduit of length L, which has an initial gas volume fraction $\beta_c = 0.1$. As in Case 1, we impose steady-state magma convection in the conduit.

Despite the addition of viscoelasticity, for the range of parameters of interest ($V_r =$ 353 1–35 km³ and $R_c = 10-700$ m), no meaningful difference is noted between Case 1 and 354 Case 2 (Figure S7). For larger values of V_r , the solutions begin to diverge when the host 355 rock becomes less viscous ($\mu \approx 10^{17}$ Pa s, Figure S7c). Aside from the minimum vis-356 cosity necessary to maintain topography, we have no constraints on this parameter for 357 the host rock at Ambrym. Therefore, we proceed with Case 3 by setting the effective vis-358 cosity of the crust to $\mu = 10^{18}$ Pa s (Table S1) and allowing for gas exsolution in the 359 reservoir. 360

361

3.2.3 Viscoelastic Rheology, Gas Exsolves in Reservoir (Case 3)

We assume that gases may exsolve within the reservoir according to Henry's Law $(n_r(t) = \alpha - S[P(t_0) - \Delta P(t)]^{\frac{1}{2}}$ when $\alpha > S[P(t_0) + \Delta P(t)]^{\frac{1}{2}})$ (e.g., Huppert & Woods,

367	m.
366	52 MPa, the depth of the reservoir when gas exsolution occurs is $L < \frac{1}{g\rho_{m,c}} (\frac{\alpha}{S})^2 \approx 400$
365	that $\alpha = 1.3$ wt%, $S = 4 \times 10^{-6}$ Pa ^{-1/2} for water, and that $\Delta P(t) \ll P(t_0) = \rho_{m,c}gL \approx 10^{-6}$
364	2002). Assuming the conduit is completely degassed ($\hat{\rho}_{m,c} = 2670 \text{ kg m}^{-3}$), and given

368	If we assume a slightly larger α (e.g., 2.1 wt% as estimated by Moussallam et al.
369	(2021)), gas exsolution may occur at deeper levels, ${\sim}1$ km. This is still too shallow to
370	exsolve bubbles in a reservoir residing at $2-4$ km depth, as estimated for the shallowest
371	levels of Ambrym's magmatic system (Shreve et al., 2019, 2021). Geodetic inversions es-
372	timate a reservoir depth of ${\sim}2$ km beneath Ambrym's lava lakes. We can therefore con-
373	clude, according to Henry's Law, that there is no exsolved $\mathrm{H}_2\mathrm{O}$ in the reservoir. In this
374	case, Case 3 will have the same result as Cases 1 and 2, where gas exsolution occurs within
375	the conduit.

3.3 Reservoir Depressurization Rate With Magma Replenishment (Case 4)

In Section 3.2, depressurization rates estimated at Ambrym from geodetic observations can be obtained using the theoretical model for reservoir volumes > 12 km³. Using an end member scenario that is consistent with the best-fit mean depressurization rate of -2.15 MPa year⁻¹, we investigate the change in depressurization rate that occurred in October 2017. Between October 2017 (t_0) and December 2018 (t_1), we assume no net depressurization of the magmatic system ($\frac{d\Delta P(t_1 - t_0)}{dt} = 0$) because the time series displacements are within the data uncertainty (~1 cm),.

Figure 3: Degassing-induced depressurization theoretical model. a. A schematic showing the parameters included in the theoretical model. Modified after Girona et al. (2014). b. The pressurization rate change in MPa year⁻¹ for a variety of conduit radii and reservoir volumes. The heavy black lines show the upper and lower bounds of the pressure change estimated in the geodetic inversion, and the heavy blue line shows the pressure change of the best-fit model. The dotted contour lines show pressure changes of -32, -16, -8, and -4 MPa year⁻¹. c. The reservoir pressure change evolution over time (black and blue corresponding to the upper and lower bounds and best-fit pressure change, respectively), as estimated from geodetic inversions. The vertical dotted line indicates the end of the subsidence episode. The dotted lines show the total reservoir pressure change if no change in the depressurization rate occurred in October 2017.

385	One possible mechanism that could change the depressurization rate is a decrease
386	in passive degassing. There is, however, no meaningful change in the gas flux measured
387	by satellite during this time period (Figure 1b and Figure S2). Therefore, we hypoth-
388	esize that the depressurization rate change is due to magma replenishment from a deeper
389	reservoir into the shallow reservoir, counterbalancing the degassing-induced depressur-
390	ization and resulting in no net pressurization of the shallow reservoir. Building on the
391	previous findings of Cases 1–3, we attempt to constrain the magma replenishment rate.
392	We address two possible scenarios:
393	1. The deeper source is not overpressurized ($\Delta P_s(t) = 0$). Shallow reservoir depres-
394	surization results in a pressure gradient between the shallow and deeper sources.
395	Passive magma replenishment begins as soon as the depressurization began, at the
396	latest in June 2015.
397	2. Alternatively, the deeper source is overpressurized (i.e., active replenishment, $\Delta P_s(t) >$
398	0). The deep and shallow sources become (instantaneously) connected in Octo-
399	ber 2017, and the deep reservoir overpressure remains constant.

Both scenarios will consider a viscoelastic behavior of the host rock. Therefore, we can no longer use the simplified Equation 5 to calculate the reservoir pressure change. Without the simplifications of Equation 2 outlined in Section 2.4, $\frac{d\Delta P(t)}{dt}$ is instead expressed as

$$\frac{\mathrm{d}\Delta P(t)}{\mathrm{d}t} = \frac{C_1(t) + C_2(t)\Delta P(t)}{C_3(t)},$$

where the constants $C_1(t), C_2(t)$, and $C_3(t)$ are functions of the parameters in Equation 2 (See also Equation 34 in Girona et al. (2014), which includes the rate of magma re-

-26-

(6)

- ⁴⁰² plenishment). The full expansion of these constants and a table of parameters used in
- this study can be found in Table 2, Text S5, and Table S1.

Following Girona et al. (2014), the pressure change in the shallow reservoir can be expressed with an equation of the form

$$\Delta P(t) = -\Delta P_{\infty} (1 - e^{-\Gamma t}), \tag{7}$$

404 where $\Delta P_{\infty} = \frac{C_1(t_0)}{C_2(t_0)}$ and $\Gamma = -\frac{C_2(t_0)}{C_3(t_0)}$, assuming $C_1(t), C_2(t)$ and $C_3(t)$ do not vary

significantly with time from their initial values.

The volumetric rate of magma replenishment is

$$\frac{\mathrm{d}V_{\mathrm{rep}}}{\mathrm{d}t} = \lambda(t)(\Delta P_s(t) - \Delta P(t)),\tag{8}$$

where $\Delta P(t)$ is the pressure change in the shallow reservoir, $\Delta P_s(t)$ is the deep source overpressure, and $\lambda(t)$ is, as defined by Girona et al. (2014), the hydraulic strength (or strength of connectivity between the shallow and deep reservoirs), as derived from the Hagen-Poiseuille law for the volumetric flow rate, given laminar fluid flow in a conduit (Anderson & Segall, 2011; Le Mével et al., 2016).

$$\lambda(t) = \frac{\pi R_d(t)^4}{8M\mu_{nd}},\tag{9}$$

where $R_d(t)$ is the radius of the dike connecting the deeper magma source to the shallow reservoir, M is the length of the dike, and μ_{nd} is the viscosity of the replenished, undegassed magma. The maximum Reynold's number $Re = \frac{\rho_m M V_{rep}}{\pi R_d^2 \mu_m}$, given $\rho_m < 2700$ kg m⁻³, $V_{rep} < 5 \text{ m}^3 \text{s}^{-1}$, M < 15 km, $\mu_m > 10^4$ Pa s and $R_d > 2 \text{ m}$, is ~1600. This is smaller than the $Re_{crit} \sim 2000$ that defines the bounds between laminar and turbulent flow (Turcotte & Schubert, 2014).

417	The first scenario addresses passive replenishment, or when the deeper source is
418	not overpressured ($\Delta P_s(t) = 0$). Regardless of the input parameters, the depressuriza-
419	tion rate decays exponentially (Equation 7). This decrease is not consistent with the abrupt
420	pressure rate change observed in October 2017 (Figure S9). Therefore, we proceed with
421	the model of active replenishment, considering instead an overpressured deep source ($\Delta P_s(t) >$
422	0).
423	As mentioned previously, we assume that a hydraulic connection is created between
424	the deep and shallow reservoirs in October 2017 (t_0) , and the connection remains steady
425	until the eruption in December 2018 (t_1) . This hydraulic connection may occur when
426	the pressure difference between the shallow and deep reservoirs reaches a critical value,
427	after which any crystallized magma (i.e., a stiff plug) in the connecting dike begins to
428	flow upwards (Girona et al., 2015). As hotter material from the deep reservoir flows into

433 inflow from a deeper reservoir, and a pressure balance is obtained in the shallow reser-

the dike, the dike unplugs and the two reservoirs become hydraulically connected. This

unplugging also occurs within two months of the seismicity increase noted by the VMGD

(Figure 1b) (Global Volcanism Program, 2017a). As volume is lost during gas emission,

the resulting pressure decrease in the shallow reservoir is compensated by a renewed magma

- voir $(\Delta P(t_1) \Delta P(t_0) = 0)$. The replenished volume is calculated for each consecu-
- 435 tive time step t_{n+1} using Equation 8, given the pressure state of the shallow reservoir

436 at time t_n , a fixed $\lambda(t_0)$, and a $\Delta P_s(t > t_0) > 0$.

429

430

431

432

As stated in Equation 8, the volume of replenished magma (Figure 4a), is a function of the deep reservoir overpressure $\Delta P_s(t)$, the dike radius and length, and the magma viscosity. Because we have no constraints on these parameters, we instead explore the tradeoff between the lumped parameter $\lambda(t_0)$ (hydraulic strength) and the deep source overpressure $\Delta P_s(t_0)$ (Figure 4c, assuming a $V_r = 29$ km³ and $R_c = 10$ m, resulting in a shallow reservoir pressure change of ~2.15 MPa year⁻¹). A pressure balance occurs for a wide range of $\Delta P_s(t_0)$ and $\lambda(t_0)$. However, the volume of replenished magma does not vary based on the depressurization rate measured, because the melt volume decrease in the conduit-reservoir system when $\Delta P(t_n) = \Delta P(t_{n+1})$ (i.e., no net pressure change) is also constant and defined by $\frac{dV_m(t)}{dt} = \frac{dV_d(t)}{dt} + \frac{dV_{rep}(t)}{dt} = \frac{-\hat{Q}}{\rho_w} + \lambda(t_0)(\Delta P_s(t_0) - \Delta P(t))$ (Figure 4a). In the case of no net pressure change, Equation 6 can be simplified to

$$\frac{\mathrm{d}\Delta P(t)}{\mathrm{d}t} = 0 \Longrightarrow \frac{\hat{Q}}{\rho_w} - \lambda(t_0)(\Delta P_s(t_0) - \Delta P(t)) - \frac{\Delta P(t)}{\mu}(V_r(t_0) + V_{m,c}(t_0)) = 0, \quad (10)$$

where volume change is determined by the balance between volume loss due to degassing, volume increase due to magma influx, and the viscous response of the conduit and reservoir. As shown in Figure 4a, the total replenished volume necessary to create a pressure balance $\Delta P(t_{n+1}) - \Delta P(t_n) = 0$ within the shallow reservoir is ~0.16 km³ over 14 months, or a magma supply rate into the shallow reservoir of ~4.3 m³ s⁻¹.

0) are indicated by the black Figure 4: Effect of magma replenishment. a. The replenishment volume over time for three cases: an overpressurized and underpressurized reserfor reasonable V_r and R_c that correspond to these values). The vertical dotted line represents when the deeper reservoir becomes instantaneously over-The lower and upper bounds and best-fit shallow reservoir pressurization bounds (thin and thick black lines, respectively) over time as estimated from the theoretical model (Figure 3b pressurized. c. The relationship between shallow reservoir pressure difference between t_0 (October 2017) and t_1 (December 2018), hydraulic strength, line, and an overpressurized ($\Delta P > 0$) and underpressurized ($\Delta P < 0$) shallow reservoir by the pink and blue dotted lines, respectively. and deep reservoir overpressure $\Delta P_s(t_0)$. The parameters that lead to a pressure balance in the shallow reservoir (ΔP voir (pink and blue lines, respectively) at t_1 (December 2018) and a reservoir with a pressure balance (grey line). b.

442 4 Discussion

443

4.1 Volume of Ambrym's Reservoir

444	Using a simplified conceptual model of a volcanic plumbing system (a single con-
445	duit hydraulically connected to a shallow reservoir fed by a deep source), the subsidence
446	rates at Ambrym estimated with geodetic models can be obtained with a smaller reser-
447	voir volume ($V_r \approx 1 \text{ km}^3$) and a conduit radius of >400 m. We consider this unreal-
448	is tic based on studies showing that conduit radii are ${<}200$ m (e.g., Stephens et al., 2017).
449	As mentioned previously, the upper section of Benbow's conduit is estimated to have a
450	radius of 3 m (Allard et al., 2016). This narrow conduit would be consistent, given our
451	calculations, with a magma reservoir volume $>\!\!12~{\rm km}^3.$
452	Previous estimates of Ambrym's shallow magmatic reservoir have ranged from 0.5
453	(Allard et al., 2015) to 9.5 $\rm km^3$ (Shreve et al., 2021), with no estimates in the range of
454	$>12 \text{ km}^3$. This may imply one of the following:
455	1. The model is oversimplified, and does not represent Ambrym's plumbing system,
456	or
457	2. previous reservoir volume estimates are underestimated.
458	We address each of these possibilities in turn.
459	4.1.1 Model Parameters Affecting Depressurization Rates
460	Given the high gas flux at Ambrym, the geodesy-derived depressurization rates re-
461	quire a large reservoir because it will need to be subjected to a smaller pressure change

462	to result in the same volume change due to gas emissions (recall $\Delta V_r \propto \frac{V_r \Delta P}{G}$). In this
463	study, the geometry of the reservoir-conduit system is simplified. We assume a single con-
464	duit extending from the surface to 2 km b.s.l., from which gas can exsolve and escape,
465	causing magma convection in the conduit. Volcanic conduits have been imaged to depths
466	of up to a few hundred meters within the edifice using muon tomography (Tanaka et al.,
467	2009), but at deeper depths (>1 km) magma ascent is thought to occur by porous flow
468	through the thermally weakened, yet crystal-rich host rock (McKenzie, 1984). In addi-
469	tion, Ambrym has two active craters with multiple vents that were passively degassing
470	during the time period of interest, and their connection at depth is not understood. Through-
471	out this study, we assume a single conduit connects the reservoir to the surface, which
472	may oversimplify reality.
473	Another factor that affects the pressure change within the reservoir, but is not con-
473 474	Another factor that affects the pressure change within the reservoir, but is not con- sidered in this model, is magma compressibility. Withdrawal of a compressible magma
473 474 475	Another factor that affects the pressure change within the reservoir, but is not con- sidered in this model, is magma compressibility. Withdrawal of a compressible magma from the system mutes reservoir pressure changes, because magma volume increases as
473 474 475 476	Another factor that affects the pressure change within the reservoir, but is not con- sidered in this model, is magma compressibility. Withdrawal of a compressible magma from the system mutes reservoir pressure changes, because magma volume increases as the magma ascends and decompresses. Therefore, the magma density in the reservoir
473 474 475 476	Another factor that affects the pressure change within the reservoir, but is not con- sidered in this model, is magma compressibility. Withdrawal of a compressible magma from the system mutes reservoir pressure changes, because magma volume increases as the magma ascends and decompresses. Therefore, the magma density in the reservoir should be considered to account for this volume change, similar to Case 3 (when gas ex-
473 474 475 476 477	Another factor that affects the pressure change within the reservoir, but is not con- sidered in this model, is magma compressibility. Withdrawal of a compressible magma from the system mutes reservoir pressure changes, because magma volume increases as the magma ascends and decompresses. Therefore, the magma density in the reservoir should be considered to account for this volume change, similar to Case 3 (when gas ex- solves in the reservoir). However, using the pressure-dependent model based on Henry's
473 474 475 476 477 478	Another factor that affects the pressure change within the reservoir, but is not con- sidered in this model, is magma compressibility. Withdrawal of a compressible magma from the system mutes reservoir pressure changes, because magma volume increases as the magma ascends and decompresses. Therefore, the magma density in the reservoir should be considered to account for this volume change, similar to Case 3 (when gas ex- solves in the reservoir). However, using the pressure-dependent model based on Henry's law, no water vapor exsolves at depths of ~2 km. Past studies of Ambrym indicate that
473 474 475 476 477 478 479 480	Another factor that affects the pressure change within the reservoir, but is not con- sidered in this model, is magma compressibility. Withdrawal of a compressible magma from the system mutes reservoir pressure changes, because magma volume increases as the magma ascends and decompresses. Therefore, the magma density in the reservoir should be considered to account for this volume change, similar to Case 3 (when gas ex- solves in the reservoir). However, using the pressure-dependent model based on Henry's law, no water vapor exsolves at depths of ~2 km. Past studies of Ambrym indicate that magma compressibility in the reservoir may be higher than for gas-poor basalts (Shreve
473 474 475 476 477 478 479 480	Another factor that affects the pressure change within the reservoir, but is not con- sidered in this model, is magma compressibility. Withdrawal of a compressible magma from the system mutes reservoir pressure changes, because magma volume increases as the magma ascends and decompresses. Therefore, the magma density in the reservoir should be considered to account for this volume change, similar to Case 3 (when gas ex- solves in the reservoir). However, using the pressure-dependent model based on Henry's law, no water vapor exsolves at depths of ~2 km. Past studies of Ambrym indicate that magma compressibility in the reservoir may be higher than for gas-poor basalts (Shreve et al., 2021; Hamling & Kilgour, 2020). These results imply that magma compressibil-
473 474 475 476 477 478 479 480 481	Another factor that affects the pressure change within the reservoir, but is not con- sidered in this model, is magma compressibility. Withdrawal of a compressible magma from the system mutes reservoir pressure changes, because magma volume increases as the magma ascends and decompresses. Therefore, the magma density in the reservoir should be considered to account for this volume change, similar to Case 3 (when gas ex- solves in the reservoir). However, using the pressure-dependent model based on Henry's law, no water vapor exsolves at depths of ~2 km. Past studies of Ambrym indicate that magma compressibility in the reservoir may be higher than for gas-poor basalts (Shreve et al., 2021; Hamling & Kilgour, 2020). These results imply that magma compressibil- ity at Ambrym may be high enough to cause larger reservoir volume estimates, but the

-32-

484	In addition, due to the unconstrained depth of the deeper reservoir, we assume that
485	InSAR surface displacements are only influenced by pressurization of the shallow reser-
486	voir (Du et al., 1992; Rivalta & Segall, 2008). Petrological constraints from previous work
487	(e.g., Moussallam et al. (2021)) based on melt inclusion entrapment pressures from the
488	2018 eruptive products indicate that magma may be stored at depths of up to 9.5 km
489	b.s.l. Clinopyroxene barometry estimates a magma plumbing system that reaches depths
490	of 14 km b.s.l. (Firth et al., 2016; Sheehan & Barclay, 2016). However, given that only
491	one melt inclusion from the 2018 eruption was used to estimate the depth of 9.5 km b.s.l.
492	(Moussallam et al., 2021), we cannot robustly constrain the deeper reservoir location.
493	Assuming a spherical point pressure source (Mogi, 1958), an elastic medium, and the es-
494	timated magma influx (~0.16 $\rm km^3),$ the reservoir would need a depth >25 km for sub-
495	sidence to be ${<}5~{\rm cm}$ in the satellite LOS. This reservoir may be shallower than 25 km
496	if magma compressibility results in muted ground displacements, however, as mentioned
497	previously, we do not further explore effects of magma compressibility.
498	Finally, as mentioned in Section 2.2, the H_2O flux used to estimate the depressur-
499	ization rate is based on the assumption of a constant $\frac{H_2O}{SO_2}$ ratio, as well as a SO ₂ CMA

504 km³ when $\hat{Q} = 165$ kt.

500

501

502

503

at 3 km. If these assumptions are incorrect, the H_2O flux used as input for the theoret-

ical model would be biased. Therefore, we run the model for $\rm H_2O$ fluxes $\pm 50\%$ (55 or

165 kt; Figure S10). The estimated reservoir volume is $>5~{\rm km}^3$ for a conduit radius $R_c \sim$

10 m, and the total replenished volume is $V_{rep}=0.077~{\rm km^3}$ when $\hat{Q}=55~{\rm kt}$ and 0.232

4.1.2 Underestimation of Reservoir Volume Estimates

505

506	Previous studies have put bounds on Ambrym's reservoir volume using either magma
507	chamber residence times (Allard et al., 2015), or with geodesy (Shreve et al., 2021). The
508	former estimated a minimum reservoir volume of 0.5 $\rm km^3$ at depths of ${\sim}3.8~\rm km$ below
509	the summit according to the magma influx rate needed to explain the mean SO_2 plume
510	flux (~7800 tons day ⁻¹) (Allard et al., 2015; Bani et al., 2012). Allard et al. (2015) ac-
511	knowledge that this reservoir is connected to the lava lakes by a shallower plumbing sys-
512	tem, which we hypothesize is the depressurized reservoir imaged with geodesy in this study.
513	In addition, they conclude that in order to accommodate the recycling of degassed magma,
514	the magma plumbing system must be larger than 0.5 $\rm km^3.$
515	By relating geodetic models to the SO_2 flux measured by OMI satellite-based UV
516	spectrometers, Shreve et al. (2021) estimates that the minimum reservoir size is 1 km^3 ,
517	with possible reservoir volumes as high as 9.5 $\rm km^3.$ However, these may also be under-
518	estimates, because they depend on the assumed host rock shear modulus, which is not
519	well constrained at Ambrym. This study cannot further constrain the upper bound on
520	the size of the degassed reservoir at Ambrym. Nonetheless, the results presented here
521	are consistent with the conclusions that previous studies have underestimated the reser-
522	voir volume, and that it may be as large as 12 km^3 .

4.2 Magma Replenishment Prior to the 2018 Eruption

524 4.2.1 Magma Supply Rate

According to our study, approximately 0.16 km^3 of magma would have been needed 525 to replenish the shallow reservoir to counteract the subsidence from degassing, equiv-526 alent to a magma supply rate into the shallow reservoir $\frac{\mathrm{d}V_{rep}}{\mathrm{d}t} \approx 4.3 \text{ m}^3 \text{ s}^{-1}$. In a pre-527 vious study, Allard et al. (2015) estimates that $25 \text{ m}^3 \text{ s}^{-1}$ of magma is necessary to sus-528 tain the SO_2 flux released at the surface. However, the estimate from Allard et al. (2015) 529 corresponds to the volume of the magma batch that loses its gas and is recycled deeper 530 in the system per unit time. On the other hand, our estimate corresponds to the volume 531 lost in this recycling process, due to density changes during degassing, hence represent-532 ing a fraction of the recycled volume of Allard et al. (2015). The ratio between the two 533 estimates is approximately equal to a "shrinkage ratio" $\beta = \frac{\rho_c - \rho_{nd}}{\rho_{nd}} = \frac{\Delta \rho}{\rho_{nd}} \approx 10\%$, de-534 fined as the density increase of the magma due to degassing (see Text S6 for a detailed 535 derivation). 536

The magma supply rate estimated in this study $(4.3 \text{ m}^3 \text{ s}^{-1})$ is on the same order 537 of magnitude as the mantle-driven surge in magma supply rate at Kilauea in 2006, dur-538 ing the eruption from the Pu'u 'O'ō-Kupaianaha vent system which began in 1983 (Poland 539 et al., 2012). The supply rate was estimated to range between $6-7 \text{ m}^3 \text{ s}^{-1}$, depending on 540 the assumed magma compressibility (Poland et al., 2012). This estimate was made us-541 ing a calculation similar to Allard et al. (2015), with SO₂ flux used as a proxy for lava 542 effusion rates and consequently magma supply rate (Poland et al. (2012) also includes 543 volume change due to geodetic modeling of uplift that occurred in 2006). However, at 544

Kilauea, the degassed magma is assumed to have erupted from the Pu'u Ö'ō vent (as
opposed to being recycled) and been replenished at the same rate with magma from depth.
Therefore, these calculations are more comparable to our estimate than the supply rate
estimated by Allard et al. (2015).

549

4.2.2 Stealth Magma Replenishment

Recent conceptual models describe volcanic unrest and eruption (in particular ini-550 tial conduit formation) in three phases. The first is "staging", which can occur either at 551 the end of a previous eruption, during intereruptive time periods, or immediately pre-552 ceding an eruption (Roman & Cashman, 2018). In the case of replenishment at Ambrym, 553 the latter seems the most likely. Earthquakes detected in mid-2017 were the first indi-554 cation of magma replenishment to shallower levels (Global Volcanism Program, 2017a), 555 possibly indicating the shear failure of host rocks due to a magma intrusion. Further anal-556 ysis of seismic data is necessary to discriminate between the processes causing seismic-557 ity in August 2017. 558

Around the same time, the number of active vents increased, also indicating a magma influx into the system (Video S1). After an increase in lava lake level (Moussallam et al., 2021), the shallow reservoir destabilized, causing the initial intra-caldera eruption of 14 December 2018, and eventually tapped the deeper magmatic system the following day (Shreve et al., 2019). The deeper portion of the magmatic system (>6.5 km b.s.l.) fed the rift zone intrusion and submarine eruption, according to melt inclusion entrapment pressures (Moussallam et al., 2021).

-36-

566	The pressure balance due to the combined effects of degassing and magma replen-
567	ishment results in a low stress change on the host rocks, effectively equivalent to a "rate
568	or volume that is too low/small to produce detectable seismicity" (Roman & Cashman,
569	2018). This demonstrates the possibility of a replenishment volume and rate that is large
570	compared to other geodetically-derived magma replenishment rates (e.g., 187 $\times 10^6~{\rm m}^3$
571	over 7.3 years at Laguna del Maule (Le Mével et al., 2016)) without notable seismicity
572	in the months prior to the eruption (according to VMGD reports).

573 5 Conclusion

574	This study attempts to quantify the influence of persistent degassing on the pres-
575	surization state of a magma reservoir, ultimately allowing for more accurate forecasts
576	of future activity. The theoretical model is a simplistic view of reality (e.g., only one shal-
577	low reservoir and conduit, assumes steady conduit convection, etc.), but the uncertain-
578	ties and tradeoffs presented in this study may be further reduced at a volcanic system
579	with more instrumentation, or a longer time series of passive degassing and ground dis-
580	placement.
581	Despite the theoretical model's simplifications, we can conclude that:
582	1. continuous passive degassing is a plausible mechanism to drive ${\sim}2.5$ years of reser-
583	voir depressurization and subsidence at Ambrym volcano, and
584	2. "stealth" replenishment of magma may have occurred in the 14 months prior to
585	the 2018 eruption, resulting in a net pressure balance in the shallow magmatic sys-

586	tem, explaining the abrupt cessation of subsidence in October 2017 and the ab-
587	sence of pre-eruptive uplift prior to the December 2018 eruption.
588	These findings have implications for the monitoring of Ambrym volcano. InSAR
589	geodesy demonstrates a lack of substational uplift (<5 cm, Figure 1b) in the 12 days prior
590	to the 2018 eruption. However, InSAR detected changes in the long-term deformation
591	trend, in particular the abrupt end of a subsidence episode after 2.5 years. We interpret
592	the subsequent lack of subsidence as indirect evidence for magma influx from depth in
593	the 14 months preceding the 2018 eruption, a conclusion that cannot be drawn from de-
594	gassing and thermal anomalies alone. As quantitative in-situ measurements (such as GNSS
595	or gravity measurements and lava lake level heights) are seldom available, multiparamet-
596	ric remote sensing observations (radar, gas and thermal satellite imagery) provide an al-
597	ternative means of detecting magma replenishment over time scales of months to years
598	before eruptions.

599 Acknowledgments

We thank the Japan Aerospace Exploration Agency (JAXA 6th Research agreement no. 3245) and the European Space Agency (ESA) for providing access to the radar imagery used in this study. A portion of the ALOS-2 data was provided under a cooperative research contract between Geospatial Information Authority of Japan and JAXA. The ownership of ALOS-2 data belongs to JAXA. We would like to thank Francisco Delgado, Hélène Le Mével, Yan Zhan, Társilo Girona, and Patrick Allard for thoughtful discussions and insights which helped bring this manuscript to fruition. The authors would

607	also like to thank two anonymous reviewers and the editor for their constructive com-
608	ments. Several calculations used the S-CAPAD cluster of IPGP. Marie Boichu would like
609	to acknowledge support from the VOLCPLUME ANR project (ANR-15-CE04-0003-01).
610	This project has also received funding from the European Union's Horizon 2020 research
611	and innovation program under the Marie Skłodowska-Curie grant agreement no. 665850.
612	We also acknowledge support from the FAIR-EASE project, which received funding from
613	the European Union's Horizon Europe Framework Programme (HORIZON) under grant
614	agreement No. 101058785. This is IPGP contribution number 4263.
615	References
616	Allard, P., Aiuppa, A., Bani, P., Métrich, N., Bertagnini, A., Gauthier, P.,
617	Garaebiti, E. (2015). Prodigious emission rates and magma degassing bud-
618	get of major, trace and radioactive volatile species from Ambrym basaltic
619	volcano, Vanuatu Island arc. Journal of Volcanology and Geothermal Research,
620	304, 378 - 402.doi: https://doi.org/10.1016/j.jvolgeores.2015.10.004
621	Allard, P., Burton, M., Sawyer, G., & Bani, P. (2016). Degassing dynamics
622	of basaltic lava lake at a top-ranking volatile emitter: Ambrym volcano,
623	Vanuatu arc. Earth and Planetary Science Letters, 448, 69–80. Re-
624	trieved from http://dx.doi.org/10.1016/j.epsl.2016.05.014 doi:
625	10.1016/j.epsl.2016.05.014
626	Allibone, R., Cronin, S., Charley, D., Neall, V., Stewart, R., & Oppenheimer, C.
627	(2012). Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu:
628	A novel exposure pathway. Environmental Geochemistry and Health, $34(2)$,

8-2

630	Anderson, K., & Segall, P. (2011). Physics-based models of ground deformation
631	and extrusion rate at effusively erupting volcanoes. Journal of Geophys-
632	ical Research: Solid Earth, 116(7), 1–20. doi: https://doi.org/10.1029/
633	2010JB007939
634	Bani, P., Oppenheimer, C., Allard, P., Shinohara, H., Tsanev, V., Carn, S.,
635	Garaebiti, E. (2012). First estimate of volcanic SO_2 budget for Vanuatu Island
636	arc. Journal of Volcanology and Geothermal Research, 211-212, 36-46.
637	Biggs, J., & Pritchard, M. (2017). Global volcano monitoring: What does it mean
638	when volcanoes deform? Elements, $13(1)$, $17-22$. doi: 10.2113/gselements.13.1
639	.17
640	Boichu, M., Villemant, B., & Boudon, G. (2008). A model for episodic degassing of
641	an andesitic magma intrusion. Journal of Geophysical Research: Solid Earth,
642	113(7), 1–18. doi: https://doi.org/10.1029/2007JB005130
643	Boichu, M., Villemant, B., & Boudon, G. (2011). Degassing at La Soufrière de
644	Guadeloupe volcano (Lesser Antilles) since the last eruptive crisis in 1975-
645	77: Result of a shallow magma intrusion? Journal of Volcanology and
646	$Geothermal\ Research,\ 203 (3-4),\ 102-112. \qquad \qquad {\rm doi:\ https://doi.org/10.1016/}$
647	j.jvolgeores.2011.04.007
648	Burgi, P., Boudoire, G., Rufino, F., Karume, K., & Tedesco, D. (2020). Recent
649	Activity of Nyiragongo (Democratic Republic of Congo): New Insights From
650	Field Observations and Numerical Modeling. Geophysical Research Letters,

651 4	27(17). doi:	$10.1029/2020 {\rm GL088484}$
-------	--------------	-------------------------------

652	Caricchi, L., Biggs, J., Annen, C., & Ebmeier, S. (2014). The influence of cool-
653	ing, crystallisation and re-melting on the interpretation of geodetic signals
654	in volcanic systems. Earth and Planetary Science Letters, 388, 166–174.
655	Retrieved from http://dx.doi.org/10.1016/j.epsl.2013.12.002 doi:
656	10.1016/j.epsl.2013.12.002
657	Carn, S., Fioletov, V., Mclinden, C., Li, C., & Krotkov, N. (2017). A decade of
658	global volcanic SO_2 emissions measured from space. Scientific Reports, 7, 1–
659	12. doi: http://doi.org/10.1038/srep44095
660	Cashman, K. (2004). Volatile controls on magma ascent and eruption. <i>Geophysical</i>
661	$Monograph\ Series,\ 150,\ 109-124.\ {\rm doi:\ http://doi.org/10.1029/150GM10}$
662	Cayol, V., & Cornet, F. (1997). 3D mixed boundary elements for elastostatic defor-
663	mation field analysis. International journal of rock mechanics and mining \ldots ,
664	34(2), 275–287. doi: http://doi.org/10.1016/S0148-9062(96)00035-6
665	Chen, C., & Zebker, H. (2001). Two-dimensional phase unwrapping with use of sta-
666	tistical models for cost functions in nonlinear optimization. Journal of the Op -
667	tical Society of America A, $18(2)$, 338. doi: 10.1364/JOSAA.18.000338
668	Cronin, S., & Sharp, D. (2002). Environmental impacts on health from contin-
669	uous volcanic activity at Yasur (Tanna) and Ambrym, Vanuatu. Inter-
670	national Journal of Environmental Health Research, 12(2), 109–123. doi:
671	10.1080/09603120220129274

Du, Y., Aydin, A., & Segall, P. (1992). Comparison of various inversion techniques

673	as applied to the determination of a geophysical deformation model for the
674	1983 Borah Peak earthquake. Society, $82(4)$, 1840–1866.
675	Firth, C., Handley, H., Turner, S., Cronin, S., & Smith, I. (2016). Variable con-
676	ditions of magma storage and differentiation with links to eruption style at
677	Ambrym volcano, Vanuatu. Journal of Petrology, 57(6), 1049–1072. doi:
678	$10.1093/{\rm petrology/egw029}$
679	Fukushima, Y., Cayol, V., & Durand, P. (2005). Finding realistic dike models from
680	Interferometric Synthetic Aperture Radar data: The February 2000 eruption at
681	Piton de la Fournaise. Journal of Geophysical Research: Solid Earth, $110(3)$,
682	1–15. doi: http://doi.org/10.1029/2004JB003268
683	Girona, T., Costa, F., Newhall, C., & Taisne, B. (2014). On depressurization of vol-
684	canic magma reservoirs by passive degassing. Journal of Geophysical Research
685	: Solid Earth, 119, 8667–8687. doi: https://doi.org/10.1002/2014JB011368
686	Girona, T., Costa, F., & Schubert, G. (2015). Degassing during quiescence as a trig-
687	ger of magma ascent and volcanic eruptions. Scientific Reports, 5, 1–7. doi: 10
688	$.1038/\mathrm{srep18212}$
689	Global Volcanism Program. (2017a). Report on Ambrym (Vanuatu). Weekly Vol-
690	canic Activity Report, 30 August-5 September 2017. Retrieved from https://
691	volcano.si.edu/showreport.cfm?doi=GVP.WVAR20170830-257040
692	Global Volcanism Program. (2017b). Report on Ambrym (Vanuatu). Weekly
693	Volcanic Activity Report, 6 December-12 December 2017. Retrieved from
694	https://volcano.si.edu/showreport.cfm?doi=GVP.WVAR20171206-257040

695	Global Volcanism Program. (2017c). Report on Erta 'Ale (Ethiopia). Weekly Vol-
696	canic Activity Report, 25 January-31 January 2017. Retrieved from https://
697	volcano.si.edu/showreport.cfm?doi=GVP.WVAR20170125-221080
698	Grandin, R., Socquet, A., Jacques, E., Mazzoni, N., De Chabalier, J., & King,
699	G. (2010). Sequence of rifting in Afar, Manda-Hararo rift, Ethiopia,
700	2005-2009: Time-space evolution and interactions between dikes from In-
701	terferometric Synthetic Aperture Radar and static stress change modeling.
702	Journal of Geophysical Research: Solid Earth, 115(10), 2005–2009. doi:
703	http://doi.org/10.1029/2009JB000815
704	Hamling, I., Cevuard, S., & Garaebiti, E. (2019). Large-Scale Drainage of a Com-
705	plex Magmatic System: Observations From the 2018 Eruption of Ambrym
706	Volcano, Vanuatu. Geophysical Research Letters, 46(9), 4609–4617. doi:
707	10.1029/2019 GL082606
708	Hamling, I., & Kilgour, G. (2020). Goldilocks conditions required for earthquakes to
709	trigger basaltic eruptions : Evidence from the 2015 Ambrym eruption. Science
710	Advances, $6(14)$.
711	Heap, M., Villeneuve, M., Albino, F., Farquharson, J., Brothelande, E., Amelung,
712	F., Baud, P. (2019). Towards more realistic values of elastic moduli for
713	volcano modelling. Journal of Volcanology and Geothermal Research, 106684.
714	doi: http://doi.org/10.1016/j.jvolgeores.2019.106684
715	Huppert, H., & Woods, A. (2002). The role of volatiles in magma chamber dynam-
716	ics. Nature, 420(6915), 493–495. doi: 10.1038/nature01211

-43-

717	Kazahaya, R., Aoki, Y., & Shinohara, H. (2015). Budget of shallow magma plumb-
718	ing system at Asama Volcano, Japan, revealed by ground deformation and
719	volcanic gas studies. Journal of Geophysical Research: Solid Earth, 120, 2961–
720	2973. doi: $10.1002/2015$ JB012608. Received
721	Le Mével, H., Gregg, P., & Feigl, K. (2016). Magma injection into a long-lived
722	reservoir to explain geodetically measured uplift: Application to the 2007–2014 $$
723	unrest episode at Laguna del Maule volcanic field, Chile. Journal of Geophysi-
724	cal Research: Solid Earth, 121(8), 6092–6108. doi: 10.1002/2016JB013066
725	Li, C., Krotkov, N., Leonard, P., & Joiner, J. (2020). OMI/Aura Sulphur Dioxide
726	(SO_2) Total Column 1-orbit L2 Swath 13×24 km V003. Accessed: 8 February
727	2022. doi: 10.5067/Aura/OMI/DATA2022
728	McKenzie, D. (1984). The generation and compaction of partial melts. J. Petrol.,
729	25,713-765.
730	Mogi, K. (1958). Relations between the eruptions of various volcanoes and the de-
731	formations of the ground surfaces around them. Bulletin of the Earthuake Re-
732	search Institute, 36, 99–134.
733	Moussallam, Y., Médard, E., Georgeais, G., Rose-koga, E., Koga, K., Pelletier, B.,
734	\dots Peters, N. (2021). How to turn off a lava lake ? A petrological investiga-
735	tion of the 2018 intra-caldera and submarine eruptions of Ambrym volcano.
736	Bulletin of Volcanology, 83(36), 1–19.
737	Patrick, M., Swanson, D., & Orr, T. (2019). A review of controls on lava lake level:
738	insights from Halema'uma'u Crater, Kīlauea Volcano. Bulletin of Volcanology,

739 81(3). doi: 10.1007/s00445-019-1268-y

740	Poland, M., Miklius, A., Jeff Sutton, A., & Thornber, C. (2012). A mantle-driven
741	surge in magma supply to Kilauea Volcano during 2003-2007. Nature Geo-
742	<i>science</i> , 5(4), 295-300. Retrieved from http://dx.doi.org/10.1038/
743	ngeo1426 doi: 10.1038/ngeo1426
744	Rivalta, E., & Segall, P. (2008). Magma compressibility and the missing source for

- some dike intrusions. Geophysical Research Letters, 35(4), 0–4. doi: http://doi
 .org/10.1029/2007GL032521
- Robin, C., Eissen, J., & Monzier, M. (1993). Giant tuff cone and 12-km-wide associated caldera at Ambrym Volcano (Vanuatu, New Hebrides Arc). Journal
 of Volcanology and Geothermal Research, 55(3-4), 225–238. doi: 10.1016/0377
 -0273(93)90039-T
- Roman, D., & Cashman, K. (2018). Top–Down Precursory Volcanic Seis micity: Implications for 'Stealth' Magma Ascent and Long-Term Erup-
- tion Forecasting. Frontiers in Earth Science, 6 (September), 1–18. doi: 10.3389/feart.2018.00124
- Rosen, P., Gurrola, E., Sacco, G., & Zebker, H. (2012, April). The InSAR scientific
 computing environment. In *Eusar 2012; 9th european conference on synthetic aperture radar* (p. 730-733).
- Sambridge, M. (1999a). Geophysical inversion with a neighbourhood algorithm II.
 Appraising the ensemble. *Geophysical Journal International*, 138(2), 727–746.
- 760 doi: http://doi.org/10.1046/j.1365-246X.1999.00876.x

-45-

761	Sambridge, M. (1999b). Geophysical inversion with a neighbourhood algorithm – I.
762	Searching a parameter space. Geophysical Journal International, 138, 479–494.
763	doi: http://doi.org/10.1046/j.1365-246x.1999.00900.x
764	Segall, P. (2019). Magma chambers: What we can, and cannot, learn from volcano
765	geodesy. Philosophical Transactions of the Royal Society A: Mathematical,
766	Physical and Engineering Sciences, 377(2139). doi: http://doi.org/10.1098/
767	rsta.2018.0158
768	Sheehan, F., & Barclay, J. (2016). Staged storage and magma convection at Am-
769	brym volcano, Vanuatu. Journal of Volcanology and Geothermal Research,
770	322, 144–157. doi: http://doi.org/10.1016/j.jvolgeores.2016.02.024
771	Shreve, T. (2020). Crustal deformation at Ambrym (Vanuatu) imaged with satel-
772	lite geodesy: constraints on magma storage, migration, and outgassing (Doc-
773	toral dissertation, Institut de Physique du Globe de Paris). Retrieved from
774	https://tel.archives-ouvertes.fr/tel-03171509
775	Shreve, T., Grandin, R., Boichu, M., Garaebiti, E., Moussallam, Y., Ballu, V.,
776	Pelletier, B. (2019). From prodigious volcanic degassing to caldera subsidence
777	and quiescence at Ambrym (Vanuatu): the influence of regional tectonics. Sci
778	entific Reports, $9(18868)$. doi: https://doi.org/10.1038/s41598-019-55141-7
779	Shreve, T., Grandin, R., Smittarello, D., Cayol, V., Pinel, V., Boichu, M., & Mor-
780	ishita, Y. (2021). What triggers calder ring-fault subsidence at Ambrym
781	volcano? Insights from the 2015 dike intrusion and eruption. Journal of Geo-
782	physical Research: Solid Earth, 126.

-46-

783	Siebert, L., Cottrell, E., Venzke, E., & Andrews, B. (2015). Earth's Volcanoes and
784	Their Eruptions: An Overview (Second Edition ed.) (No. 1). Elsevier. Re-
785	trieved from http://dx.doi.org/10.1016/B978-0-12-385938-9.00012-2
786	doi: 10.1016/b978-0-12-385938-9.00012-2
787	Stephens, K., Ebmeier, S., Young, N., & Biggs, J. (2017). Transient deformation
788	associated with explosive eruption measured at Masaya volcano (Nicaragua)
789	using Interferometric Synthetic Aperture Radar. Journal of Volcanology and
790	Geothermal Research, 344, 212–223.
791	Sullivan, C. B., & Kaszynski, A. (2019, May). PyVista: 3D plotting and mesh anal-
792	ysis through a streamlined interface for the Visualization Toolkit (VTK). Jour-
793	nal of Open Source Software, 4(37), 1450. Retrieved from https://doi.org/
794	10.21105/joss.01450 doi: 10.21105/joss.01450
795	Tait, S., Jaupart, C., & Vergniolle, S. (1989). Pressure, gas content and eruption pe-
796	riodicity of a shallow, crystallising magma chamber. Earth and Planetary Sci-
797	ence Letters, $92(1)$, 107–123. doi: http://doi.org/10.1016/0012-821X(89)90025
798	-3
799	Tanaka, H., Uchida, T., Tanaka, M., Shinohara, H., & Taira, H. (2009). Cosmic-
800	ray muon imaging of magma in a conduit: Degassing process of Satsuma-
801	Iwojima Volcano, Japan. Geophysical Research Letters, $36(1)$, 1–5. doi:
802	$\rm http://doi.org/10.1029/2008GL036451$
803	Townsend, M. (2022). Linking surface deformation to thermal and mechani-
804	cal magma chamber processes. Earth and Planetary Science Letters, 577,

805	117272. Retrieved from https://doi.org/10.1016/j.epsl.2021.117272
806	doi: 10.1016/j.epsl.2021.117272
807	Turcotte, D., & Schubert, G. (2014). <i>Geodynamics</i> (3rd ed.). Cambridge University
808	Press. doi: $10.1017/CBO9780511843877$
809	Wessel, B. (2016). TanDEM-X Ground Segment - DEM Products Specifi-
810	cation Document (Tech. Rep. No. 3.1). Oberpfaffenhofen, Germany:
811	EOC, DLR. Retrieved from https://tandemx-science.dlr.de/ doi:
812	$\rm DOI:10.1002/hyp.3360050103$
813	Williams-Jones, G., & Rymer, H. (2015). Hazards of Volcanic Gases. In <i>The ency-</i>
814	clopedia~of~volcanoes~(pp.~985–992).doi: 10.1016/j.jallcom.2009.02.108
815	Wright, R. (2016). MODVOLC: 14 years of autonomous observations of effusive
816	volcanism from space. Geological Society, London, Special Publications, 426,
817	23-53. Retrieved from http://sp.lyellcollection.org/cgi/doi/10.1144/
818	SP426.12 doi: 10.1144/SP426.12
819	Wright, R., Flynn, L. P., Garbeil, H., Harris, A. J. L., & Pilger, E. (2004). MOD-
820	VOLC: Near-real-time thermal monitoring of global volcanism. Journal of Vol-
821	canology and Geothermal Research, 135(1-2), 29–49. doi: 10.1016/j.jvolgeores
822	.2003.12.008
823	Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time se-
824	ries analysis: Unwrapping error correction and noise reduction. Computers and
825	Geosciences, 133. Retrieved from https://doi.org/10.1016/j.cageo.2019
826	.104331 doi: 10.1016/j.cageo.2019.104331

-48-