
HAL Id: hal-03651040
https://hal.science/hal-03651040

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Bearing Leader-Follower Formation Control under
Persistence of Excitation

Zhiqi Tang, Rita Cunha, Tarek Hamel, Carlos Silvestre

To cite this version:
Zhiqi Tang, Rita Cunha, Tarek Hamel, Carlos Silvestre. Bearing Leader-Follower Forma-
tion Control under Persistence of Excitation. IFAC-PapersOnLine, 2020, 53 (2), pp.5671-5676.
�10.1016/j.ifacol.2020.12.1589�. �hal-03651040�

https://hal.science/hal-03651040
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Bearing Leader-Follower Formation Control under
Persistence of Excitation

Zhiqi Tang ∗,∗∗ Rita Cunha ∗ Tarek Hamel ∗∗,∗∗∗ Carlos Silvestre ∗∗∗∗,∗

∗ ISR, IST, Universidade de Lisboa, Portugal. (e-mail:
zhiqitang@tecnico.ulisboa.pt, rita@isr.tecnico.ulisboa.pt)
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Abstract: This paper addresses the problem of formation control with a leader-follower structure in three
dimensional space by exploring persistence of excitation (PE) of the desired bearing reference, which
is provided by a possibly moving or time-varying desired formation. Using only bearing measurements,
control laws are proposed for a group of agents with single-integrator dynamics. By defining a desired
formation such that the corresponding inter-vehicle bearing measurements are persistently exciting,
relaxed conditions on the interaction topology (which do not require bearing rigidity nor constraint
consistence) can be used to derive distributed control laws that guarantee exponential stabilization of the
desired formation in terms of relative position. A key outcome of this approach is that even if there is only
one connection originated from each follower, exponential stability of the formation can be achieved as
long as the excitation conditions are met on the desired formation. The approach generalizes stability
results provided in prior work for leader-first follower (LFF) structure, based on bearing rigidity and
constraint consistence that required at least two connections for each follower except for the first one.
Simulations results are provided to illustrate the performance of the proposed control method.

Keywords: Multi-agent systems, Decentralized control, Nonlinear cooperative control, Distributed
nonlinear control, Lyapunov methods, Stability of nonlinear systems

1. INTRODUCTION

The problem of formation control has been extensively studied
over the last decades both by the robotics and the control com-
munities. The main categories of solutions can be classified as
Oh et al. (2015): 1) position-based formation control, Ren and
Atkins (2007), 2) displacement-based formation control, Ren
et al. (2005), 3) distance-based formation control, Anderson
et al. (2007) and more recently 4) bearing-based formation
control, Basiri et al. (2010). This latter control category has
received growing attention due to its minimal requirements on
the sensing ability of each agent. Early works on bearing-based
formation control were mainly about controlling the subtended
bearing angles which are measured in each agent’s local co-
ordinate frame and was limited to the planar formations only,
Basiri et al. (2010); Bishop (2011). The main body of work
however builds on concepts from bearing rigidity theory, which
investigates the conditions for which a static geometric pattern
of a framework is uniquely determined by the corresponding
constant bearing measurements. Bearing rigidity theory in two-

? This work was partially supported by the Project MYRG2015-00126-FST of
the University of Macau; by the Macao Science and Technology, Development
Fund under Grant FDCT/026/2017/A; by Fundação para a Ciência e a Tec-
nologia (FCT) through Project UID/EEA/50009/2019 and Project PTDC/EEI-
AUT/5048/2014; and by the EQUIPEX project Robotex. The work of Z. Tang
was supported by FCT through Ph.D. Fellowship PD/BD/114431/2016 under
the FCT-IST NetSys Doctoral Program. Carlos Silvestre in on leave from
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dimensional space (also termed parallel rigidity) is explored in
Eren et al. (2003); Servatius and Whiteley (1999) and more re-
cently it has been extended to arbitrary dimensions in Zhao and
Zelazo (2016). More specifically, a formation control solution
based on bearing measurements is proposed in Zhao and Zelazo
(2016), under the assumption that the graph is undirected and
infinitesimally rigid. The resulting bearing controller guaran-
tees convergence to a target formation that is centroid invariant
and scale invariant with respect to the initial conditions of the
formation.

In the more challenging context of directed graphs, achieving
stabilization of a formation requires not only bearing rigidity,
as in the case of undirected graphs, but also the constraint con-
sistence (also termed bearing persistence, in Zhao and Zelazo
(2015)), which is the ability to maintain consistence between
constraints induced by the desired bearing measurements. In
Eren (2007), the conditions for directed bearing rigidity of
a digraph in two-dimensional space are stated and a bearing
control law for nonholomonic agents is proposed. The authors
in Schiano et al. (2016) proposed a control strategy that relies
on an extension of the rigidity theory to directed bearing frame-
works defined in R3 × S1 while at least one distance between
two agents is required to correct the scale of the formation.
In Trinh et al. (2019), bearing control laws were proposed to
stabilize formations that satisfy a leader-first follower (LFF)
interaction topology in an arbitrary dimensional space, obtained
from a bearing Henneberg construction. LFF formations are
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Fig. 1. Examples of frameworks with leader-follower structure.
In (a), agent 4 is collinear with its two neighbors agent
2 and 3 and thus the framework is not bearing rigid. The
framework in (b) forms a square with only one connec-
tion originating from each follower, and obviously it is
not bearing rigid. The framework in (c) is bearing rigid
but not constraint consistent. The stability of these three
formations can not be guaranteed by the bearing controller
relying only on bearing rigidity theory and constraint con-
sistence Zhao and Zelazo (2015) but can be guaranteed by
the proposed control law under the PE condition.

uniquely determined up to a translation (the leader’s position)
and a scaling factor, meaning that knowledge of the distance
between the leader and the first follower is required to control
the formation scale.

In this paper, we consider the problem of controlling a multi-
agent system with single-integrator dynamics to stabilize the
actual formation to a reference one using bearing measurements
only. We propose an approach that draws inspiration from the
work in Trinh et al. (2019), which presents a first-order bearing
formation control law, considering an LFF graph topology. A
distinctive feature of the present work is the shift of focus from
static formations to moving and time-varying formations. In
this context, persistence of excitation (PE) can be explored to
significantly relax the conditions on the graph topology that are
needed to guarantee stabilization of the formations. As a result,
we are able to define general PE criteria that incorporate and
generalize convergence criteria used in prior work.

In particular, we will show that under the PE condition 1) the
formation stabilization is achieved for a leader-follower struc-
ture that is not necessarily bearing rigid nor constraint consis-
tent (i.e. a directed acyclic graph which has a spanning tree,
as shown in Fig.1); 2) the desired formations may correspond
to fixed geometric patterns that translate and rotate, as long as
that the PE condition is provided by rotational motion; 3) scale
ambiguity, which is a characteristic of bearing rigidity, can be
removed and convergence of the desired formation in terms of
scale can be guaranteed, without the need to measure the dis-
tance between any two agents. In general, a desired formation
that is persistently exciting can be time-varying (in scale, trans-
lation, rotation, and even in shape), similar to those typically
considered in position-based formation control Brinón-Arranz
et al. (2014); Dong et al. (2015).

We also show that static formations under the LFF structure
Trinh et al. (2019) can be treated as a special case, for which the
proposed bearing control law guarantees formation stabilization
up to a scale factor.

The body of the paper is organized as follows. Section II
presents mathematical background on graph theory and in-
troduces the leader-follower graph structure together with the
bearing PE condition exploited in the paper. Section III presents
the bearing formation control laws along with stability analysis.

Section IV shows the performance of the proposed control strat-
egy. The paper concludes with some final comments in Section
V.

2. PERSISTENCE OF EXCITATION AND
LEADER-FOLLOWER INTERACTION TOPOLOGY

2.1 Persistence of excitation

Let S2 := {y ∈ R3 : ‖y‖ = 1} denote the 2-Sphere and ‖.‖ the
euclidean norm. The operator [.]× yields the skew-symmetric
matrix associated to its vector argument and λmax(.)(λmin(.))
represents the maximum (minimum) eigenvalue of its matrix
argument.

For any y ∈ S2, we can define the projection operator πy
πy := I − yy> ≥ 0, (1)

which is such that, for any vector x ∈ R3, πyx provides the
projection of x on the plane orthogonal to y.
Definition 1. A matrix Σ(t) ∈ Rn×n, is called persistently
exciting (PE) if there exists T > 0 and µ > 0 such that for
all t ∫ t+T

t

Σ(τ)dτ ≥ µI. (2)

Definition 2. A direction y(t) ∈ S2, is called persistently
exciting (PE) if the matrix πy(t) satisfied the PE condition in
Definition 1.
Lemma 1. Assume that y(t) ∈ S2 and ẏ(t) is uniformly con-
tinuous, then relation (2) with Σ(τ) = πy(τ) is equivalent to:

There exists (T, ε) > 0 and τ ∈ [t, t+T ] such that ‖ẏ(τ)‖ ≥ ε,
∀τ ∈ [t, t+ T ].

Proof. The proof of this lemma is given in (Le Bras et al., 2017,
Appendix 6.1).

Lemma 2. Let Q :=
∑l
i=1 πyi . Then the matrix is persistently

exciting, if one of the following conditions is satisfied:

(1) there is at least one of the directions yi that is persistently
exciting,

(2) there are at least two direction yi and yj , i, j ∈
{1, ..., l}, i 6= j such that they are uniformly non-
collinear. That is, for all t ≥ 0 there exists an ε1 > 0
such that |yi(t)>yj(t)| ≤ 1− ε1.

Proof. The proof of this lemma is given in (Le Bras et al., 2017,
Lemma 3).

2.2 Preliminaries on graph theory

Consider a system of n connected agents. The underlying
interaction topology can be modelled as a digraph (directed
graph) G := (V, E), where V = {1, 2, . . . , n} is the set of
vertices and E ⊆ V × V is the set of directed edges. In this
work, the graph is interpreted as sensing graph, meaning that
if the ordered pair (i, j) ∈ E then agent i can access or sense
information about agent j, which is called a neighbor of agent i.
Note that the information flow is in the opposite direction. The
set of neighbors of agent i is denoted byNi := {j ∈ V|(i, j) ∈
E}. Define mi = |Ni|, where |.| denotes the cardinality of
a set. A directed path is a finite sequence of distinct vertices
ν1, ν2, . . . , νk−1, νk, such that (νi−1, νi), 2 ≤ i ≤ k belongs to
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Fig. 2. Possible connections of a leader-follower structure when
n = 5. The black solid line represents the only neighbor
of the first follower (agent 2) which is the leader (agent 1).
The green, blue and black dashed lines represent possible
neighbors of agent 2, 3 and 4, respectively.

E . A directed cycle is a directed path with the same start and end
vertices, i.e. ν1 = νk. A digraph G is called an acyclic digraph
if it has no directed cycle. The digraph G is called a directed
tree with a root vertex i, i ∈ V , if for any vertex j 6= i, j ∈ V ,
there exists only one directed path connecting j to i. Note that
a directed tree is acyclic. We say that G has a directed spanning
tree, if there exists a subgraph of G that is a directed tree and
contains all the vertices of G.

2.3 Leader-follower structure

In this section, we will define a leader-follower structure that is
not necessarily bearing rigid nor constraint consistent.
Definition 3. A digraph G is called a leader-follower structure
if it is acyclic and has a spanning tree.
Definition 4. A digraph G = (V, E) is called a minimal leader-
follower structure if it is a directed tree.

In this setting of a leader-follower structure, the leader is the
root vertex which has no neighbors and each of the other
followers has at least one neighbor. Without loss of generality,
the agents are numbered (or can be renumbered) such that agent
1 is the leader, i.e. N1 = ∅, and for each agent i ≥ 2 the set
of neighbors satisfies Ni ⊆ {1, 2, . . . , i− 1}. An example of a
possible 5-agent leader-follower graph is shown in the Figure 2.
The first follower (agent 2) has only one neighbor which is the
leader (agent 1). The second follower (agent 3) has two possible
neighbors: agent 1 and 2, and so forth.
Remark 1. Note that the leader-follower structure defined above
is more general than the leader-first follower structure (LFF)
considered in Trinh et al. (2019), for which each follower has
two neighbors except the first follower which is only connected
to the leader.

Given the digraph G as defined in Definition 3, let each agent
i ∈ V be modeled as a point pi ∈ R3 in a common inertial
frame. Then, the stacked vector p = [p>1 , ..., p

>
n ]> ∈ R3n is

called a configuration of G. The digraph G and the configuration
p together define a formation G(p) in the 3-dimensional space.
Defining the relative position vectors

pij := pj − pi, i, j ∈ V, i 6= j (3)
then as long as ‖pij‖ 6= 0, the bearing of agent j relative to
agent i is given by the unit vector

gij := pij/‖pij‖ ∈ S2. (4)
Let vi := ṗi denote the velocity of agent i. Let p∗(t) =
[p∗>1 (t), ..., p∗>n (t)]> ∈ R3n be the desired configuration. Let
{v∗i (t)}i∈{1,...,n} and {g∗ij(t)}i,j∈E be the set of all velocity
vectors and the set of all bearing vectors, respectively, of the
desired configuration p∗(t).

Definition 5. We say that a desired formation G(p∗(t)) satis-
fies the PE condition if for all agent i ≥ 2, the matrices∑
j∈Ni

πg∗
ij
(t) satisfy the PE condition as defined in Lemma

2.

The following lemma will show the uniqueness of the desired
formation of a leader-follower structure under PE condition.
Theorem 1. Consider a leader-follower formation. Assume that
the leader’s position p∗1(t), the velocity vectors {v∗i (t)}i∈{1,...,n}
and the bearing vectors {g∗ij(t)}(i,j)∈E are well-defined, known,
and bounded. Let p̂∗1 , p∗1 and p̂∗i denote the estimate of p∗i , for
i = 2, . . . , n with the following dynamics:

˙̂p∗i = v∗i −K
∑
j∈Ni

πg∗
ij

(p̂∗i − p̂∗j ), ∀i ≥ 2, (5)

with arbitrary initial conditions and K a positive definite ma-
trix. Assume the desired formation satisfies the PE condition.
Then p̂∗i converges uniformly globally exponentially (UGE) to
the unique p∗i .

Proof. Consider the error variables p̃∗i := p̂∗i − p∗i defined for
i = 2, . . . , n and the corresponding dynamics obtained from
(5). For i = 2, we have N2 = {1} and it is straightforward to
verify that the dynamics of p̃∗2 is given by

˙̃p∗2 = −Kπg∗21 p̃
∗
2 (6)

and that p̃∗2 = 0 is UGE stable under the PE condition (by direct
application of (Le Bras et al., 2017, Lemma 4)). For i = 3 and
N3 = {1}, the proof is exactly the same as for agent 2. For
N3 = {2} or {1, 2}, the dynamics of p̃∗3 can be written as

˙̃p∗3 = −K
∑
j∈N3

πg∗
3j
p̃∗3 +Kπg∗32 p̃

∗
2 (7)

which together with (6) forms a cascaded system with p̃∗2 as
input to (7). Using the fact that p̃∗2 = 0 is UGE stable and
system (7) is continuously differentiable and globally Lipschitz
in (p̃∗3, p̃

∗
2), it follows (by direct application of (Le Bras et al.,

2017, Proposition 1)) that p̃∗3 = 0 is also UGE stable. In the
general case, we can write

˙̃p∗i = −K
∑
j∈Ni

πg∗
ij
p̃∗i +K

∑
j∈Ni\{1}

πg∗
ij
p̃∗j , (8)

for i = 2, . . . , n and the proof of that p̃∗i = 0 is UGE stable can
be obtained in a similar way.
Remark 2. For the static case where v∗i − v∗j = 0, ∀(i, j) ∈ E ,
we obviously conclude that g∗21 is not persistently exciting.
However, if each agent i (i ≥ 3) has two neighbors 1 ≤
j 6= k < i with g∗ij 6= ±g∗ik, the desired formation becomes
exactly the same as the desired LFF formation described in
Trinh et al. (2019) and uniqueness of the target formation can
still be guaranteed if the distance d∗21 = ‖p∗1 − p∗2‖ is provided.
Under the proposed controller, which will be defined in the next
section, the formation will converge to the desired shape up to
a scaling factor as discussed in Trinh et al. (2019).

Note that under the condition of Theorem 1, the shape and the
size of the desired formation may be time-varying. There are
some situations in which a rigid motion of the desired formation
ensures the PE condition. More specifically, the rigid motion
should include a rotational motion as stated in the following
Corollary.
Corollary 1. Consider a minimal leader-follower formation
subjected to a continuous rigid motion such that:

g∗ij(t) = R(t)>g∗ij(0),∀(i, j) ∈ E



where R(t) ∈ SO(3) is the orientation matrix of a virtual
frame attached to the formation (at some point) with respect
to the common inertial frame. Let Ω(t) be the orientation
velocity of the formation expressed in the virtual frame, such
that Ṙ(t) = R(t)[Ω(t)]×. Assume that Ω(t) is a uniformly
continuous vector. If there exists (T, ε) > 0 and τ ∈ [t, t +
T ], ∀t such that Ω(t) and g∗ij(t) are uniformly non-collinear:
‖Ω(τ) × g∗ij(τ)‖ ≥ ε, ∀(i, j) ∈ E , then the desired formation
satisfies the PE condition.

Proof. Recalling that in the case of a minimal leader-follower
structure, |Ni| = 1 (∀i ≥ 2), it then follows that the desired for-
mation satisfies the PE condition if and only if g∗ij(t), ∀(i, j) ∈
E satisfies the PE condition of Definition 2. Using the fact
that ‖ġ∗ij(t)‖ = ‖[Ω(t)] × g∗ij(t)‖ along with Lemma 1, it is
straightforward to verify that the PE condition is satisfied as
long as Ω(t) is uniformly non-collinear to g∗ij(t), ∀(i, j) ∈ E .

3. BEARING FORMATION CONTROL

3.1 Problem formulation

Consider the framework G(p), where each agent i ∈ V is
modelled as a single integrator with the following dynamics:

ṗi = vi (9)
where pi ∈ R3 is the position and vi ∈ R3 the velocity input,
all expressed in a common inertial frame.

We assume that the n-agent system satisfies the following
assumptions.
Assumption 1. The desired velocity v∗i (t) are bounded for all t.
The desired positions p∗i (t) are such that the resulting desired
bearings g∗ij(t) are well-defined for all t and the resulting
desired formation satisfies the PE condition.
Assumption 2. The sensing topology of the group is described
by a digraph G(V, E) that satisfies the leader-follower structure
defined in Definition 3. Each agent i ≥ 2 can measure the
relative bearing vectors gij to its neighbors j ∈ Ni.
Assumption 3. As the formation evolves in time, no inter-agent
collisions and occlusions occur. In particular, we assume that
the bearing information gij(t), (i, j) ∈ E is all the time well-
defined.

With all these ingredients, we can define the bearing formation
control problem as follows.
Problem 1. Consider the system (9) and the underlying frame-
work G(p). Under Assumptions 1-3, design stabilizing dis-
tributed control laws based on only bearing measurements that
guarantee convergence to the desired formation.

3.2 Exponential stabilization of the formations

For distinct agents i, j ∈ V , define the desired relative position
vectors p∗ij according to (3) and the relative position error
p̃ij := pij − p∗ij . In addition, for i ∈ V and j ∈ Ni, define
the dynamics of the error:

˙̃pij = vj − v∗j − (vi − v∗i ). (10)

The relative error p̃ij is defined for all i, j ∈ V (with i 6= j),
which may include pairs for which (i, j) /∈ E . However, the
dynamics of the error is only defined for p̃ij (i, j) ∈ E .

The following control law is proposed for each agent i ∈ V
vi = −

∑
j∈Ni

kiπgijp
∗
ij + v∗i , (11)

where ki is positive gains.
Remark 3. Assume for now the results that will be shown in the
following sections hold, i.e., assume that the equilibrium point
p̃ij = 0, (i, j) ∈ E of the system (10) is Exponentially Stable
(ES). To express this result in terms of the formation and the
positions of the agents pi, note that under the given assumption
it also holds that p̃i1 = 0, 2 ≤ i ≤ n is ES. Then, we can
conclude that ∀2 ≤ i ≤ n, pi exponentially converges to p∗i
up to a translation given by p1 − p∗1. The latter can be driven to
zero provided that agent 1 can sense its position and velocity.

Stability and convergence of the first follower
Lemma 3. For i = 2 consider the dynamics of the error (10)
along with the control law (11). If the Assumptions 1-3 are
satisfied, then the equilibrium point p̃21 = 0 is exponentially
stable (ES).

Proof. The control law (11) for agent 1 is v1 = v∗1 and for
agent 2 is v2 = −πg21 p̃21 + v∗2 . Recalling (10), the closed-loop
system for the state p̃21 is expressed as

˙̃p21 = −k2πg21 p̃21. (12)
Consider the following Lyapunov function candidate:

L21 =
1

2
‖p̃21‖2 (13)

Taking its time-derivative, it yields
˙L21 = −k2p̃>21πg21 p̃21, (14)

which is negative-semidefinite, one concludes that the state p̃21
is bounded. Since g∗>21 πg21g

∗
21 = g>21πg∗21g21, it is straightfor-

ward to verify that

L̇21 =− k2p∗>21 πg21p∗21

=− k2
‖p∗21‖2

‖p21‖2
p>21πg∗21p21 ≤ −k2γ2p̃

>
21πg∗21 p̃21

(15)

with γ2 =
min ‖p∗21(t)‖

2

(‖p̃21(0)‖+max ‖p∗21(t)‖)2
. Using the PE condition of

g∗21 along with a direct application of (Lorıa and Panteley, 2002,
Lemma 5) one can conclude that p̃21 = 0 is ES.
Remark 4. Note that in the above lemma, assumption 3 relies
on the evolution of state variables. This assumption serves here
to show that if there is no collision or occlusion, the bearings are
well-defined and the proposed control design yields the desired
convergence properties (Lemma 3 and even in the following
results: Lemma 4 and Theorem 2). Trying to more specifically
characterize the set of initial conditions for which the system’s
solutions avoid collision and occlusion is out of the scope of the
paper.

Stability and convergence of the second follower
Lemma 4. For i = 3 consider the dynamics of the error (10)
along with the control law (11). If the Assumptions 1-3 are
satisfied and Lemma 3 is valid, then the equilibrium point
p̃3j = 0, ∀j ∈ N3 is ES.

Proof. According to the leader-follower structure described in
subsection 2.2, the second follower (agent 3) can have three
possible sets of neighbors: N3 = {1}, N3 = {2} and N3 =
{1, 2}.



Case i):N3 = {1}, the proof is identical to the proof of Lemma
3.

Case ii): N3 = {2} or N3 = {1, 2}. The closed-loop system
for the state p̃3j , j ∈ N3 is expressed as

˙̃p3j = −
∑
l∈N3

k3πg3l p̃3l + vj − v∗j . (16)

Since v1 = v∗1 and v2 is a function of variables p̃21, p̃31 = p̃32+
p̃21, we can interpret (16) as a cascaded system that has p̃21 as
input to the unforced system

˙̃p3j = −k3
∑
l∈N3

πg3l p̃3j . (17)

Now the proof becomes analogue to the proof of Lemma 3.
Consider the following Lyapunov function candidate:

L3j =
1

2
‖p̃3j‖2, (18)

and its time-derivative is given by

L̇3j = −k3p̃>3j
∑
l∈N3

πg3l p̃3j (19)

which is negative-semidefinite. Thus state p̃3j is bounded. Due
to the fact that p̃3j = p̃3k + p̃kj , k 6= j, k, j ∈ {1, 2} and
p̃21 = 0 in the unforced system (17), one has p̃3j = p̃3k. It is
straightforward to verify that

L̇3j = −k3
∑
l∈N3

‖p∗3l‖2

‖p3l‖2
p̃>3lπg∗3l p̃3l

≤ −k3γ3p̃>3j
∑
l∈N3

πg∗
3l
p̃3j ≤ 0,

(20)

with γ3 =
minl∈Nj

‖p∗3l‖
2

(‖p̃3j(0)+maxl∈Nj
‖p∗

3l
‖)2 . Using the PE condition

along with direct application of (Lorıa and Panteley, 2002,
Lemma 5), we can conclude that the equilibrium point p̃3j = 0,
j ∈ N3 of the unforced system (17) is ES. This in turn implies
that the equilibrium point p̃3j = 0, j ∈ N3 is ES for the system
(16).

The n-agents system
Theorem 2. For all i ∈ V\{1} and ∀j ∈ Ni, consider the
system (10) in closed-loop with the proposed control law (11).
If the Assumptions 1-3 are satisfied, then the equilibrium point
p̃ij = 0, i = 2, . . . , n, ∀j ∈ Ni is ES.

Proof. We will prove the convergence of p̃ij = 0 by mathe-
matical induction. Firstly, for k = 2 we have p̃21 = 0 is ES
based on Lemma 3. Thus Theorem 2 is true for k = 2. It is also
true for k = 3 from the conclusion of Lemma 4.

Secondly, we suppose Theorem 2 is true for 4 ≤ k ≤ i−1, that
is p̃kj = 0, ∀j ∈ Nk is ES for all 4 ≤ k ≤ i − 1 and we will
prove that it is also true for k = i. Recall (10), the closed-loop
system for the states p̃ij , j ∈ Ni is represented as

˙̃pij = −kiπgij p̃ij −
∑

q∈Ni\{j}

kiπgiq p̃iq + vj − v∗j , (21)

where vj is a function of variables p̃jm, m ∈ Nj , p̃iq =
p̃ij + p̃jq . Note that since the graph is connected, p̃jq can
be represented by the error variables p̃km, 2 ≤ k ≤ i −
1, m ∈ Nk. System (21) can then be considered as a cascaded
system with p̃km, 2 ≤ k ≤ i− 1, m ∈ Nk, being inputs of the
unforced system analogously to system (17). Using a similar
argument as shown in Lemma 4, one can conclude that the

equilibrium point p̃ij = 0, ∀j ∈ Ni of the unforced system
is ES. Because Theorem 2 is true for 2 < k ≤ i − 1, we
can conclude that the equilibrium point p̃ij = 0, ∀j ∈ Ni
for system (21) is also ES. This in turn implies that Theorem 2
is true for k = i.

Then, by mathematical induction, if follows that the claim is
true for all k ∈ V\{1}.

4. SIMULATION RESULTS

In this section, we consider a four-agent system defined in R3,
V = {1, 2, 3, 4}, with digraphs that satisfy a minimal leader-
follower graph formed by a single directed path, that is, each
follower has only one neighbor such that Ni = {i − 1}, i ∈
V\{1}. According to Assumption 1, the desired formation is
chosen such that the four agents form a squared shape in R2 that
rotates about agent 1. Note that the desired configuration is not
bearing rigid. For the sake of simplicity, the leader (agent 1) is
static at position p1 = [0 0 0]>. The desired trajectories for the
followers are p∗2 = 1.5[sin( t4 ) 0 cos( t4 )]>, p∗3 = 1.5[sin( t4 ) −
π
4 0 cos( t4 )− π

4 ]>, p∗4 = 1.5[sin( t4 )− π
2 0 cos( t4 )− π

2 ]>. The
initial conditions are p2(0) = [−1 3 1]>, p3(0) = [−2 4 −1]>,
p4(0) = [−1.5 3 0]>. The gains used are ki = 3. Fig. 3 depicts
the trajectories of the four agents during the time evolution of
the formation and we can see that the four agents converge to
the desired trajectories. Fig. 4 shows the time evolution of the
error state ‖p̃‖. We can conclude that the proposed control law
stabilizes the formation efficiently without requiring of bearing
rigidity.

Fig. 3. 3-D Trajectory described by a formation under a single
directed path topology. Colored solid lines represent the
agents’ trajectories and dashed lines represent the desired
trajectories. The black solid lines represent the connec-
tions between agents.
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Fig. 4. Time evolution of the total position error ‖p̃‖.



5. CONCLUSION

This paper studies bearing formation control using persistence
of excitation and an underlying interaction graph with a leader-
follower structure. The desired formation is determined by the
desired relative positions between agents, which are chosen
such that the corresponding desired bearing vectors satisfy the
persistence of excitation condition. Under the proposed control
laws, the desired formation is achieved with exponential rate of
convergence, that is, the relative positions of the group of agents
converge exponentially to the desired values, without relying on
bearing rigidity nor on estimation of range. Simulation results
are provided to validate the control laws. Future work will be
dedicated to the incorporation of collision avoidance in the
bearing control laws to bypass assumption 3 in order to ensure
at least semi-global exponential stability.
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Trinh, M.H., Zhao, S., Sun, Z., Zelazo, D., Anderson, B.D.,
and Ahn, H.S. (2019). Bearing-based formation control of
a group of agents with leader-first follower structure. IEEE
Transactions on Automatic Control, 64(2), 598–613.

Zhao, S., Sun, Z., Zelazo, D., Trinh, M.H., and Ahn, H.S.
(2017). Laman graphs are generically bearing rigid in
arbitrary dimensions. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), 3356–3361. IEEE.

Zhao, S. and Zelazo, D. (2015). Bearing-based formation
stabilization with directed interaction topologies. In 2015
54th IEEE Conference on Decision and Control (CDC),
6115–6120. IEEE.

Zhao, S. and Zelazo, D. (2016). Bearing rigidity and almost
global bearing-only formation stabilization. IEEE Transac-
tions on Automatic Control, 61(5), 1255–1268.




