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Using the Entringer numbers to count the alternating
permutations according a new parameter

Christiane POUPARD

Université Pierre et Marie Curie

(PARIS VI)
ISUP,; "LSTA

Abstract
The Entringer's integers were counting the down-up (or up-down) permutations

according to the first or the last term ; In this paper they are shown to enumerate the same

permutations according to the absolute difference between the first and the last terms.
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1.- An up-down (resp. down-up) permutation of order n is a permutation

(@yerasknsiany SloTa {§1 e n} with
a’lp—l = aZp 2 a2;.:»+[ = a2p (resp. aZp-—l = a2p 2 aZp-:—l 2 aZp)

for every pe{l T I E % ]} :

An alternating permutation is an up-down or down-up permutation.

Entringer has studied the enumeration of up-down (or down-up) permutations
according to the value of their first term.

For =1, k= let z—:i‘1 be the number of up-down permutations of order n+1

starting with n—-k+1 ; e: is also the number of down-up permutations of order n+1 starting

with k+1 .

We have the following recurrence relations :

S};:O for n=21,k2n+l ;

il

E] =

K n—-1 .

g = S gpm o ek <nel
j=n-k

n —1

= £: for n22
We can write the first values of the coefficients eg

k=1

2
(¥S)
=S
L

1= [




7/5)

Another way to get the Entringer numbers is to count the up-down or down-up

permutations according to the value of their last term.
For instance, if n is even, there are 2'; up-down permutations of order n+1

ending with n-k+1.

Let U, (2,k) (resp. V (£, k)and 8, (2, k)) be the set of up-down (resp.
dow-up and alternating) permutations of order n starting with £ and ending with k and
let u (£,Kk) (resp. v (8, k) dnd 5 (2, k)) be its cardinality.

We also define, for instance, u, (£, .), the number of up-down permutations which
start with £ .

Forde 2, -n+1<d<n-1 et d=0,

C, ()= {(x,y)/1<x<n, 1Sy<n, x-y=d},

we write U (d) = D u, (i)
(e Ty(d)
and vV, (d)= > vy, (L))
(i,j)e Cy(d)
and S, (@)= ¥ s, (i)
()€ T,(d)
Let us consider the permutation {a, ,..., an}. a;—a, will be its "deviation", and

I:al—alrl | its "separation”.
We state the two following propositions :
for 1 £d<n-1,

Proposition 1 : The numbers of alternating permutations of order n and deviation d is
equal to the number of up-down (or down-up) permutations of order n and separation d.

. Proposition 2 : the number of up-down (or down-up) permutations of order n and
separation d is equal,

if n is even, to the number of up-down permutations of order n whose first term is d
and if n is odd, to the multiplication of n—d by the number of up-down permutations of
order n—1 whose first termis d .



76

These two propositions may be reformulated as follows :
1) S,(@=U,(d+U,(d)=V, (d)+V,(-d)

2) U (@+U,(d)=V,(@d+V,(-d)

{un (d, ) if n is even
(n—d) LE (e 1f ®n 15 odd

We illustrate these propositions for n=6 andn=7 (cfp. 10,11, 12).

2. - First, we prove some relations concerning the numbers u,, (£, k), v, (£, k) and
5 (20

1) The following symmetric relations go straight forward.

If n is odd,
u, (/2\1()-=un (k.. 2) (i)
Vi el k= v, (k, £) (2)

For instance, to verify (1), we can use a bijection between U (£, k) and U (k, £):
by reading from right to left, a permutation of U (£, k) becomes a permutation of
W, (kL)

A similar argument can be applied to prove (2).

Likewise, it can be proved that, when n is even,
u, (£, k) =v, (k, 2) (3)

It can also be easily proved that for all n, there is a bijection between U (£, k) and
Y, (n+1-2£, n+1-k) :

we have only to transform the permutations of U (£, k) via complementation, i.e.,
to replace the term i of a permutation by n+1-i .

Therefore,

u, (£, k)= v (n+1-£, n+1-k) 4)
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2) Then, let us establish the following recurrence relations :
for £>k

uy (£, k)=v,_, (£, k) +u, (£+1,k)

and for 2 <k

u, (£,K) = vy_q (£ k=1) +uy (2+1, k)

if £+1<k
and u, (£, k) =u, (£+1, k-1) if £+1=k
(V1 (& k=1)=0 if £2+1=k)

(%)

(6)

(67

Indeed, for £ >k , we define a bijection between U (£, k) and ) V_; (i.k)

n-1

as follows : given a permutation of W, (£,k), we can define a permutation of

U V,_; (k) by omitting its first term, by decreasing (substracting one unit) the terms of
=1

the permutation greater than £ and by keeping the others, it
n-1]
W - )Y, G
i=¢

(a; =4, 8y 0 8 = le) i () ndia)

where, for 2<j<n

a—1 ifi - =ulb
A 4 il
J otherwise

Consequently
n-1
b= v, Uk .

=P

We are now ready to prove (5).
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n—1
Indeed, we can decompose () V', _; (i, k) in twosets VU, (4, k) and
i=L
n-1 n-1
 V,_; (., k), and use the bijection between ) VYV _, (i, k) and U (£+1, k).
i=0+1 i=f+1
n-1
For £ <k,thesets U (4,k) and \) V _; (i, k-1) have the same cardinalities.
i={

For the proof, we can use the bijection described above (let us notice that & = a -1 = k-1).

Thus for £ <k

n-1
u, (£, k)= .E i1,

1=

n-1
To see why (6) and (6°) hold, we can decompose \ ) UV _; (i, k-1) in two sets
i=f
n-1
YV, (& k-1) and ) V(i k-1), and use the bijection between
i=f+1
n-1
W YV, 6.k1)
1=£+1
and T le) if 2+1 <k,
fun(£+1,k—1) 1f 2+li=k. .
Similarly, we have for 2>k,
v, (4, ) =ug (=1, Y+ v (A=To k) (= i 2 > lekl €
and v, (2,k)=v, (21, k+1) if £=k+l (7)

(u,_; (£4-1,k)=0 if £=k+l1)
and for £ <k,

vi (2, =1, ; (A=1, k1) v (41,8 (8)
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3) If n is odd, we also establish a relation concerning the numbers s G2k,
More precisely, if n isoddand for 1<£<n-1,1<k<n-1, 2 #k, the number
of alternating permutations of order n starting with £ and ending with k is equal to the

number of alternating permutations of order n starting with £+1 and ending with k+1 .

In other words
s, (2+1,k+1) =5, (&, k)

Indeed
for 2 =k,

s, (£+1, k+1)
=, (UL, k1) + v (241, k4]
=u (A+1, k+1) +uy | (£, K) + v, (£, k+1)
=u, (£+1, k+1) +uy_; (2, k) +v, (k+], £)
=u, (4+], k+l) +u, (£, k) +u, 4 (k 2 +v (kL)
= (L] kel v 00, k) vy (K, 2)+v, (4, k)
= u, (£, k+1) + v g (k, £)+v, (£, k)
= u, (k+1, &) +v, 5 (k &)+ v, (£, k)
= u, (k, £) + v, (4, k)
= PN il (0 )

= s, (4, k)

9

(cf (8))

(cf2))

(cf (7))

(cf (2) et (3))

(cf (6))

(cf (1))

(cf(5)

(cf (1))

For 4 >k, the proof is along the same lines as in the previous case.



80

3.- From these results, we can set relations between numbers U, (d), V,, (d) and S, (d) and

therefore we can prove Proposition 1 and Proposition 2 (cf. 2).
1) Proof of Proposition 1.

If n is even, we have

Up(d)=V, (detV (d=U, () (10)
Indeed
U, @ o5 e 5 NG U= cd
(i,j)e T (d) (.)e T (-d)

Similarly, V, (d)=U, (-d).

If n is odd, we have

U, @=U0,(d)=V,d)=V_(-d) (11)
Indeed
U, (d)= D u, (i) = ¥ u, (G, 1) = U, (-d)
(ij)e T (d) (§.)e T, (—d)

likewise, V_ (d)=V_ ().

And U, (d)= 3 i Y v, (041, n+l-j)
(i,j)e T (d) (i.j))e T (d)

- 3 iVt
(i)e Bo(—d)

Therefore, for all n
U,@+U,(d)=V, (d)+V, (-d) =S5 (d)

Thus Proposition 1 is proved.
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2) Proof of Proposition 2
For all n, we have the following relations between U, (d) et V (d) :

U, (d) = Vypp (1) = Vo (d) +ug, (1, d+1) (13)

and V. (@ =U,,; (d) - Uy, @+1) (14)

In order to prove (13), we use the relations (7) and (4)

n—d y n—d+1
Vop @) -V, ., @)= 'Zl e R (Ed IS 'El Voep G+, )
1= =

n—-d
Y u, (m+d, m) — v, (n+1, n~d+1)
m=1

I

U, (d) -, (1, d+1)

In the same way, let us prove (14) using (5)
If n is even, let us deduce considering (11), (13), (14) :

S, (d)=U, (d)+V,(d)=u,,, (1,d+])
If n is odd, let us consider (9) and deduce :

s, (d+], j) =s, (d+1. 1) for < i<p-d.

But for each value of n, westate s (d+1,1)=s,(1,d+1)=u, (1, d+1), since there is an
obvious bijection between & (£,k) and & (k, £), and 4 (I, m) and St m)are
identical.

Therefore when n is odd,

n—d
S, (d)= 'El sp (A4, j) = (n—d) u, (1, d+1) .
J:

Finally, we have

S, (d)=U, @ +V, @ =U,(d+U, ()

=V, (d)+V,(d)
=u,,, (1, d+1) if n iseven

= (nd) u, (1, d+1) if n is odd.
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Moreover, when n is odd, we can notice that u, (1, d+1) is the number of up-down
permutations of order n-1 starting with d (denoted by wu_ _, (d, .)), since there is a
bijection between U (1, d+1) and the set of down-up permutations of order n-1 ending
with d . This bijection can be seen as follows : given a permutation of U (1, d+1), we can
define a down-up permutation of order n-1 ending with d by omitting its first term (equal
to 1) and by decreasing (cf. [4]) the other terms. And since n is odd, it is easy to transform
the down-up permutations of order n-1 ending with d in order to obtain the up-down

permutations of order n—1 starting with d (by inversion of the terms).
Likewise, when n is even, u _; (1, d+1) is equal to the number of up-down

permutations of order n starting with d (denoted by u_ (d, .)).

This is the way we prove Proposition 2.
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APPENDIX

For n=6 and n=7, using recurrence relations (5), (6), (7), (8), let us set the tables of
numbers u, (£, k), v, (£, k) and s (£.,k).

For given n, in the table of numbers u_ (£, k) (resp. v, (£, k), s, (£, k)), we
find the numbers U_ (d) and U (—d) (resp. V,, (d) and V_ (—d), S (d) and S (—d)) in the

last column and in the last row.

for n=6

Sg(1)=Ug (1) +Ug(-1)= Vg (1) + Vg (-1)=8+8=16=ug (1,.)
Sg()=Ug 2)+Ug(-2)=Ve(2)+ Vg (-2) =12 + 4= 16 =g (2,.)
S¢ (3 =Ug (3)+Ug (-3)= Vs (3) + Vg (=3) =13+ 1= 14=1u. (3, .)
S¢ @) =Ug (4) + Ug (-4)= Vg (4) + Vg (4) = 10+ 0= 10 = ug (4, .)
S (5)=Ug (5)+ Ug (<5) = Vg (5) + Vg (-5) =5+ 0=5=1, (5, .)

and for n=7

S; () =U;(1)+ Uy (<) =V, (1) + V5 (1) =48 +48 =96 =6 x 16 =6 us (1, )
$;2)=U;(2)+U; (-2)=V, () +V,(-2)=40+40=80=5x 16 =5 ug (2, .)
S;(3)=U;(3)+ U, (-3)=V, (3)+V,(-3)=28+28=56=4x 14=4u,(3,.)
S;@=U; (@) +U; (-H)=V, (@) +V,(4)=15+15=30=3x 10=3 uc (4, .)
S7(5)=Uq(5) + Uy (-5)= V5 (5)+ V5 (-5)=5+5=10=2x5=2u, (5, .)
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n=>6

table of numbers

ug (£,k)

10
13
12

table of numbers

Vg (£.k)

table of numbers

Sg (£.k)

10
14
16
16

12

16

o™

(o}

o

13

16

10

14

10

2k

FALS

PALS
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k| ik 44 % & | 7
1 0 o T T A 0
R T R e N T s 0 0
gl 164 16 ] B D} 2 4 0
4 [eaay ma |z 4 7 o | 15
o e T e 4 0 6 ] 0 .| 78
6 5 5 4 0 0 o | 40
7 0 0 0 0 R e
0 5 gt o [oag 14 ] 0
ko 2 3 4 5 6 7
1 0 0 0 0 0 0
2 0 0 0 2 4 0
3 0 0 0 4 8 10| 10] 5
4 0 g 4 Gt bl e 18
5 0 4 8 12 1.8 16 | 16 | 28
6 0 solmi bt b e 4 8 a6 b 40
7 0 sollode 1op b1s sl g | 48
0 5 15 128 |90 | 48 | ©
o O | 2 3 4 5 6 7
1 0 1606 b o1e . 1p )5 0
e i ke e o e o e 0
3 e S R e R S R
AT A e R N
sl e 18 |18 | 0 16 | 16 | 56
6 5 w16 16 8 16 0 1 o1s | B0
7 0 b e l1e e ka0 e
g lio ]l 30| 56| 8 t 96

table of numbe
ug (£.k)

table of numbe
\Z (£.k)

table of numbs
57 (£.k)
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