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Neural Enhanced Control for Quadrotor Linear Behavior Fitting

Estéban Carvalho1,2, Pierre Susbielle1, Ahmad Hably1, Jilles S. Dibangoye2 and Nicolas Marchand1

Abstract— Designing an efficient autopilot for quadrotor can
be a very long and tedious process. This comes from the
complex nonlinear dynamics that rule the flying robot behavior
as battery discharge, blade flapping, gyroscopic effect, frictions,
etc. In this paper we propose to use a traditional cascaded
control architecture enhanced with Deep Neural Network
(DNN). The idea is to easily setup a control algorithm using
linear cascaded laws and then correct unmodelled dynamics and
approximations made during the linear control design with the
DNN. The tuning process is reduced to choice of proportional
and derivative gains of each control loop. The approach is tested
in the ROS/Gazebo simulation environment and experimentally
in a motion capture room. Results confirm that the methodology
significantly improves the performance of linear approaches on
nonlinear quadrotor system.

SUPPLEMENTARY MATERIAL

Video: youtu.be/c70nlsMVi9M
Code: github.com/gipsa-lab-uav/uav control ai

I. INTRODUCTION

In the last decade, unmanned aerial vehicles (UAVs) have
become predominant worldwide. From leisure film making to
public transport, surveillance, monitoring or even geographic
mapping, their area of application grows continuously. The
flight navigation is usually done manually, which requires
a minimum of training to pilot UAVs. A key component to
make UAVs available for all is an automatic flight control
reactive to unexpected situations and environments.

A functional autopilot consists of two elements: a
trajectory generation [1, 2] and a controller [3, 4]. On the
first hand, a fast trajectory generation algorithm is crucial to
maintain good flight performances. It should be able to face
unpredicted obstacles and respond in real time. As a result,
[1, 2] propose a polynomial path generator that aims rapid
and feasible trajectory generation, with lowcost computation
and complexity. On the other hand, the controller tracks
the desired trajectory. Research of [3] introduce an accurate
quadrotor model that fits the system dynamic and thus
improves flight performances. However, it induces at the
same time a nonlinear controller which leads complex to
tune algorithm as well as computation consuming systems.
Although a linear model is easier to handle, a popular
approach consists in linearizing a nonlinear model to avoid
complexity [5].
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With the advances in artificial intelligence, modelling
and control are currently evolving. As presented in survey
[6], combining machine learning techniques with traditional
control approaches is improving systems’ performances.
Data-driven methods achieve suitable modelling of errors,
uncertainties and perturbations. For instance, [7] highlights
the benefits of Convolutional Neural Networks (CNN)
in a fast driving car control. Works [8]–[10] focus on
UAVs hybrid approaches. In [10], Gaussian processes are
introduced to model disturbances which are then combined
to a predictive model control. This greatly reduces tracking
errors at high speeds. Authors of [8] propose a Deep Neural
Network (DNN) to generate a reference trajectory. It shows
a gain in tracking with smaller errors while keeping classical
PID controller. Finally, a predictive control for racing drone
is presented in [9]. The vehicle flies through moving gates.
Gates’ position is predicted by a CNN and sent to the control.
With this algorithm, the team managed to beat the second
team in half the time.

One may use neural networks to model system dynamics,
as shown in [11], and then apply the learned model to adapt
a control law. [12, 13] have shown the relevance of using
learning on modelling complex aerodynamics phenomena
usually neglected, such as vibrations, for helicopter flight
control. Based on those advances, [14] came up with a
shallow neural network (NN) that model UAVs dynamics.
A more recent study [15] applies a DNN to model ground
effects and proposes a DNN-based controller that enhances
the landing behavior, achieving impressive results.

The problem of getting an efficient controller that fits some
given expected behavior can also be addressed by using
reinforcement learning (RL) methods. RL algorithms for
drone control is developing a lot, see [16, 17]. However, these
contributions fall short in that they need a huge amount of
data. In addition, the data collected must be relevant to learn
a controller and thus requires a large exploration process,
usually done randomly. Hence for high order systems like
UAVs, it requires a lot of data and time. Secondly, those
unsupervised method do not provide stability guaranty for
the system which is very problematic. To overcome the data
collection and time problem, as well as the stability issue, we
propose an hybrid control approach based on a linear control
and a neural network that describes nonlinear error dynamics.
Our approach allows to easily setup a controller that will fit
expected behavior. In order to reduce the design complexity
and to preserve stability, a linear cascaded control is used.
A Deep Neural Network is added for fast performance
enhancement using collected data. It will learn the error
between the linear model and the real system dynamics, both
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controlled with the linear law. Fitting an a priori given linear
behaviour is especially of interest for obstacle avoidance.
Indeed, it is far easier to predict the error between a reference
trajectory and the real one when the system is linear. It also
eases a fast trajectory generation. The DNN will not only
model a complex and a nonlinear dynamic error, but also
includes parametric errors. The error model identified by
the DNN is then injected in the real time command so that
the quadrotor behavior fit to the linear expected dynamics.
Proposed methodology is summarized in fig.1.

Design Linear Quadratic Cascaded Controller
(Performances specifications (time response, overshoot)

Flight using designed controller
(Degraded performances compared to expectations)

Learn Error Dynamics for command correction
(DNN learning between expected and real Dynamics)

Flight using DNN Corrected Controller
(Performances closer to Linear Expected Behavior)

1

2

3

4

Fig. 1: Proposed methodology to fit expected linear behavior on
the quadrotor nonlinear dynamics using DNN correction.

Main contributions. In contrast to prior research, the
contributions of this paper are threefold:
• Learning the error between the real system dynamics

and a linear dynamical model.
• We consider a linear control applied to a complex

system, avoiding nonlinear controls, and correcting the
resulting error to refit the linear expected quadrotor
dynamics.

• We show good results in simulation and in real time
experimental flights and propose an open source ROS
package.

The paper is organized as follows. Section II defines the
quadrotor dynamics and its linearized model used for control
design. Section III presents a neural architecture to model
the error dynamics. Proposed linear cascaded controller
and DNN correction law are given in Section IV. We
expose simulation and experimental results in Section V,
including neural networks training and controller’s tests.
Finally, conclusion and future work perspectives are given
in Section VI.

II. QUADROTOR DYNAMICS

Quadrotors are aerial vehicles built with two
counter-rotating rotors located on a rigid cross-shaped
body. Translations on z axis are achieved by decreasing
or accelerating the four rotor speeds at constant thrust for
each of them. Translations on the x or y axis are obtained
by adjusting the pitch or roll by applying more thrust to
the two adjacent rotors and less to the two opposite ones.
Finally, yaw is achieved by applying more thrust to the

rotors rotating in the desired direction and less to the other
two. In this section, the quadrotor’s Newton-Euler dynamic
and the linear model used for control purposes in Section IV
are presented.

A. Quadrotor Dynamics

As a starting point, {I} defines the inertial frame described
by its units vectors {~i1, ~i2, ~i3} and {B} represents the body
fixed frame described by its units vectors {~b1, ~b2, ~b3}. R ∈
SO(3) defines the orientation of the body frame {B} in {I}
using Z-Y-X Euler formalism(see Fig. 2):

R = Rz(ψ)Ry(θ)Rx(φ)

=

[
cθcψ sφsθcψ−cφsψ cφsθcψ+sφsψ
cθsψ sφsθsψ+cφcψ cφsθsψ−sφcψ
−sθ sφcθ cφcθ

]
(1)

Fig. 2: Euler angles references. Inertial frame (left), intermediate
frame (middle) and body fixed frame (right).

where c· := cos(·) and s· := sin(·).
Let ξ := (x, y, z)T ∈ {I} be the position of the

drone center of mass, v := (vx, vy, vz)
T ∈ {I} its

linear velocity expressed in {I}, Ω := (p, q, r)T the angular
velocity expressed in {B} and ζ := (φ, θ, ψ) denotes Euler
angles. The total mass of the vehicle is given by m and the
inertia matrix J assumed diagonal due to the symmetry of
the quadrotor. The quadrotor rigid body dynamics are given
by Newton-Euler equations [18]:

ξ̇ = v,

mv̇ = −mg~i3 + RT ~b3 + δvnd,

Ṙ = RΩ×,

JΩ̇ = −Ω×JΩ + Γ + δΩ
nd,

(2a)

(2b)

(2c)

(2d)

where T is the total thrust generated by the four rotors, Ω× is
a skew-symmetric matrix associated to Ω that verifies for all
matrix M ∈M3(R), M ×Ω = MΩ×, and Γ represents the
torques applied to the rotors, and δvnd and δΩ

nd the unmodelled
and unknown dynamics on linear and angular acceleration
respectively. It will be referred as error dynamics in the
following. These error dynamics include for instance the
gyroscopic effects, ground effects, blade flapping or battery
discharge.

In the following sections, we assume that the angular loop
of the quadrotor is controlled, with a sufficient speed for the
other cascaded control loops. As a result, the model to be



controlled is given by:
ξ̇ = v,

mv̇ = −mg~i3 + RT ~b3 + δvnd,

ζ̇ = W−1(φ, θ, ψ)Ω,

(3a)

(3b)

(3c)

where:
W−1(φ, θ, ψ) =

[
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

]
. (4)

Summarizing previous equations, the quadrotor dynamics
can be expressed as (5):

Ẋ = fX4(X,U) + δnd, (5)

where X is the state vector defined by X :=
[
ξ v ζ

]T
,

the control vector U :=
[
T p q r

]T
, the error

dynamics vector δnd :=
[
0T3

δvnd
m

T
0T3

]T
, with

03 :=
[
0 0 0

]T
and:

fX4(X,U) =

 v

−g~i3 + RT ~b3
m

Tr(φ, θ, ψ)Ω

 . (6)

B. Quadrotor Linear Dynamics Model

The proposed control law is derived from a linearized
model around given equilibrium points. The quadrotor linear
model usually used for control design is obtained from hover
conditions. Equilibrium points are given by (7) and (8):

Xeq =
[
xe ye ze 03 03

]T
, (7)

Ueq =
[
mg 03

]T
. (8)

We can then define variation variables X̃ := X−Xeq and
Ũ := U − Ueq . Assuming δnd is negligible, δvnd ≈ 03, the
linear model obtained using first order Taylor expansion is
given by:

˙̃X =

[
03 I3 03

03 03 A2,3

03 03 03

]
X̃ +

[
034

B2

B3

]
Ũ ,

˙̃X = AX̃ + BŨ ,

(9)

where:

A =
∂fX4

∂X
(X,U)

∣∣∣∣
(Xeq,Ueq)

,B =
∂fX4

∂U
(X,U)

∣∣∣∣
(Xeq,Ueq)

,

03 refers to the square null matrix of order 3 and I3 the
identity matrix of order 3. 034 is a null matrix composed
of 3 lines and 4 columns. A2,3, B2 and B3 matrices are
expressed as follow:

A2,3 =
[ 0 g 0
−g 0 0
0 0 0

]
,B2 =

[
0 0 0 0
0 0 0 0

m−1 0 0 0

]
,B3 =

[
0 1 0 0
0 0 1 0
0 0 0 1

]
.

III. DEEP NEURAL NETWORK STRUCTURE

This section presents the proposed structure for the Deep
Neural Network. Networks are used to describe the error
dynamics defined by eq. (10), corresponding to the unknown

dynamics between the real drone dynamics and the linear
acceleration dynamics (δve ).

δve (ζ, T ) = v̇ − (A2,3ζ + B2Ũ), (10)

According to the universal approximation theorem, one can
build a feed-forward network composed of only one hidden
layer with a finite number of units to approximate our
continuous functions δve given by (10). Here, it is proposed
to use a deep neural network to better fit the data. Based on
the nature of the problem, here regression of temporal data,
the use of this type of network is well suited.

The activation function used for all hidden layers is
the rectified linear unit (ReLU) defined element-wise by
h(·) = max(·, 0). Weights and bias are defined as follows:
Wv,1 ∈ R#Ev,Nv , W2 ∈ RNu,Nu , W3 ∈ RNu,#Sv

M1 ∈ RNu , M2 ∈ RNu and M3 ∈ R#Sv . Nu is the
number of units of the hidden layer of the network and
using the following notation #A denotes the cardinal of A
(fig. 3). EDNN denotes the neural network inputs. Our neural
network structure can then be expressed as (11):

δ̂vnd(EDNN ) = W3
Th(W2

Th(W1EDNN + M1) + M2) + M3. (11)

We choose Nl = 2 for the number of hidden layers and Nu =
64 for the number of hidden layers units, as it is sufficient to
correctly model the error dynamics and to perform real-time
computation. A quick ablation study revealed that for one
layer DNN, the network has difficulty to converge and for
three layers it does not bring better performances while
increasing the learning process time.

E1

...

...

E#Ei

h1

h2

...

hNi−1

hNi

h1

h2

...

hNi−1

hNi

S1

S2

S3

Hidden
layer 2

Output
layer

Hidden
layer 1

Input
layer

Fig. 3: Deep Neural Network Architecture: a feed-forward network,
with two hidden layers of 64 units, with ReLU function as
activation.

To learn error accelerations dynamics one aims at finding
weights and bias that minimize the mean squared error
(MSE) between predictions and observations. Predictions
are expected values from the neural network model and
observations are the values obtained via measurements.
Accelerations measurements are collected from the inertial
measurement unit (IMU) of the quadrotor.
Take ϑ := (W1,W2,W3,M1,M2,M3) the parameter to
be optimized. Then, training the neural network (11) aims
at solving the following optimization problem (12) over the



training data-set:

min
ϑ
L(ϑ) = min

ϑ

1

N

N∑
k=1

‖δ̂ve,k(ϑ)− δve,k‖2, (12)

where N is the number of elements in the data-set and
δve,k are error dynamics computed by taking measurements
outputs and commands inputs. Here L(ϑ) is the objective
function to be minimized, referred as loss function. This
problem can be typically solved using traditional gradient
descent methods using back-propagated gradients optimizers.

IV. QUADROTOR CONTROL

In this section, we describe the cascaded controllers
designed to track a given trajectory reference (See fig. 1,
step 1). A linear cascaded architecture is used for tuning
simplicity and ease of implementation. This control will
be next enhanced with a deep neural network feedforward
correction term. The DNN correction term aims to get closer
to the linear expected behavior. This term is directly designed
from the previously built neural network. Thus, one is able
to rectify unmodelled dynamics and linearization errors, that
are learned dynamics with training data.

A. Linear cascaded controller

The proposed control law is divided into two linear
cascaded controllers: the attitude and the position/speed
control loops.

Attitude controller: Using (9), it comes that: ζ̇ = Ω. We
can directly choose:

Ω = −Kζ

([
φ
θ
ψ

]
−
[
φ
θ
ψ

]
ref

)
, (13)

such that we reach the desired closed loop behavior with
Kζ . Where gain Kζ is obtained through a linear quadratic
regulation synthesis (LQR) and

[
φ θ ψ

]T
ref

is the attitude
target coming from the position and speed controller.

Position Speed controller: Let us define uζ := [ φ θ T ]
T
,

x1 := [ x y z ]
T and x2 := [ vx vy vz ]

T . Then using (9):
ẋ1 = x2,

ẋ2 =

[
0 g 0
−g 0 0

0 0 m−1

]
uζ = Aζuζ .

(14)

Defining η1 := x1−x1ref and η2 := η̇1 := ẋ1−ẋ1ref =
x2 − x2ref , (14) can be rewritten as:

η̇ =

[
03 I3
03 03

]
η +

[
03

Aζ

]
(uζ −A−1

ζ ẋ2ref ). (15)

A =
[
03 I3
03 03

]
,B =

[
03

Aζ

]
For (15), we propose to use again a linear quadratic regulator:

u∗ζ = −Kηη + Aζ ẋ2ref , (16)

where Kη is chosen such that we minimize a quadratic cost
expressed as follows:

J(uζ) =

∫ +∞

0

(ηT (t)Q η(t) + uTζ (t)Ruζ(t))dt.

Weighting matrices Q and R are tuned to reach desired
tracking performances.

B. DNN Correction Controller

According to eq. (2b), the real system dynamics can be
written as follows:

η̇ = Aη + B(uζ −A−1
ζ ẋ2ref + Aζ

−1δve ). (17)

The DNN controller is designed as follows:

uζ = u∗ζ + ∆uζ , (18)

where u∗ζ is the linear quadratic control (16) and ∆uζ is the
feedforward correction term based on the neural network.
The closed loop form of (17) using (18) is:

η̇ = (A−BKη)η︸ ︷︷ ︸
Close loop linear behavior

+ B(∆uζ + A−1
ζ δve ).︸ ︷︷ ︸

Term to minimize
(19)

According to (19), the closed loop behavior is the sum
of two terms. The first one describes the desired linear
behavior, which is fully controlled. The second term needs
to be canceled or at least minimized to get closer to the
expected linear behavior. This procedure outlines a classical
minimization problem (20):

min
∆uζ

∆uζ + A−1
ζ δve (∆uζ). (20)

Replacing error dynamics by their approximations from the
DNN we get:

min
∆uζ

∆uζ + A−1
ζ δ̂vnd(∆uζ). (21)

As δ̂vnd depends on ∆uζ according to (21), it is a nonlinear
minimization problem, that may be time consuming to solve.
To deal with it, a proposed solution is to replace uζ by u∗ζ ,
assuming uζ � u∗ζ . By removing the correction term from
the DNN input we can directly deduce the correction term:

∆uζ = −A−1
ζ δ̂vnd(uζ). (22)

Knowing the drone mass, we can get the correction to apply
to the thrust reference Tref and to the two angular references
φref and θref to get closer to the linear behavior. The control
architecture is summarized in fig. 4. The correction proposed
is only done in the position control loop, as attitude control
is done considering (3c), which simply corresponds to the
rotation of the frame.

C. Stability Analysis

We derive the main lines here to prove that the deep
neural network term does not destabilize the quadrotor. Let
us consider the following Lyapunov Function:

V (t) =
1

2
‖η(t)‖2 . (23)



Defining the prediction error of the DNN as eη = δve − δ̂vnd,
and λ = λmin(A −BKη) be the minimum eigenvalue of
the closed loop system matrix.

V̇ (t) = ηT (A−BKη)η + ηT eη,
≤ ληT η + ‖η‖ · ‖eη‖ ,

V̇ (t) ≤ 2λV +
√

2V ‖eη‖ .
(24)

Assuming ‖eη‖ is bounded by a constant εη and defining
W =

√
V then Ẇ = V̇

2
√
V

it follows that:

Ẇ ≤ λW +
εη√

2
. (25)

The solution to (25) given W (0) = z0√
2

is given by (26):

W (t) ≤ 1√
2

(
εη
λ

+ ‖z0‖)eλ(t−t0) − εη√
2λ
. (26)

We obtain the following bound:

‖η(t)‖ ≤ ‖η0‖ eλ(t−t0) +
εη
λ

(eλ(t−t0) − 1). (27)

It follows that the solution exponentially converges to a
ball, centered at η0 and with a radius of εη

λ . It is directly
proportional to the error made by the neural network.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, DNN training and validation are explained
(Section V-A). Controllers are next tested in ROS/Gazebo
simulation environment (Section V-B) and in experimental
flights (Section V-D) in our motion capture room.

We work with ROS combined with Gazebo simulation
environment to validate our methodology. To perform
angular velocity and low level control, PX4 autopilot is used
[19]. Python along with the Keras API [20] are used to shape
data collected from ROS, named rosbag, to build and to train
the DNN. The code used for the simulations and experiments
is made open access and available by following the given
GitHub link.

A. Training and Validation Database

The proposed Deep Neural Network in Section III is
trained with a database created using the linear cascaded
control from Section IV-A, for both simulation and
experimental tests (fig. 1, step 2 & 3). It is composed of
several basic movements as translations in different planes,
steps in all directions, rotations and spiral motions (see
fig. 5). The idea is to cover all the possible motions of the
drone, to better learn the whole dynamic.

The entire state X , the control inputs U and the linear
accelerations Ẍ are supposed to be accessible, either by
measurements (IMU) or obtained using filters like Extended
Kalman Filter (EKF). To validate learned model, one-third of
the database is used as validation set. Training and validation
sets cover a total of 30 minutes of flight. We propose here
to fly with less data as possible to show that we can quickly
and correctly learn the error dynamics.

For training process, we used Nesterov Adam optimizer
also known as Nadam (Reader is referred to [21] for

more information about the algorithm). The following
hyper-parameters are set for the DNN training: Learning
rate lr = 0.05, µ = 0.9, ν = 0.999, batches of size 256
are used to evaluate gradients and a maximal number of
1000 epochs is defined. An epoch refers to the number of
times the algorithm has been run through the whole training
data-set. In addition, during training process elements are
shuffled and the learning rate is decreased by a factor of 2

3
when there is no improvement on the loss function. All those
hyper parameters were tuned empirically in order to reach
a good compromise between speed and convergence of the
algorithm.

We propose to include knowledge of the quadrotor
dynamics to the DNN eq. (11) by restricting the input
variables, using eq. (2b): one provides thrust, Euler angles
and linear velocities. Sine and cosine of angles are directly
provided to ensure that for the DNN 0 and 2π are equivalent,
in the same way as in [14]. Inputs and outputs of the DNN
are given by eq. (28) and (29):

EDNN =
[
z cφ sφ cθ sθ vx vy vz ubatt T

]T
, (28)

SDNN =
[
ẍ ÿ z̈

]T
. (29)

In order to better tackle the ground effect, z component is
added to the neural network inputs. The same is applied for
battery voltage to handle battery discharge and loss of thrust.
Other position components are not included as they do not
appear in eq. (2b).

B. Simulations Results

We show results of the cascaded linear controller
and it enhanced version with the DNN correction term
in ROS/Gazebo simulation environment (fig. 1, step 4).
Presented results are given on an unseen trajectory reference,
that is to say that they are neither part of the training set nor
part of the validation set, see fig. (6). A third controller, a
cascaded linear controller with integral action term is also
presented for comparison. In order to be compared correctly
with the two other controllers presented, the gains of the
controller with integral action are chosen in such a way
that the closed loop behavior approaches the ideal behavior
without integrator, i.e. the behavior of the LQR controller.
Thus the gains proportional, integral and derivative gains are
chosen so that the mean squared error between the integral
LQR and the non-integral LQR is the lowest. To find these
gains a brute force approach was used, requiring several
hours of calculations.

When the linear cascaded law is used, reached positions
reveal tracking errors and slower time response (blue line).
Tracking errors can be explained by the absence of integrator
in the initial linear controller. Slower time response is due
to the linear control design on a nonlinear model. On tests
trajectories, tracking errors with the linear controller are
around 7 cm on x and y component and for z component it
is up to 25 cm.
However, we expected none of those effects if the drone
behaves exactly like its linear model (green dashed line).
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ẋ = Ax + Bu

+
-

T +δT

p
q
r

Fig. 4: Proposed Cascaded Controller Architecture for our quadrotor. Attitude and position & speed control loops are running at 100Hz.
The DNN correction is learned offline and then is used to correct flight performance with respect to the expected linear dynamic.
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Fig. 5: Example of trajectories : step, circles, spirals, etc. included
in the database. Distances are in meters.

Those undesired errors, due to nonlinear dynamics of the
quadrotor, aerodynamic effects, coupling and unmodelled
actuator dynamics (open loop Electronic Speed Controller)
are mostly corrected with the proposed corrected DNN
Enhanced Linear Cascaded Controller. We can notice that
the drone behavior (red line) is closer to the expected linear
one: the DNN term has significantly decreased errors. Mean
squared errors on this test trajectory are presented in tab. I
for each axis. The integral controller tuned to be as close as
possible to the linear quadratic controller also corrects the
behavior but presents a slower time response.

C. Experimental Setup

In our experiments we use a Holybro Kopis 2 drone. The
on-board flight controller is a Kakute F7 where PX4 firmware
is installed. Internal PID controller is configured for angular
rate loop control. Our drone is connected to a ground station
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Fig. 6: Evolution of positions for each controller in ROS/Gazebo
Simulation Environment test case scenario. The positions of the
drone using the cascaded linear controller are represented in blue,
with the integrator in yellow, and using the enhanced controller
with DNN in red. Green dashed line represents the expected linear
behavior on the linear model using cascaded PD linear controller
only.

via a wifi bridge that is sending our command signal at
100Hz. Space positions are obtained from the motion capture
system, also running at 100Hz. The experimental setup is
resumed in fig. 7.

D. Experimental Results

We present results of our experiments using section V-C
setup. As for simulation, we first created a database using the



Linear Cascaded Linear Cascaded DNN Enhanced
Controller Controller with integrator Linear Controller

MSE x-axis 0.0049 m2 0.0021 m2 0.00029 m2

MSE y-axis 0.0032 m2 0.030 m2 0.00022 m2

MSE z-axis 0.0477 m2 0.0259 m2 0.00073 m2

TABLE I: Mean Squared Error (MSE) on each axis for presented
scenario (fig. 6) for the three controllers in ROS/Gazebo Simulation
Environment.
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Motor controller ESC

PX4 Flight controller

Kopis Drone

Ground station
Compute nominal and corrected

command input
Autonomous Offboard

Mode Manual Onboard Mode

Computed Command
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Live Position

Callback

Live Odometry (Rostopic)

Position captation
system

Fig. 7: Experimental setup.

linear cascaded controller on the Kopis drone. We collected
data with several scenarios using different batteries, including
new and old batteries to better cover their discharge profiles.
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Fig. 8: Evolution of quadrotor positions for each controller, in real
flight using our motion capture room (MOCA).

After training our DNN, we tested controllers on an unseen
scenario, see fig. 8. Also, to see the impact of battery
discharge profile on the controller law, we used a half-full
battery for each controller test. The blue line in fig. 8
represents the controller without correction nor integrator:
the behavior presents tracking errors. During this flight case,
using the linear law, we can notice the huge impact of the
battery discharge which is added to the tracking error. At
starting, the tracking error is equal to 30% and is increased

up to 35% at the end. As expected, the DNN Enhanced
Controller completely removed tracking errors and increased
flight speed compared to the linear controller. Here the DNN
completely compensates the error over the entire test scenario
and learned the battery discharge profile as we introduce
to the DNN battery discharge tension as an input. Thus,
the drone flight behavior is much closer to expected perfect
linear dynamic (green dashed line). As for simulation results,
the proposed controller is faster and closer to the linear
expected behavior than the integral controller. Mean squared
errors for experimental test trajectory are presented in tab.
II. We invite readers to watch the video of the experiments
attached to the paper.

Linear Cascaded Linear Cascaded DNN Enhanced
Controller Controller with integrator Linear Controller

MSE x-axis 0.0060 m2 0.0150 m2 0.0016 m2

MSE y-axis 0.0815 m2 0.0125 m2 0.0017 m2

MSE z-axis 0.0380 m2 0.0198 m2 0.0046 m2

TABLE II: Mean Squared Error (MSE) on each axis for presented
real flight scenario (fig. 8) for the three controllers.

Near Ground Test Comparison

To better see improvements of the DNN Enhanced Linear
Cascaded Controller compared to the Cascaded Controller
with an integrator, we tested both controllers in a near ground
flight case (see fig. 9), here following a lemniscate at 15cm
from the ground. In this type of scenario, ground effect
strongly affects the drone general behavior. The same deep
neural network, as in the previous part, is used as it was
trained on many different scenarios including near ground
flights. It is able to correct the behavior and get closer to the
linear expected behavior in this highly perturbed situation.
Here the integral controller is not rejecting ground effect
disturbance, as this effect is not a constant perturbation. The
neural term is able to catch those dynamical perturbations
and the proposed DNN Enhanced controller, as shown in
fig. 10, performs better than the integrator in all three axis.

Fig. 9: The quadrotor flying close to the ground. Trajectories are
displayed in fig. 10
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Fig. 10: Evolution of quadrotor positions for Cascaded Linear
Controller vs DNN Enhanced Linear Controller. Experiment is
carried close to the ground (15cm height). A photo of the quadrotor
is provided in fig. 9

VI. CONCLUSION AND FUTURE WORK

Rather than tuning a complex nonlinear algorithm, we
propose the design of an easy to tune the linear cascaded
controller. Then, a learning process is used allowing to
correct this basic controller to reach performances initially
fixed on a linear quadrotor model. Our experiment shows that
with a small amount of flight data collected, the proposed
DNN enhancement enables the drone behavior to be closer
to a linear one. It allows to reduce undesired overshoots,
slow time response and tracking errors. The advantage of
this approach is that it is plug-and-play and can be applied
to many UAVs present in the industry without the need
to find a fine model of the drone. Future work aims at
making experiments with online learning and correcting
progressively during flight. It can also be extended to learn
external perturbations, such as the wind, frame or blades
issues, battery unpredicted behavior, etc. Finally, we plan to
do a further ablation study to determine the optimal network
structure for embedding it in the micro-controller.
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