
HAL Id: hal-03650665
https://hal.science/hal-03650665

Preprint submitted on 25 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From a trapezoidal acceleration profile to a learnt time
optimal control policy for robot braking

Arthur Esquerre-Pourtère, Nicolas Torres Alberto, Vincent Padois

To cite this version:
Arthur Esquerre-Pourtère, Nicolas Torres Alberto, Vincent Padois. From a trapezoidal acceleration
profile to a learnt time optimal control policy for robot braking. 2022. �hal-03650665�

https://hal.science/hal-03650665
https://hal.archives-ouvertes.fr

From a trapezoidal acceleration profile to a learnt time optimal control
policy for robot braking

Arthur Esquerre-Pourtère1, Nicolas Torres Alberto2 and Vincent Padois3

Abstract— The work presented in this paper tackles the ques-
tion of braking efficiently with robots. This is an important
feature for collaborative robots. These systems need to ensure
safety of their surrounding operators without compromising
performance.
The proposed approach leverages existing motion planning
methods based on trapezoidal acceleration profiles which
provide a sub-optimal control policy for braking, assuming
minorant constant joint jerk and acceleration capacities. Based
on this initial solution to braking, a control policy is learnt
by reinforcement using the Proximal Policy Optimization deep
learning algorithm. This learnt policy assumes constant torque
and torque derivative actuation capabilities and predicts an
optimal variation of the sub-optimal control policy which better
exploits the actuation capabilities of the robot.
The principles of this learning approach are first presented and
then evaluated in a simulation with an academic example of a
Panda robot restricted to 2 degrees of freedom. The obtained
results are promising as they lead to a reduction of the stopping
time and energy required to brake.

I. INTRODUCTION

In the context of collaborative robotics, humans are meant to
work near robots and to share their workspace. While this novel
paradigm opens many new possibilities [1], it also makes safety
an even more central issue [2].
An important aspect of safety is the ability to brake efficiently
and stop the robot before an impact occurs. One way of brak-
ing very quickly is to use an emergency stop system which
mechanically blocks the robot’s joints [3] and electrically stops
the actuators. However this presents two problems: it requires
that the robot is restarted manually afterwards and it can be
mechanically detrimental to the robot’s longevity. Furthermore,
this strategy does not formally guarantee collision avoidance (e.g.
with a human). Instead, a general controller implicitly leading to
a controlled stop “when necessary” yields better efficiency (no
human intervention required to restart the robot) and can more
directly embed safety guarantees as constraints expressed at the
control level [4].
Nevertheless, this type of approach makes a strong assumption on
the motion capabilities, for example expressed in terms of joint
space acceleration and jerk, of robots: they are supposed to be
constant. While this largely simplifies the problem of computing
an optimal stopping trajectory, it also leads to over and/or under
estimations of the stopping time. The latter can be detrimental

1Arthur Esquerre-Pourtère was an intern at Inria in the
Auctus research team from March to September 2021.
arthur.esquerre@gmail.com

2Nicolas Torres Alberto is a PhD student at Auctus, Inria Bor-
deaux, Talence, France and Stellantis, Centre Technique Vélizy, France.
nicolas.torres@stellantis.fr

3Vincent Padois is a senior research scientist at Auctus, Inria Bordeaux,
Talence, France. vincent.padois@inria.fr

to safety in case of impact [5]. The former raises the question
of efficiency: the robot actuation is restricted to a subset of its
capabilities and potentially over-sized (and thus more dangerous)
so that this subset fits the requirements of the applicative context.
Nevertheless, properly accounting for the true capabilities of
robots is not specific to the braking problem and some recent
work have shown that computing the real capabilities of robots
is achievable in real-time [6]. Yet, the obtained bounds are state-
dependant and computing an optimal control policy from these
non-linear, state-dependent bounds remains a complex optimal
control problem which is generally dealt with along a given
path [7] (this does not fit the case of an efficient stopping motion).
Recent works are attempting to tackle this general problem
with Differential Dynamic Programming [8] but accounting for
bounds in these approaches is not trivial and the general problem
remains open.

While model-based approaches lead to complex high dimen-
sional optimization problems, machine learning, and especially
deep learning and reinforcement learning, allows to tackle high
dimensional problems and can be applied to the context of robotic
control, for instance for the control of robotic manipulation [9]. In
this context, the work described in this paper explores the ability
to learn a control policy optimally using the dynamic capabilities
of a robot to generate efficient stopping motions. A robot can be
considered stopped when its velocity and acceleration are null.
Reaching such a state can be done in different ways and efficiency
can be quantified in terms of braking time, braking distance or
braking energy. In this work, time is considered as the central
optimization criteria and a discrete control policy is learnt using
a neural network trained in simulation with the Proximal Policy
Optimization (PPO) deep reinforcement learning algorithm [10].
In order to simplify the learning process, an initial, model-
based, control policy is computed assuming constant maximal
acceleration and jerk while the proposed learning algorithm
only assumes constant maximum actuation torque and torque
derivative. While still slightly restrictive, this is, given the veloc-
ity/torque characteristics of DC actuators equipping most robots,
a reasonable assumption which yields interesting performance
gains illustrated with simulation results on a 2 degrees of freedom
(DOF) academic example robot.

The paper is organized as follows. Section II rapidly introduces
essential elements to describe the braking problem. Section III
provides an overview of the whole learning system. Each com-
ponent of this system is then described in the Section IV. The
results of the different methods applied to a simplified Franka
Emika Panda robot are then displayed and analyzed in Section V.
Finally, the results of this work are summarized and some insight
on potential future work is provided in Section VI.

Fig. 1: Trapezoidal acceleration profile (TAP).

II. INITIAL APPROACH TO BRAKING

A. Stopping condition

Let us consider fixed-base serial robotic manipulators with n

degrees of freedom (DOF). Their joint space configuration, ve-
locity, acceleration and jerk are respectively denoted q, q̇, q̈

and ...
q .

In this work, a robot is considered to be stopped when the
absolute value of both the velocity and acceleration of each DOF
is lower than a small value ϵ:

∀i ∈ {1...n}, |q̇i| < ϵ ∧ |q̈i| < ϵ (1)

ϵ can be physically related to the dry friction acting at each axis.

B. TAP: Trapezoidal acceleration profile

A classical approach to trajectory generation is given by “Trape-
zoidal velocity profiles” [7]. Such profiles allow to reach a
desired position starting from any other position, given some
constant acceleration and velocity limits as well as initial and
final conditions on the velocity (often considered zero).
In this work, the braking problem is slightly different: starting
from any arbitrary velocity, we want to reach a velocity and
an acceleration equal to zero while considering some actuation
limits expressed at the acceleration and jerk levels. In a first ap-
proximation, assuming these limits to be constant, the trapezoidal
approach can be expressed at the acceleration level as illustrated
in Figure 1. Such a ”Trapezoidal acceleration profile” (TAP) can
be used to reach the stopping condition from an initial velocity
and acceleration given constant bounds on jerk and acceleration.
In the specific case depicted in Figure 1, a non zero initial
acceleration may lead to a temporary increase in velocity before
velocity can actually start decreasing.

C. Limits of the simple approach

While jerk can be considered as a control input for this sys-
tem, actuation limits are more accurately described at the joint

Fig. 2: Distribution of τ2 when considering the maximum and
minimum accelerations in 1000 partially described state, which
results in 128000 samples.

torque τ , joint torque derivative τ̇ and joint velocity levels:

τmin ≤ τ ≤ τmax

τ̇min ≤ τ̇ ≤ τ̇max

q̇min ≤ q̇ ≤ q̇max

(2)

Reaching the stopping condition described by equ. (1) while
optimally using the actuation capabilities of the robot described
by equ. (2) requires to relate torque and acceleration through the
system’s equation of motion:

q̈ = M−1(q)(τ −C(q, q̇)− g(q)−Bq̇) (3)

where M is the inertia matrix, C centrifugal and Coriolis induced
torques, g is the vector of gravity torques and B is the diagonal
viscous friction matrix. From equ. 3, it is clear that the accel-
eration and thus jerk capabilities of the robot are not constant
over the whole state space. Considering constant bounds over the
whole state space can lead to an under-utilization of the robot’s
real actuation capabilities (or, worse, an over-estimation of these
capabilities).
In order to illustrate the under-utilization of the robot’s real
capabilities when considering constant acceleration bounds, an
initial numerical experiment is proposed, using a simulated 7
DOF Franka Emika Panda robot [11] and the limits given by the
manufacturer.
In a given state {q, q̇}, the maximum joint space accelera-
tion q̈i,max or minimum acceleration −q̈i,max provided by the
Franka Emika documentation is considered for each DOF. A total
of 27 = 128 different combinations of maximum and minimum
accelerations are tested and for each combination the equivalent
joint torque τ is computed using equ. (3).
The experiment is repeated with 1000 sampled states, generated
using existing trajectories as described in section IV-B. Figure 2
displays the distribution of the computed torque on the second
DOF τ2, considering all combinations and all sample states
(1000× 128 = 128000 samples in total).
In most cases, maximum joint level acceleration can be achieved
without reaching the actuation torque bounds. For instance, half
of the samples allow to reach maximum acceleration with a
torque τ2 <= 9.8N.m while τ2,max = 87N.m. While this graph
does not illustrate the coupling effects of the joint dynamics, it is
sufficient to illustrate the fact that much higher torques could be

Fig. 3: Learning system architecture.

applied in most states, likely resulting in higher accelerations.
Similar results can be observed for all other DOFs, although the
2nd DOF is the only one for which an overestimation of the real
capacities have been observed in some states. Indeed, in some
rare states, considering the q̈2,max or −q̈2,max implies a joint
torque τ2 which exceeds the limits −τ2,max or τ2,max. This
is very likely related to the fact that joint 2, given its specific
location and orientation in the kinematic chain is the one which
implies the largest dynamic coupling and gravity effects.
Overall, these results illustrate the difficulty to estimate at best
constant inner box approximations of polytopes [6] and, as a
consequence, the poor quality of the constants limits on the
actuation capacities given by the manufacturer. Even though the
TAP allows to brake while using an acceleration q̈max and a
jerk ...

qmax, those values do not match the robot’s real capacities.
This means that the maximum torque τmax and derivative of the
torque τ̇max are often not reached, or are sometimes exceeded.
This emphasizes the fact that a method able to compute an
optimal stopping trajectory that makes a better use of the actu-
ation capacities of the robot is needed. Yet, the non-linear state
dependence of the equation of motion (3) renders this problem
complex.

III. LEARNING SYSTEM ARCHITECTURE IN A NUTSHELL

Considering the difficulties in computing an optimal analytical
solution, the method presented in this paper uses trial and error
in order to learn a policy that makes better use of the robot’s
real capabilities. Yet, instead of learning the policy from scratch,
the proposed learning system architecture takes advantage of the
existence of a sub-optimal solution to the problem: the TAP.
Figure 3 illustrates the working principles of such an hybrid
learning architecture.
So as to limit the learning time and for safety reasons, the policy
is learned in simulation. The role of the simulator is to integrate
the dynamics of the system given torque derivative inputs as well
as to generate initial conditions used during the training phase of
the learnt controller.
At each time step during learning, the simulator computes the
state of the robot. Torque derivative being considered the control
input, the considered state is described by {q, q̇, q̈}. Given this
state, the sub-optimal analytical solution to braking, τ̇TAP , is
computed. The state is also sent into a Reinforcement learning
algorithm whose role is to output a value ∆τ̇ . In this work,

the control policy is learnt using a neural network trained in
simulation with the Proximal Policy Optimization (PPO) deep
reinforcement learning algorithm [10].
The control input τ̇ provided to the simulator is then computed
as follows:

τ̇ = τ̇TAP +∆τ̇ (4)

The proposed reinforcement learning approach is thus guided by
a suboptimal, simple to compute, analytical solution. It explores
the solution space around an initial solution space in order to find
an improved policy. Such an approach is expected to leverage
the existing knowledge to reduce the number of learning samples
required to learn the braking control policy [12].

IV. PROPOSED APPROACH

A. Simulation

Given a control input τ̇k+1 for the next control instant, the
simulator first saturates this input in order to comply with the
maximum torque and torque derivative constraints described by
equ. (2) with:

τ̇k+1,min = max(τ̇min, (τmin − τk)/∆t) (5)

τ̇k+1,max = min(τ̇max, (τmax − τk)/∆t) (6)

with τk the joint torque at the current control instant and ∆t

the considered control period. In this work, ∆t is taken as 1 ms

which corresponds to the recommended sample time when per-
forming torque control with the Panda robot.
Given this control input, the updated torque value is computed
as:

τk+1 = τk + τ̇k+1∆t (7)

From this torque, the joint acceleration q̈k+1 is computed using
the equation of motion (3) evaluated in {qk, q̇k}.
In order to reduce the truncature error due to numerical integra-
tion, the corresponding joint jerk is estimated as:

...
q k+1 =

q̈k+1 − q̈k

∆t
(8)

and numerical integration is then performed to compute the new
joint position and velocity:

q̇k+1 = q̇k + q̈k∆t+

...
q k+1∆t2

2
(9)

qk+1 = qk + q̇k∆t+
q̈k∆t2

2
+

...
q k+1∆t3

6
(10)

Given, the updated state {qk+1, q̇k+1, q̈k+1}, the stopping
condition (1) is then evaluated and the simulation is stopped or
continued accordingly.
In this work, it is assumed that the main control law of the robot
never reaches a state such that joint position and velocity limits
may be reached. This is a strong assumption for robots evolving
in dynamic environment as it raises the question of viability of
the control input [13]. Yet, this is clearly out of scope for this
paper.

B. Initial states generation
For the purpose of learning and testing a braking policy from any
initial state, an initial state generator is required. As the neural
network used to capture the learnt policy needs to be trained on a
high range of different states, the state generator must cover the
state space as much as possible. Moreover, the generator needs to
generate only feasible states that can actually be reached by the
robot1.
In this work, a method inspired by the notion of “exciting trajec-
tories” [14] is used to generate feasible states. Such trajectories
are computed as:

qik =
∑N

l=1
ai

F[l,i]
sin

(
F[l,i]k∆t+Ba[l,i]

)
−

bi
F[l,i]

cos
(
F[l,i]k∆t+Bb[l,i]

) (11)

where k is the considered time instant and i the index of the
considered DOF. N is a scalar which determines the number of
sine and cosine functions to be used (in this work N = 3). F is
a N × n matrix containing prime numbers, with n the number
of DOF (F[l,i] is the component of F on the l-th line and i-
th column). Using prime numbers allows to remove periodicity
between the different sine and cosine signals. In this work,
the n×N first prime numbers are used and by shuffling the matrix
each time a new trajectory is generated, the exploration of the
state space is improved. Ba and Bb are matrices, used to phase
shift the sine and cosine functions. They contain random numbers
between 0 and 2π. The values in vectors a and b must satisfy
the constraints on q, q̇ and q̈ while being maximized in order to
improve the exploration of the state space. In first approximation,
these values are computed without accounting for the complex
bounds of the true feasible state space:

ai = bi = min

 qi,max

2
∑N

l=1
1

F[l,i]

,
q̇i,max

2N
,

q̈i,max

2
∑N

l=1 F[l,i]

 (12)

where q̈i,max is the constant bound provided by the manufac-
turer.
To generate a new initial state, a trajectory is generated and a
point of the resulting trajectory is selected randomly by drawing
a random time instant k. The position is derived to compute the
associated velocity and acceleration.

C. Reinforcement learning
The proposed approach method uses deep reinforcement learning
to improve the policy given by the TAP. This allows to learn a
neural network which gives ∆τ̇ as an output. The state space S

of the associated Markov decision process is described by 3n

continuous variables corresponding to q, q̇ and q̈. The reward
function R is formulated as:

R(S) =

{
−1 if ∃q̇n ≥ ϵ or ∃q̈n ≥ ϵ

r otherwise.
(13)

where r is scalar with an arbitrary large value. In this work, r =

100. This function encourages the robot to reach a stopped state
as fast as possible. So as to learn the optimal ∆τ̇ i for each
DOF i, the action space A is defined by n values. Considering the
high dimensionality of the problem, the proposed method uses 5
discrete values for each action ∆τ̇ i. By reducing the necessary

1Starting from an unreachable initial state may bias the learning towards
an unrealistic control policy

exploration, the learning process converges more easily toward
a good solution. The discrete values are defined by a vector of
hyper-parameters ∆r:

∀i ∈ {1...n}, ∆τ̇i ∈ {−∆ri,−
∆ri
2

, 0,
∆ri
2

,∆ri} (14)

It is important to note that when ∆τ̇ i = 0, the controller sends the
value τ̇ i = τ̇TAP i to the DOF i of the robot. When the robot
is in a state which allows to reach the stopped state at the next
timestep, the optimal action space is very narrow and using the
value τ̇TAP given by the TAP is often optimal.
The neural network is learned using a deep reinforcement learn-
ing algorithm called Proximal Policy Optimization (PPO) as it
can handle multi-discrete action spaces.
The previously described TAP is designed to reach the accelera-
tion q̈max given by the manufacturer. As the TAP is recomputed
at each time step, if the current acceleration is over q̈max,
the TAP applies a negative jerk to reduce it. When using the
neural network over the TAP, the TAP thus prevents exploring
trajectories that uses high values of acceleration. As an aspect of
the neural network’s role is, in some states, to reach accelerations
that are over q̈max, the TAP must be adapted when used with
the neural network. Instead of using a constant value q̈max given
by the manufacturer, the value q̈max,k = max(q̈max, q̈k−1) is
used at each time step k. Using the maximum between the q̈max

given by the manufacturer and the previous acceleration ensures
that the TAP will not prevent the learning system from reaching
higher accelerations. The TAP may however overestimate the real
robot’s capacities and the role of the neural network is also to
prevent the learning system from overestimating these capacities.

V. EXPERIMENTS AND RESULTS

The results presented in this section can be reproduced using the
code available online2.

A. Robot

The experiments are carried out using a simplified version of the
Franka Emika Panda robot where only the second and fourth
DOF are being controlled while the others DOF are locked. It
results in a 2 DOF planar robot affected by the gravity. The robot
dynamics is simulated in Python using the Pinocchio library [15].
The real limits on the velocity and on the torque, respec-
tively q̇max and τmax, given by the manufacturer are used,
as well as the lower boundaries of the maximum reachable
acceleration q̈max.
The values of ...

qmax given by the manufacturer overestimate the
robot’s real capacities and are, consequently, not usable. Indeed,
when applying a jerk ...

qmax to the robot, the derivative of the
torque τ̇ often exceeds the maximum values τ̇max. Yet, its is not
clear how these values have been chosen by the manufacturer. For
the purpose of this work, in order to leave space for exploration to
the learning algorithm, the values of τ̇max are chosen 5× larger
than the ones provided by the manufacturer. Similarly, the values
of ...

qmax used for computing the TAP are chosen 5× lower than
the manufacturer’s provided limits.

2The code used to reproduce the results of this paper is available
at: https://gitlab.inria.fr/auctus-team/publications/
shared-paper-code/iros2022-brake

B. Experiments

The proposed deep reinforcement learning architecture is applied
on the previously defined planar robot. The learned neural net-
work is made up of 3 hidden layers of 10 neurons each, as this
neural architecture produced the best results on this particular
robot. The python library Stable-Baselines3 [16] is used to im-
plement PPO.
The values of ∆r must be chosen carefully as it controls how
much the learning process is guided by the TAP. A too low value
would force the learned policy to be similar to the policy given
by the TAP and a too high value would let the learning process
explore very different policies, which may prevent the learning
process to converge. In this experiments, the value of ∆ri is the
same for each DOF, hence ∆τ̇i ∈ {−200,−100, 0, 100, 200}.
After learning with a budget of 400k timesteps, the final policy is
tested on a test set of initial states and compared with the results
obtained when only using the TAP. The test set is created by
randomly generating 500 initial states using the exciting trajecto-
ries. The comparison between the learned controller and the TAP
alone is done by starting a braking episode from each initial state
and observing the average braking time and the average value
of γ, computed as follows:

γ =
∑
k

n∑
i=1

|τ i k| (15)

where k corresponds to each timestep. The value of γ is correlated
with the energy spent during a braking episode and can thus be
used to compare the energetic efficiency.

C. Comparison with the TAP on the test set

Considering the stochasticity of the learning process, the exper-
iment needs to be repeated several times. The learning process
in launched 25 times, and all the resulting controllers are tested
on the same test set. The table I shows the performances on the
test set of the TAP and the performance of the learned policy,
averaged over the 25 learned controllers. The test set is divided
in 3 sub test sets, depending on the kinetic energy of the initial
states. The kinetic energy is computed as follows :

K(q, q̇) =
1

2
q̇⊤M(q)q̇ (16)

As one might expect, these results show that a higher initial
kinetic energy implies a longer braking time as well as a higher
energy consumption for both methods. However, on average,
using the learned neural network allows to brake faster and to
reduce the power consumption on each sub test set. Additionally,
the time gains get higher when the initial kinetic energy increases.
Considering that initial states with higher kinetic energy are
the most dangerous in the context of collaborative robotics, this
remark emphasizes the usefulness of the method presented in this
paper.
Despite the stochasticity of the method presented here, the results
obtained with the 25 learned controllers are quite stable. Most of
the learned controllers achieve better results than the TAP on both
metrics and on each sub test set, with only one learned controller
achieving both higher braking time and higher value of γ than the
TAP on the sub test set where 0.2 ≤ K < 0.4.
These results demonstrate that learning a value ∆τ̇ over the TAP
allows to improve significantly the braking efficiency.

D. Comparison with the TAP during a braking episode
Figure 4 shows an example of a braking trajectory on the first
DOF when starting from a random initial state and using each
methods. Each method works and reaches the stopped state,
however, the policy learned via reinforcement learning is faster.
This is due to applying a higher acceleration and jerk. Indeed,
when using the neural network, both the maximal acceleration
and the maximal jerk are above the lower boundaries q̈max

and ...
qmax. In that example, the better use of the robot’s ca-

pacities is reflected by a higher absolute value of the maximum
torque τ and derivative of the torque τ̇ .
The actions ∆τ̇ chosen by the neural network often follow the
same pattern: a first phase where the action has a negative value
(when the velocity is positive) followed by a second phase with
actions of positive values and an final phase where the action is
0. Using an action equal to zero means letting the TAP control
the corresponding DOF and is optimal in some situation, as
mentioned in the sub-section IV-C.

VI. CONCLUSION

The method proposed in this paper uses a controller composed a
both the TAP and a learned neural network and does not make
any simplification regarding the feasible acceleration q̈max and
jerk ...

qmax. It allows to exploit the actuation capacities efficiently
and, as a consequence, to brake faster than when using methods
traditionally used in the robotics literature. It also improves
significantly the energetic efficiency of the braking. This work
illustrates how machine learning methods, such as reinforcement
learning, may improve both the temporal and energetic efficiency
of robots evolving in dynamic contexts such as the ones of
collaborative robotics where safety and efficiency are at stake.

A. Limitations
The main limitation of the work presented here is the absence of
tests on a real world robot. The proposed algorithm has only been
tested on a simulator and, to ensure its safety and its efficiency in
the context of collaborative robotics, testing this method on a real
robot appears essential.
Another important point to raise is that, for simplicity, the limits
regarding the position of each joints have not been taken into
account during this work. For this reason, the braking policies
learned in simulation may not be feasible on a real robot. To apply
this method on a real world robot, a more complex simulator
would be needed and collision events should be taken into ac-
count. For instance, modifying the reward function by penalizing
the robot depending on the impact force could allow to minimize
the collision damages.

B. Future works
In this work, the action space is limited to 5 discrete actions per
DOF and the actions values are restricted by ∆r. Although, due
to the increasing complexity of exploration, experiments with
continuous actions and with higher value of ∆r give poorer
results, using continuous actions or higher values of ∆r could
allow the algorithm to explore more solutions and thus improve
the braking efficiency.
Lastly, even though the current method improves significantly
the braking efficiency of a 2 DOF planar robot, many real world
robots have more DOF and, hence, a higher complexity. When
using this method on the 7 DOF Panda robot, the efficiency gains

TABLE I: Average braking time and value of γ on the test set using the TAP method and the learning system (TAP+∆τ̇). The values
given for the learning system are computed by averaging the average braking time on the test set of the 25 learned controllers and the
standard deviation computed on the 25 learned controllers is given in parenthesis. The gains columns shows the efficiency gain when using
TAP+∆τ̇ , in comparison with the TAP alone. For each initial state, the ratio between the performance difference and the performance of
the TAP is computed. The average value of this ratio on the initial states and on the 25 learned controllers is then computed and shown
as a percentage.

Kinetic energy (J) TAP Time (ms) TAP+∆τ̇ Time (ms) Time gains TAP γ (N.m) TAP+∆τ̇ γ (N.m) γ gains
K < 0.2 47.5 41.8 (± 2.0) 8.2% 1900.8 1688.5 (± 74.8) 7.2%

0.2 ≤ K < 0.4 73.7 60.1 (± 4.8) 16.0% 3149.1 2711.1 (± 165.9) 10.2%
0.4 ≤ K 101.2 76.1 (± 4.8) 22.3% 4028.7 3461.2 (± 138.4) 6.7%

Fig. 4: Evolution of q̇1, q̈1,
...
q 1, τ 1, τ̇ 1 and ∆τ̇ 1 during a braking episode using the TAP method and the learning system (TAP+∆τ̇).

Both methods start from the same random initial state.

are much lower than with the 2 DOF robot. Indeed, tuning the
values of ∆r becomes much more complicated when the number
of DOF increases. The increase in complexity forces the learning
process to be more guided by the TAP, which means that smaller
values of ∆r must be chosen. Additionally, since the inertail
properties of robots vary largely from the first degrees to the
last ones, the torque needed to create a movement is usually
much higher for the first DOFs. Therefore, using different values
of ∆ri for each DOF is probably more adequate. The research
of methods allowing to adapt the values of ∆r to each DOF is
thus a promising research subject for the purpose of improving
the braking efficiency of high-DOF robots.

REFERENCES

[1] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge,
and O. Khatib, “Progress and prospects of the human–robot collabo-
ration,” Autonomous Robots, vol. 42, no. 5, pp. 957–975, 2018.

[2] S. Haddadin, Formal Modeling and Verification of Cyber-Physical
Systems: 1st International Summer School on Methods and Tools
for the Design of Digital Systems, Bremen, Germany, September
2015. Springer Fachmedien Wiesbaden, 2015, ch. Physical Safety
in Robotics, pp. 249–271.

[3] T. Rokahr, A. Spenninger, and C. Calafell Garcia, “German patent
de102019112023a1, braking device for a drive device of a robot,”
Nov. 2020. [Online]. Available: https://patents.google.com/patent/
DE102019112023A1/en

[4] L. Joseph, J. K. Pickard, V. Padois, and D. Daney, “Online velocity
constraint adaptation for safe and efficient human-robot workspace
sharing,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 11 045–11 051.

[5] S. Haddadin, A. Albu-Schaffer, and G. Hirzinger, “The role of the
robot mass and velocity in physical human-robot interaction-part i:

Non-constrained blunt impacts,” in 2008 IEEE International Confer-
ence on Robotics and Automation. IEEE, 2008, pp. 1331–1338.

[6] A. Skuric, V. Padois, and D. Daney, “On-line force capability evalua-
tion based on efficient polytope vertex search,” in IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 1700–
1706.

[7] K. M. Lynch and F. C. Park, 2017, ch. Trajectory Generation.
[8] S. Kleff, A. Meduri, R. Budhiraja, N. Mansard, and L. Righetti, “High-

frequency nonlinear model predictive control of a manipulator,” in
2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 7330–7336.

[9] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley,
“Deep reinforcement learning for the control of robotic manipulation:
A focussed mini-review,” Robotics, vol. 10, no. 1, 2021.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[11] Franka control interface documentation — franka control interface
(FCI) documentation. [Online]. Available: https://frankaemika.github.
io/docs/index.html

[12] D. Nguyen-Tuong and J. Peters, “Using model knowledge for learning
inverse dynamics,” in 2010 IEEE international conference on robotics
and automation. IEEE, 2010, pp. 2677–2682.

[13] S. Rubrecht, V. Padois, P. Bidaud, M. De Broissia, and
M. Da Silva Simoes, “Motion safety and constraints compatibility for
multibody robots,” Autonomous Robots, vol. 32, no. 3, pp. 333–349,
2012.

[14] J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter, and
H. Van Brussel, “Optimal robot excitation and identification,” IEEE
transactions on robotics and automation, vol. 13, no. 5, pp. 730–740,
1997.

[15] J. Carpentier, F. Valenza, N. Mansard, et al., “Pinocchio: fast forward
and inverse dynamics for poly-articulated systems,” 2015–2021.

[16] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning im-
plementations,” Journal of Machine Learning Research, vol. 22, no.
268, pp. 1–8, 2021.

