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A B S T R A C T 

Predictions of the mean and covariance matrix of summary statistics are critical for confronting cosmological theories with 

observations, not least for likelihood approximations and parameter inference. Accurate estimates require running costly N -body 

and hydrodynamics simulations. Approximate solvers, or surrogates , greatly reduce the computational cost but introduce biases, 
especially in the non-linear regime of structure growth. We propose ‘CARPool Bayes’ to solve the inference problem for 
both the means and covariances using a combination of simulations and surrogates. Our approach allows incorporating prior 
information for the mean and covariance. We derive closed-form solutions for maximum a posteriori covariance estimates that are 
efficient Bayesian shrinkage estimators, guarantee positive semidefiniteness, and can optionally leverage analytical covariance 
approximations. We discuss choices of the prior and propose a procedure for obtaining optimal prior hyperparameter values with 

a small set of test simulations. We test our method by estimating the covariances of clustering statistics of GADGET-III N -body 

simulations at redshift z = 0.5 using surrogates from a 100–1000 × faster particle-mesh code. Taking the sample covariance 
from 15 000 simulations as the truth, and using an empirical Bayes prior with diagonal blocks, our estimator produces nearly 

identical Fisher matrix contours for � CDM parameters using only 15 simulations of the non-linear dark matter power spectrum. 
In this case, the number of simulations is so small that the sample covariance is degenerate. We show cases where even with a 
na ̈ıve prior our method improves the estimate. Our framework is applicable to a wide range of cosmological problems where 
fast surrogates are available. 

Key words: methods: statistical – software: simulations – cosmological parameters – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

o study the large-scale structure of the Universe and cosmic growth
istory in the era of data-driven cosmology, one needs to accurately
odel the statistical properties of observables in order to infer cosmo-

ogical parameter constraints from surv e ys. The co variance matrix
 of a summary statistics vector, such as the matter power spectrum

cross different wavenumbers, and most importantly its inverse –
he precision matrix – are paramount to extracting low-dimensional
ummaries, building inference frameworks, or computing likelihood
pproximations from mock catalogues (Heavens, Jimenez & Lahav
000 ; Eifler, Schneider & Hartlap 2009 ; Takahashi et al. 2009 ;
arnois-D ́eraps, V afaei & V an Waerbeke 2012 ; Dodelson & Schnei-
er 2013 ; Harnois-D ́eraps & Pen 2013 ; Blot et al. 2014 ; Joachimi &
aylor 2014 ; Perci v al et al. 2014 ; Taylor & Joachimi 2014 ; Alsing &
andelt 2018 ; Harnois-D ́eraps, Giblin & Joachimi 2019 ; Hikage,

akahashi & Koyama 2020 ; Wadekar, Ivanov & Scoccimarro 2020 ;
iocoli et al. 2021 ). 
The most trusted yet costly method to compute the covariance
atrix of large-scale structure clustering statistics consists in gen-

rating mock realizations of surv e y observables with intensive N -
ody simulations – or even hydrodynamical simulations for certain
 E-mail: nicolas.chartier412@gmail.com 

m  
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Pub
pplications – that mimic the conditions of observational data
ampling in terms of redshift, sky area, volume, etc. We then use
he samples to compute the unbiased and positive definite sample
ovariance estimator but getting a reliable estimate requires many
ealizations, especially if we need the precision matrix for the
stimation of parameter confidence bounds. 

To reduce the computational cost of generating simulation samples
arious parallel, distributed-memory N -body solvers have been de-
eloped sometimes with GPU-acceleration (Springel 2005 , GADGET ;
shiyama, Fukushige & Makino 2009 , GREEM ; Warren 2013 , 2HOT ;
arnois-D ́eraps et al. 2013 , CUBEP 

3 M ; Garrison 2019 , Abacus; Habib
t al. 2016 , HACC ; Potter, Stadel & Teyssier 2017 , PKDGRAV3 ; Yu,
en & Wang 2018 , Cheng et al. 2020 , CUBE ). Relying solely on
assively parallel computing to tackle next-generation observational

ata sets appears impractical given our time, memory, and energy
esources since thousands of simulations are needed to produce
ufficiently accurate cosmological parameter constraints (see for
nstance, Blot et al. 2016 ). 

For this reason, cosmologists have been searching for alternatives
o running a large number of N -body simulations for a particular
osmological model. 

On the theoretical side, analytical computations give covariance
atrices that have little or no Monte Carlo noise but approximate

nd only valid for some assumptions on the data model. Such
omputations typically exploit the Gaussian limit and/or deviations
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 

mailto:nicolas.chartier412@gmail.com


CARPool Bayes 1297 

f  

E  

t
2  

r  

(

i  

n
t  

e
s
fi
s  

b  

a  

T  

(  

L
f
Z  

o  

(

c
s
w
i
s  

i  

M  

A  

K  

m
d  

V  

p
s  

e
p  

R  

s
fi  

s
a  

t
m

i  

–  

2  

w
s
s
b  

g
N

c
e
s
d

n  

b  

e  

c
h

 

s
m
m  

a  

t
fi
2  

F  

b
c
)  

a  

w
c
t  

t  

s  

c
s
E  

o
o  

a  

s  

E
 

b
s  

f  

l  

c
 

N  

h
t  

a
h  

b  

m
 

a
e
a
v
m
b  

e
T  

w  

e  

o
o
E
s
t
s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/1/1296/6628658 by IN
IST-C

N
R

S IN
EE IN

SB user on 07 April 2023
rom Gaussianity of the covariance (Li et al. 2019 ; Philcox &
isenstein 2019 ; Philcox et al. 2020 ) or stem from perturbation

heory (Mohammed & Seljak 2014 ; Mohammed, Seljak & Vlah 
017 ). For re vie ws of methods moti v ated by theoretical predictions,
efer to Bernardeau et al. ( 2002 ) and Desjacques, Jeong & Schmidt
 2018 ). 

On the computational side, researchers have developed approx- 
mate solvers which are much faster than full N -body or hydrody-
amical codes at the cost of coarser computations and simplifications 
hat reduce the o v erall accurac y with respect to intensiv e solutions,
specially at small scales. An important part of these approximate 
olvers use Lagrangian perturbation theory (LPT) within a low- 
delity particle-mesh (PM) frame work: Tasse v, Zaldarriaga & Eisen- 
tein ( 2013 , COLA); Tassev et al. ( 2015 , sCOLA) implemented
y Leclercq et al. ( 2020 ), Feng et al. ( 2016 , FastPM) available in
 distributed version by Modi, Lanusse & Seljak ( 2021a ), White,
inker & McBride ( 2014 , QPM), and Kitaura, Yepes & Prada
 2014 , PATCHY), to name a few. Methods based on low-order
PT predictions provide numerous fast structure formation statistics 

or cosmology: Scoccimarro & Sheth ( 2002 , PTHalos); Tassev & 

aldarriaga ( 2012 ) and Monaco et al. ( 2013 ) building upon the work
f Taffoni, Monaco & Theuns ( 2002 , PINOCCHIO), or Chuang et al.
 2015 , EZmocks). 

An increasingly popular approach, based upon optimization, is to 
onstruct mathematical models – emulators – that directly predict 
ummary statistics for specific cosmologies and parameters and of 
hich the free parameters were previously determined through train- 

ng with a specific loss function and, most importantly, simulation 
uites co v ering an appropriate range of the space of the upcoming
nput data (DeRose et al. 2019 ; Lucie-Smith, Peiris & Pontzen 2019 ;

cClintock et al. 2019a , b ; Zhai et al. 2019 ; Alsing et al. 2020 ;
ngulo et al. 2021 ; Pedersen et al. 2021 ; Rogers & Peiris 2021 ;
asim et al. 2022 ). A large proportion of the underlying mathematical
odels of emulators are trained neural network architectures (Alves 

e Oliveira et al. 2020 ; Lucie-Smith et al. 2020 ; Remy et al. 2020 ;
illaescusa-Navarro et al. 2021a ; Spurio Mancini et al. 2022 ) that
roduce summary statistics, and some have been specifically de- 
igned to output matter density fields from input initial conditions, or
ven snapshots of low-resolution N -body simulations with particles 
ositions and velocities (He et al. 2019 ; Dai & Seljak 2020 ; Kodi
amanah et al. 2020 ). Recently, Modi et al. ( 2021b ) proposed a

olution to the inverse problem of estimating the initial density 
eld of the early Univ erse: the y combine a differentiable N -body
olver with a recurrent neural network architecture (RNN) to build 
 tractable inference scheme. Also, Hassan et al. ( 2021 , HIFLOW)
rained an emulator and are able to produce 2D neutral Hydrogen 
aps conditioned on cosmology. 
As a consequence of the growing enthusiasm for Machine Learn- 

ng solv ers, we hav e seen the production of massiv e simulation suites
Garrison et al. ( 2018 ), Villaescusa-Navarro et al. ( 2020 , 2021b ,

022 , ) – that more and more often aim specifically at providing
ays to train various emulators and models. Any trained model 

uffers from two main drawbacks: namely the need for many training 
imulations and the subsequent limitation of the model to generalize 
y the parameter range of the training set; and the absence of
uarantee for unbiasedness of the predictions with respect to full 
 -body or hydrodynamical outputs. 
All the fast solvers described above – which we will refer to 

ollectively as surrogates – trade the accuracy of full N -body mocks, 
specially in the non-linear regime at small scales, for computational 
peed and memory gains. As a consequence, parameter constraints 
erived from surrogates only do not match the reliability and accuracy 
eeded for upcoming surv e ys. F or e xperiments, see the studies
y Lippich et al. ( 2019 ), Blot et al. ( 2019 ), and Colavincenzo
t al. ( 2019 ), where statistical biases in parameters estimation using
ovariance matrices from surrogates range up to 10 − 20 per cent 
igher than with covariances computed from full N -body solvers. 
Another approach is to attempt to reduce the number of needed

imulations by modifying the statistical estimator of the covariance 
atrix. Numerous studies have been encouraging the use of new 

ethods in order to deal with future surv e ys large data sets: covari-
nce tapering in Paz & S ́anchez ( 2015 ) who demonstrated the ability
o reduce the confidence intervals of parameters without adding bias, 
tting a theoretical model with mock samples (Pearson & Samushia 
016 ), jackknife resampling for the cov ariance (Escof fier et al. 2016 ;
a v ole et al. 2021 ), reducing the number of simulations by using
oth theoretical and simulated covariances (Hall & Taylor 2019 ), 
ombining an empirical covariance with a simple target via (non- 
linear shrinkage (Pope & Szapudi 2008 ; Joachimi 2017 ). As hinted
t abo v e, precision matrix estimation is the elephant in the room
hen it comes to undesirable effects – parameters shifts – of poor 

onditioning on to parameter constraints. Among the recent papers 
hat deal with these limits and means to o v ercome (some of) them,
he reader can refer to Taylor, Joachimi & Kitching ( 2013 ) who
ho w ho w the accuracy of the precision matrix impacts parameter
onstraints in the case of Gaussian-distributed weak lensing power 
pectra, the precision matrix expansion method from Friedrich & 

ifler ( 2018 ) and Sellentin & Heavens ( 2018 ) who show the limit
f a Gaussian likelihood to derive parameter constraints, appendix B 

f Philcox et al. ( 2021 ) that details parameter shifts stemming from
 noisy covariance estimate, Percival et al. ( 2022 ) who choose a
pecific covariance prior in a Bayesian framework, and also the Dark
nergy Surv e y (DES) Year 3 results from Friedrich et al. ( 2021 ). 
Variance reduction methods allow to exploit the accuracy of N -

ody solvers while dramatically lowering the number of required 
amples to compute robust moments estimators. Smith et al. ( 2021 ),
or example, combined different lines of sight in redshift space and
o wered the v ariance of the quadrupole estimator of the two-point
lustering statistic by more than one third. 

Pontzen et al. ( 2016 ), Angulo & Pontzen ( 2016 ), and Villaescusa-
avarro et al. ( 2018 ) discuss variance reduction with simulation pairs
aving special initial conditions. The technique allows to estimate 
he mean of statistics such as the power spectrum, the monopole
nd quadrupole of the redshift-space correlation functions or the 
alo mass function faster by a factor of more than 50. The induced
ias, ho we ver, on certain higher order N -point functions renders the
ethod not adapted to covariance estimation. 
In Chartier et al. ( 2021 ) and Chartier & Wandelt ( 2021 , CWAV20

nd CW21 from now on), we developed the Convergence Accel- 
ration by Regression and Pooling (CARPool) method, a general 
pproach to reducing the number of simulations needed for low 

ariance and explicitly unbiased estimates of clustering statistics 
oments. CWAV20 demonstrated a dramatic reduction of the num- 

er of simulations required to estimate the mean of a given statistic by
xploiting the variance reduction principle known as control variates . 
he key idea is to combine a small number of costly simulations
ith a large number of correlated surrogates . Very recently, Ding

t al. ( 2022 ) tested the CARPool principle to estimate the mean
f the two-point and three-point clustering statistics of haloes, in 
rder to prepare the high-resolution simulations needed for the Dark 
nergy spectroscopic Instrument (DESI). By pairing AbacusSummit 
uite (Maksimova et al. 2021 ) simulations with FastPM approxima- 
ions, they found ≈100 times smaller variances with CARPool at 
cales k ≤ 0 . 3 h Mpc −1 than with high-resolution simulations alone.
MNRAS 515, 1296–1315 (2022) 
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1 We use n spec as the spectral index not to induce confusion with the number 
of simulations n s used in the paper. 
2 We correct the bias of the precision matrix computed by inverting the 
standard sample covariance matrix estimator in equation ( 1 ) with the so- 
called ‘Hartlap factor’ (see Section 3.6.1 for a reminder) when using sample 
covariances, i.e. for ‘ML (sims only)’, ‘ML (surr. only)’ and also for the truth 
even if the correction is small. We do not use any correction when using the 
‘CARPool Bayes’ estimate, a point which we discuss in Section 3.6.2 . 
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dditionally, the extension of the method to different cosmologies
one or very few simulations of the cosmologies of interest paired
ith a ‘primary cosmology’ as the surrogate) resulted in an increase
f the effective volume by ≈20 times. In CW21, we extended
he principle to covariance estimation by applying the variance
eduction approach to individual elements of a symmetric matrix,
nd we assessed the covariance estimates by deriving cosmological
arameters confidence intervals with the Fisher matrix (using the
recision). With this straightforward approach we found significant
mpro v ement in man y cases, but a definite dra wback was that
ositive-definiteness of the covariance estimate is not guaranteed.
he main reason for this was because the covariance matrix was

reated as a first-order statistic for the methods in CWAV20 to be
irectly applicable. 
In this paper, to circumv ent this dra wback, we frame the problem

s a Bayesian inference of simulation means and covariances when
 (typically small) set of pairs of simulations and surrogates are
vailable in addition to a (typically large) set of unpaired fast
urrogates. We derive closed-form Maximum A Posteriori (MAP)
stimators of the covariance of the simulation statistics that incor-
orate the information brought by the surrogates and the prior, and
est the estimates by comparing the resulting confidence bounds
or a � CDM cosmology with the true bounds. The results in this
aper are very general and can apply to any summary statistics
rom simulations. For this reason, we moti v ate the study with an
ntroductory example in Section 2 before explaining the notations
nd deri v ations in Section 3 . We sho w se v eral e xample applications
o large-scale structure statistics in Section 4 and we conclude and
iscuss the implications of our work in Section 5 . 

 ILLU STR ATIVE  EXAMPLE  

magine having a simulation code to compute the evolution of
ollisionless dark matter particles in an expanding � CDM universe,
ithin a simulation volume mimicking the observational conditions
f some future surv e y. We w ould lik e to ask: ‘What amount of
nformation the clustering statistics of the large-scale structure carry
bout the cosmological parameters? By which amount will we be
ble to constrain cosmological parameters with said statistics?’ Let
s say we try with the two-point correlation function in Fourier
pace, i.e. the (dark matter) power spectrum. For each of n s runs,
ith different random seeds for the initial conditions, labelled i , 1 ≤

 ≤ n s , the output is the vector s i of p s = 158 power spectrum bins
p to k max ≈ 1 . 0 h Mpc −1 . We will introduce the detailed notation in
ection 3.1 . 
Under the hypothesis that the observable is sampled from a
ulti v ariate normal (MVN) distribution and that the covariance
atrix does not depend on the parameters, the Fisher matrix for
 parameters is the symmetric matrix of size ( d , d ) 

F ij = 

(
∂ μ( θ ) 
∂θi 

)T 

� 

−1 
yy 

(
∂ μ( θ ) 
∂θj 

)
; (1) 

ence the importance of having an accurate estimate of the covariance
atrix and its inverse, the precision matrix. Then, for a parameter θ i ,

he Cram ́er–Rao inequality gives the lower bound, marginalized o v er
he remaining parameters, for the variance of an unbiased estimator
f θ i : 

2 
θi 

≥ [
F 

−1 
]
ii 

. (2) 

To get an accurate estimate of the confidence bounds for the
arameters requires an accurate estimate of the covariance matrix
 ss . Using the standard sample covariance estimator (or maximum
NRAS 515, 1296–1315 (2022) 
ikelihood estimator), we would expect to need thousands of sim-
lations costing O(10 7 ) CPU hours, much like in the Quijote suite
Villaescusa-Navarro et al. 2020 ). 

But we have at our disposal a much faster surrogate solver that
ses approximations from a Lagrangian fluid description of the dark
atter field to produce fast but unfortunately biased approximations

f this power spectrum. In this paper, we show how to leverage
hese fast surrogates to obtain accurate estimates of the means and
ovariance of the summary statistics while reducing the required
umber of simulations by orders of magnitude. 
Fig. 1 illustrates the take-home message of this work. It shows the

redicted marginal confidence regions of � CDM cosmological pa-
ameters 1 computed using different estimates of the power spectrum
ovariance. The case labelled ‘Truth’ uses the standard maximum
ikelihood estimate (MLE) of the covariance matrix from 15 000 full
imulations. This ‘Truth’ case is hardly visible because the contours
re nearly perfectly o v erlapped by the ‘CARPool Bayes’ case that
ses only 15 simulations in combination with fast surrogates (noted
s 10 + 5 simulations, the second term being the number of test
imulations used to set a prior hyperparameter; see discussion in
ection 3.5 ). This is one of the Bayesian covariance estimators
e develop in this paper. These two cases are to be compared
ith the ‘ML (sims only)’ case showing the standard MLE of

he covariance matrix from 200 simulations but without surrogates.
he case labelled ‘ML (surr. only)’ illustrates that relying on the
urrogates alone results in biased estimates of the size and orientation
f the contours. 2 

Fig. 1 emphasizes the potential of the Bayesian formulation of
he CARPool approach that we develop in detail in the following.
eaders mostly interested in applications and numerical examples
an skip to Section 4 . 

 BAY ESIA N  I NFERENCE  O F  C OVA R I A N C E  

R  O M  SI MULATI ON-SURR  O G AT E  PA IR S  

e wish to estimate the covariance matrix of the summary statistics
s , dim ( s ) = p s from accurate, e xpensiv e simulations. We also hav e
ccess to a fast surrogate solver, r , dim ( r ) = p r , which we would
ot rely on alone. Inspired by CARPool, we build estimators to
xploit both simulation and surrogate statistics, with the main goal
f reducing the number of intensive simulations we have to run. 

.1 Definitions and notations 

ith simulation summary statistics samples s i , i = 1, . . . , n s the
tandard approach to estimating the covariance matrix, defined as
 ss ≡ E 

[
( s − E [ s ] ) ( s − E [ s ] ) T 

]
is to compute 

̂ 
 ss = 

γ

n s 

n s ∑ 

i= 1 

( s i − s̄ ) ( s i − s̄ ) T 

s̄ = 

1 

n s 

n s ∑ 

i= 1 

s i , (3) 



CARPool Bayes 1299 

Figure 1. Illustrating the power of Bayesian control variates using the confidence contours of the cosmological parameters computed using the Fisher matrix 
based on the estimated matter power spectrum covariance matrix. The power spectrum has p s = 158 bins. The ‘truth’ designates the confidence regions (black) 
from the sample covariance matrix of 15 000 N -body simulations, and the parameter means are set to the � CDM model used in the simulations. The contours 
are o v erlapped nearly perfectly by the light blue when the covariance in the Fisher matrix is computed using only 15 simulations with our CARPool Bayes MAP 
estimator (10 simulations and 5 for setting a prior hyperparameter, see Section 3.5 ). The sample covariance (ML) estimator based on many more simulations than 
ours gives less accurate contours. Contours based on 3100 COLA surrogates alone are rotated and too small showing that the surrogates alone are inaccurate. 
Detailed discussion in the text and in Section 4 . 
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he ML estimator given an MVN likelihood function when γ = 1. 
o get an unbiased estimator, we use Bessel’s correction factor γ = 

 s /( n s − 1) in the ML estimator for the covariance. Equation ( 3 )
eeds many samples to provide a high-quality estimate: as a matter 
f fact, the convergence of the smallest eigenvalues is slow (Bai &
in 1993 ) and these eigenvalues will dominate the precision matrix 
nd impact parameter parameter constraints (Taylor et al. 2013 ; Blot
t al. 2016 ). 

Now we add surrogates. The goal is to build a Bayesian model for
he covariance of the simulations but including whatever information 
s provided by the surrogates. The set of surrogates r j , j = 1, . . . ,
 s + n r comprises n s samples that are paired with the simulations,
.e. they were computed using the same random numbers, and n r 
dditional unpaired surrogates. We combine pairs of simulations and 
urrogates into a single vector 

x ≡ (
s , r 

)T 
(4) 
hich implies a block matrix structure for the mean and covariance 

μ ≡ E [ x ] = 

(
μs , μr ) 

)T 

 ≡
(

� ss � sr 

� rs � r r 

)
. 

ollowing the standard notation, we will denote the Schur comple- 
ent as 

( � / � rr ) ≡ � ss − � sr � 

−1 
rr � rs . (5) 

 

+ 

p designates the space of symmetric positive-definite matrices, 
hich is a subset of R 

p ( p + 1) / 2 . 
For the n r unpaired surrogates r ∗, we introduce the unobserved 

and in fact non-existent) corresponding simulations s ∗ as latent 
ariables and then treat them as missing data . Again we combine
MNRAS 515, 1296–1315 (2022) 
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3 Anderson ( 1957 ) derived the same ML estimator by integrating out the s ∗ in 
equation ( 7 ) to obtain the marginal likelihood for the observed samples only 

−2 ln 
[
L ( { x } , { r ∗}| � ) 

] = n s ln [ det ( � ) ] + 

n s ∑ 

i= 1 
x T i � 

−1 x i 

+ n r ln [ det ( � r r ) ] + 

n r ∑ 

j= 1 
r ∗j 

T � r r 
−1 r ∗j + c m , 

with c m the remaining constant of the model with missing s ∗. 
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nto a vector x ∗ ≡ ( s ∗, r ∗) T giving 

s 1 , . . . , s n s , s ∗1 , . . . , s 
∗
n r 

r 1 , . . . , r n s 
 ︷︷ ︸ 

x 1 , ... , x n s 

, r ∗1 , . . . , r 
∗
n r ︸ ︷︷ ︸ 

x ∗1 , ... , x 
∗
n r 

. 

We will also distinguish the empirical counterparts of the surrogate
oments according to whether they use all the r available or just the

aired ones, i.e. 

r , ̂  � r r −→ estimated from the unpaired set only; 

r � , ̂  � 

� 
r r −→ estimated from both the paired and unpaired sets. 

or instance, 

r � = 

1 

n s + n r 

n s + n r ∑ 

j= 1 

r j , 

here we do not differentiate the paired and unpaired surrogates for
implicity ( r j = r ∗j−n s 

if j ≥ n s + 1). 

We recall the well-known result that the best prediction ̂ s ∗ for
n y s ∗ giv en r ∗ with no constraints (i.e. we do not restrict the
roblem to the class of linear estimators) under the square loss of
esiduals coincides, when under an MVN distribution, with the linear
egression: 

P( s ∗| r ∗, � ) = MV N ( μs ∗| r ∗ , � s ∗| r ∗ ) ̂ s ∗ = μs ∗| r ∗ = � sr � 

−1 
rr ( r 

∗ − μr ) + μs 

� s ∗| r ∗ = ( � / � rr ) (6) 

The regression matrix of s given r will appear from now on as 

B ≡ � sr � 

−1 
rr 

F or le gibility , and without loss of generality , we will write all
andom vectors as zero-mean in the deri v ations such that for any
ample i 

x i ← x i − μx . 

he final equations serving as numerical recipes will include the
eans explicitly. 
With these notations, we now turn to inferring the simulation block

f the covariance � ss with the help of surrogates, given (multiple
ealizations of) x and x ∗. 

.2 Maximum-likelihood solution with surrogates 

n a Gaussian model, the log-likelihood of n s independent and
dentically distributed (iid) samples of x and n r iid samples x ∗ of
imulation-surrogate pairs, is 

−2 ln 
[
L ( { x } , { x ∗}| � ) 

] = ( n s + n r ) ln [ det ( � ) ] 

+ 

n s ∑ 

i= 1 

x T i � 

−1 x i + 

n r ∑ 

i= 1 

x ∗i 
T � 

−1 x ∗i + c f , (7) 

here c f is the remaining constant of the likelihood for the full model
ncluding x and x ∗. Treating the simulations s ∗ in x ∗ as unobserved,
atent variables we use the expectation maximization (EM) approach
Dempster, Laird & Rubin 1977 ). While EM is typically an iterative
lgorithm that can be slow to converge, we show in Appendix A that
e can find the ML estimators of the mean and of the covariance

rom simulations and surrogates in closed form by computing the
xed point of the EM iterations. These are ̂ B = 

̂ � sr ̂  � r r 
−1 

(8) 
NRAS 515, 1296–1315 (2022) 
̂ s| r = s + 

̂ B 

(
r � − r 

)
(9) 

̂ 
 

ML 
ss = 

̂ ( � / � rr ) + 

̂ B ̂

 � 

� 
r r ̂

 B 

T 

= 

̂ � ss + 

̂ B 

(̂ � 

� 
r r − ̂ � r r 

) ̂ B 

T , (10) 

here ̂ � ss is the sample covariance from equation ( 3 ) using simu-
ations only. We provide a proof in Appendix A that as long as the
ovariance of the surrogate is positive definite the ML estimate ̂ � 

ML 
ss 

s guaranteed to be positive (semi)definite. 3 

As we will show in Section 4 , this solution impro v es the estimated
imulation covariance significantly with respect to the ML covariance
omputed from simulations only (equation 3 ). But the key ingredient
or many applications is the precision matrix: computing optimal data
ombinations, least-squares estimators and optimal filtering. We will
ee that the dramatically underestimated smallest eigenvalues of the

L estimate of the covariance are critical. 
Fortunately, the Bayesian approach allows us to include priors

mounting to a form of regularization, as we will show now. 

.3 Inclusion of a prior information and maximum a posteriori 
MAP) solutions 

 convenient prior to choose for the block covariance � , with P ≡
 s + p r , is the In verse–W ishart ( W 

−1 ) prior with hyperparameters
 ∈ S 

+ 

P , the scale matrix, and ν, the number of degrees of freedom.
ith n p ≡ ν + P + 1 then 

 

−1 ( � | 	, ν) = 

det ( 	) ν/ 2 

2 νP/ 2 
 P ( ν2 ) 
det ( �) −n p / 2 e −

1 
2 tr ( 	 � −1 ) 

� ≡
(

� ss � sr 

� rs � r r 

)
, (11) 

here 
 P is the multi v ariate Gamma function. W 

−1 ( � | 	, ν) has
ode � /n p for n p > 2 P . Its mean � / ( n p − (2 P + 2)) exists if n p >
 P + 2. In our problem, for any prior P( � ), the mode of the posterior
istribution is located at the MAP estimate ̂ 
 

MAP 
ss = argmax 

� ss ∈ S + P 

[
L ( { x } , { r ∗}| � ) × P( � ) 

]
(12) 

n order to get a � ss MAP estimate, we chose to study two
pproaches: solving the MAP either for the whole � matrix and W 

−1 

rior (Section 3.3.1 ), or for the ‘regression’ parameters used to infer
he � ss block, which amounts to dealing with the problem solved in
nderson ( 1957 ) and reparametrizing the W 

−1 prior (Section 3.3.2 ).

.3.1 MAP with prior on the block covariance � 

e take P( � ) = W 

−1 ( � | 	, ν). The deri v ation of the MAP estimator
or the ‘full’ covariance, in this case, bears similarity to the well-
nown proof that the In verse–W ishart distribution is a conjugate
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4 We know that for two random vectors x and y with y = h ( x ), if h is dif- 
ferentiable, then for probability distributions P y ( y ) = P x ( x ) × det ( J h −1 ( y ) ) 
where J is the Jacobian matrix. So under a reparametrization, the two 
distrib utions ha ve no reason to peak at the same coordinates. 
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rior for the covariance matrix under an MVN likelihood (where � 

ecomes an additional factor of � 

−1 in the trace factorization of the 
og-likelihood). In the absence of additional unpaired surrogates in 
quation ( 7 ), the MAP estimator for � with the prior of equation ( 11 )
ould match the classical result 

̂ 
 

� = 

n s ̂  � + � 

n s + n p 
≡
( ̂ � 

� 

ss 
̂ � 

� 

sr ̂ � 

� 

rs 
̂ � 

� 

r r 

)
(13) 

The unpaired surrogate samples, in our case, can be used in 
ddition to the standard ̂ � 

� 

ss : 

̂ 
 

MAP 
r r = 

( n s + n r ) ̂  � 

� 
r r + � r r 

n s + n r + n p 
= 

n r ̂  � r r + ( n s + n p ) ̂  � 

� 

r r 

n s + n r + n p 
(14) 

̂ B MAP = 

̂ � 

� 

sr ̂
 � 

� 

r r 
−1 

(15) 

̂ MAP 
s| r = s + 

̂ B MAP 
(

r � − r 
)

(16) 

̂ 
 

MAP 
ss = 

̂ � 

� 

s| r + 

̂ B MAP ̂  � 

MAP 
r r 

̂ B 

T 
MAP 

= 

̂ � 

� 

ss + 

̂ B MAP 

(̂ � 

MAP 
r r − ̂ � 

� 

r r 

) ̂ B 

T 
MAP , (17) 

Notice that in the absence of a prior, equation ( 17 ) reduces
o equation ( 10 ) and to the standard result ̂ � 

� 

ss with no unpaired
urrogates. 

Priors for the simulation and surrogate means could be trivially 
ncluded as derived in appendix A in CWAV20. 

Note that a simple limit of these equations exist for the case when
he surrogate covariance is known exactly, ̂ 
 

MAP , � r r 
ss = 

̂ � 

� 

ss + 

̂ B MAP 

(
� rr − ̂ � 

� 

rr 

) ̂ B 

T 
MAP . (18) 

n Appendix A2 , we show that this result can be obtained by taking
he limit of equation ( 17 ) for infinite number of surrogates. In this
ase no unpaired surrogates need to be generated which can lead to
ignificant savings when the computational expense for generating 
 large number of unpaired surrogates is not negligible compared to 
he simulation cost. In addition, any residual error in the estimate 
ue to a limited number of surrogates is eliminated. 

.3.2 MAP with prior on the r egr ession parameters 

 different approach is to solve the MAP for the parameters that allow
o estimate � ss = � s| r + B � r r B 

T , that is to say we use a prior for
he joint distribution P( B , � s| r , � r r ) which is a reparametrization 
f the p s ( p s + 1)/2 + p r ( p r + 1)/2 + p s p r parameters of P( � ). For
hat, we need the properties of the blocks of a covariance sampled
rom a W 

−1 ( � | 	, ν) distribution. A quick outline of the deri v ation
ppears in Appendix B . With B � ≡ � sr � r r 

−1 we get 

̂ 
 

MAP 
r r = 

( n s + n r ) ̂  � 

� 
r r + � r r 

n s + n r + ν − p s + p r + 1 
(19) 

̂ B MAP = 

[
� sr + 

n s ∑ 

i= 1 

( s i − μs )( r i − μr ) 
T 

]
(20) 

×
[
� r r + 

n s ∑ 

i= 1 

( r i − μr )( r i − μr ) 
T 

]−1 

̂ 
 

MAP 
s| r = 

n s ̂  � s| r + � s| r + 

( ̂ B MAP − B � 

)
� r r 

( ̂ B MAP − B � 

)T 

ν + n s + 2 ps + 1 
(21) 

̂ 
 

MAP 
ss = 

̂ � 

MAP 
s| r + 

̂ B MAP ̂  � 

MAP 
r r 

̂ B 

T 
MAP , (22) 

here both ̂ B MAP – rewritten explicitly as found in 

he deri v ation – and ̂ μMAP 
s| r – intervening in ̂ � s| r = 
 /n s 
∑ n s 

j= 1 

(
s j − ̂ μMAP 

s| r 
)(

s j − ̂ μMAP 
s| r 

)T 
– estimators are identical 

o Section 3.3.1 . And we have written � s| r = � ss − � sr � r r 
−1 � rs . 

e have dropped the P notation here since the reparametrization of
he likelihood and prior in terms of the regression matrices instead
f � makes p s and p r appear separately. As expected, the MAP
stimator for � ss in this approach differs from the one derived in
ection 3.3.1 since the prior is not parametrization-invariant. 4 

.4 Choice of the prior parameter � 

ow should we choose the form of the parameter matrix � ? From
ow on, we consider that the surrogate and simulation summary 
tatistics have the same dimension p s = p r , as this will be the case in
ection 4 . In the context of an In verse–W ishart distribution, � must
e a 2 p s × 2 p s symmetric positive-definite matrix. 
Two generic choices we will present in the following with (1)

locks that are proportional to the identity matrix (the ‘identity’ 
rior) or (2) blocks that are diagonal matrices (the ‘diagonal’ prior).
n both cases, the coefficients and covariances are estimated based 
n the simulation-surrogate pairs. Readers familiar with shrinkage 
stimators may recognize these as popular shrinkage targets (other 
ommon targets appear in table 2 from Sch ̈afer & Strimmer 2005 ).
e will find that � appears in our estimators in an analogous way.

or other particular applications, more tailored choices are of course 
ossible. This may be the case when an approximate theoretical 
odel for the covariances is available. As we will see in the numerical

xperiments in Section 4 , even the choice of a ‘diagonal’ prior
erforms well and a v oids the o v erfitting observ ed in the ML estimator
s long as n p is chosen using the simple procedure described in
ection 3.5 . The ‘identity’ prior demonstrated impro v ement o v er

he sample covariance of simulations for a much higher n s than the
diagonal’ one, thus we will only present in Section 4 computations
ith the ‘diagonal’ prior. We briefly describe the priors below. 

.4.1 ‘Identity’ prior 

 common form adopted as a target for shrinkage estimates of
ovariance matrices is the ‘identity’ prior: the autocovariance of 
imulations and surrogates are proportional to identity matrices and 
he cross-covariance a diagonal matrix such that the correlation in 
ach bin equals to ρσ s σ r , with ρ ∈ [0, 1[. 

 id ≡

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

σ 2 
s 0 

. . . 
0 σ 2 

s 

ρσr σs 0 
. . . 

0 ρσr σs 

� 

T 
sr 

σ 2 
r 0 

. . . 
0 σ 2 

r 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(23) 

e require ρ < 1 for this matrix to be positive definite since
et ( � id ) = 

(
σ 2 

s σ
2 
r (1 − ρ2 ) 

)p s . This choice of � is very simple but
till serves as a ‘regularizer’ of the estimators from Section 3.3 . We
dopt an empirical Bayes approach, where we estimate ρ and the 
ariances σ 2 

r and σ 2 
s directly from the simulation-surrogate pairs. 
MNRAS 515, 1296–1315 (2022) 
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The estimated variance of y i = s i or r i , 1 ≤ i ≤ p s , is σ 2 
y i 

=
1 

n s −1 

∑ n s 
j= 1 

(
y i,j − y j 

)2 
and the estimated covariance between s i and

 i is ρi σr i σs i = 

1 
n s −1 

∑ n s 
j= 1 

(
s i,j − s i 

) (
r i,j − r i 

)
. In equation ( 23 ),

ach of the parameters σ s , σ r and ρσ r σ s is the average of the p s 
orresponding quantities, inde x ed by i . 

Our numerical experiments with dark matter clustering statistics
trongly preferred the ‘diagonal’ prior we discuss next. 

.4.2 ‘Diagonal’ prior 

 natural choice to regularize the ML estimate for the covariance
ith simulations and surrogates is to use the estimated diagonal

lements of � ss , � sr , and � r r . 

 emp ≡

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

σ 2 
s 1 

0 
. . . 

0 σ 2 
s p s 

ρ1 σr 1 σs 1 0 
. . . 

0 ρp s σr p s 
σs p s 

� 

T 
sr 

σ 2 
r 1 

0 
. . . 

0 σ 2 
r p r 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(24) 

he computation of each σ 2 
s i 

, σ 2 
r i 

and ρi σs i σr i is the same as from the
identity’ prior abo v e. 

While having a very simple structure, we can see this prior as a
ore adapted correction of the eigenvalues of the block matrix � 

ased on the data, whereas � id adds the same amount of correction
n all the eigenvalues, regardless of the statistics at hand. 

.5 (Cross-)validation to choose the prior hyperparameter n p 

he hyperparameter ν (through n p = ν + p s + p r + 1) in equation ( 11 )
ill be seen to determine the weight attributed to the prior in the

losed-form solutions for ̂ � 

MAP 
ss . For different statistics, and in terms

f the maximum number of simulations n s one is able to run, varying
 p via ν can significantly impact the quality of the covariance, as we
ill discuss in Section 4 . 
We propose retaining a small set { s test } of test simulations such

hat n s = n cov 
s + n test 

s , where n cov 
s plays the role of the n s of the paired

et in equations ( 13 )–( 22 ). 
Consider the estimate ̂ � 

MAP 
ss ( n p ) as a function of n p . This can be

omputed with the same n s simulations, � prior and n r surrogates.
hen an optimal n p can be computed by e v aluating the MVN likeli-

ood L 

(
{ s test }| ̂  � 

MAP 
ss ( n p ) 

)
which plays the role of a utility function.

e find the n p that maximizes the likelihood on the test data 5 

In our tests, we allow n p ∈ � 1 , 4 ∗ p s + 1 � , the upper bound being
he smallest integer for which the In verse–W ishart distribution is
ormalizable. While lo w n p v alues correspond to an improper prior
e find in our numerical experiments that the likelihood rises quickly

or small values of n p , with corresponding impro v ements to the MAP
ovariance estimates. Then a plateau is reached, with a shallow peak
r plateau and a slow decrease as n p increases. Within the shallow
eak the covariance estimates are robust to the precise value of n p 
nd we advise choosing small values once the shallow regions is
eached. We interpret this preference for low values as being due to
he fact that for the simple, generic priors we used (block covariance
NRAS 515, 1296–1315 (2022) 

 We compared this to using K -fold cross-validation but found no significant 
mpact on the determination of the optimal n p comparatively to just e v aluating 
he likelihood once without splitting the data. 

c  

i  

S  

t  

i  
ith diagonal blocks, see Section 3.4 ) and for the summary statistics
t hand a minimum of regularization by the prior is nearly optimal
hen n s is small. If specifically moti v ated prior matrices are available

arger n p could perhaps become advantageous. 
We present a summary of the estimation process, for the case of

he block covariance estimation of Section 3.3.1 , in Algorithm 1. We
btained nearly identical results treating n p as a hyperparameter and
ntroducing a (Jeffreys) scale prior for it before maximization. 

Algorithm 1: MAP Estimator for � ss given n p 

Input: A collection { x i ≡ ( s i , r i ) } , i ∈ � 1 , n s � of paired 
simulation and surrogate statistics; a large number of 
unpaired surrogate samples 

{
r ∗j 
}

, j ∈ � 1 , n r � ; a small 
number n test s of simulation statistics; a block prior � ; a 
set N p of ‘prior weights’ n k p , k ≤ card( N p ). 

/* Here we compute the ‘loss’ on a single 
test simulations set for 
simplification, but K-fold 
cross-validation is also an option. */ 

1 for n k p ∈ N p do 
2 Compute ̂ � 

MAP 
ss ( n k p ) using equations ( 14 ) to ( 17 ). 

3 Compute the MVN likelihood L 

({ s } test | � ss ( n p ) 
)
. 

4 end 

5 Determine n � p = argmax N p 
L 

({ s } test | � ss ( n p ) 
)

6 return 

̂ � 

MAP 
ss ( n � p ) ; 

̂ μMAP 
s| r ( n � p ) 

.6 Correction factor for the precision 

o compute confidence bounds of the cosmological parameters in
he context of a likelihood-analysis, we need to invert the covariance

atrix estimate. We briefly explain the correction used for the
tandard sample covariance. 

.6.1 Classical result for the sample covariance 

t is well-known that taking the inverse of the bias-corrected version
f the ML estimator from equation ( 10 ), i.e γ ̂ � ss where γ ≡ n s /( ns

1), results in a biased estimator of the precision matrix (Kaufman
967 ; Hartlap, Simon & Schneider 2007 ). For data sampled from an
VN, an unbiased estimator of the precision is 

̂ P ss = 

n s − p s − 2 

n s − 1 
̂ � ss 

−1 
(25) 

We chose, for this study, to include what in the cosmology
iterature is referred to as the ‘Hartlap factor’ to the inverse of the
ias-corrected sample covariance of simulations summary statistics
including the truth using 15 000 simulations). 

.6.2 Bias from covariance estimates using simulations and 
urrogates 

ur MAP estimate derived in Section 3.3.1 is constructed to ensure
hat the result will be a symmetric positive semidefinite matrix
as well as the other MAP estimate from Section 3.3.2 ). As a
onsequence, we lose formal unbiasedness but gain dramatically
mpro v ed estimates according to multiple criteria, as discussed in
ection 4 . If unbiasedness of the covariance estimate is important

he method in CW21 can be used. Moreo v er, we should stress that
f the ‘Hartlap’ factor makes the inverse of an unbiased covariance
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stimate unbiased (for data sampled from an MVN distribution), 
here is no reason the same factor would make the inverses of our
iased point MAP estimates unbiased with respect to the precision. 

 N U M E R I C A L  EXPERIMENTS  O N  � C D M  

IMULA  T I O N  STA  TISTICS  

.1 Simulation and surrogate data 

he simulation and surrogate solvers we use are identical to those 
W21 and CWAV20. We recall the main points here for convenience. 
or more details please refer to CWAV20. The solvers evolve 
 p = 512 3 cold dark matter (CDM) particles in a box volume of

1000 h −1 Mpc) 3 . The simulation-surrogate sample pairs take the 
ame second-order Lagrangian perturbation theory (2LPT) initial 
onditions at starting redshift z i = 127.0. 

.1.1 N -body solver 

e downloaded the N -body snapshots clustering statistics from the 
ublicly available Quijote simulation suite 6 (Villaescusa-Navarro 
t al. 2020 ). The solver for all the simulations is the TreePM code
ADGET-III built upon the previous version GADGET-II by Springel 
 2005 ). The force mesh grid size to solve the comoving Poisson
quation at each time-step is N m 

= 1024. In the following, we will
se the sample covariance of all 15 000 available realizations of the
ducial cosmology as the simulation ‘truth’, or more precisely the 
est covariance estimate we have access to. 

.1.2 Surrogate solver 

e generate the fast surrogate samples with The COmoving La- 
rangian Acceleration (COLA) method from Tassev et al. ( 2013 ) 
see also Leclercq et al. 2020 ), which allows generating approximate 
ravitational N -body outputs using a smaller number of time-steps 
han our simulation code. The principle of COLA is to add residual
isplacements, computed with a PM N -body solver, to the trajectory 
iven by analytical LPT approximations (usually first- or second- 
rder). Izard, Crocce & Fosalba ( 2016 ) proposed tests of the accuracy
nd computational cost of COLA against N -body simulations at 
ifferent redshifts and with different time-stepping parameters. Like 
n CWAV20 and CW21, we used the parallel MPI implementation 
-PICOLA developed by Howlett, Manera & Percival ( 2015 ), with a
oarser force mesh grid size of N 

cola 
m 

= 512. 

.1.3 Post-processing of snapshots 

o extract the summary statistics from our L-PICOLA snapshots, 
e used the exact same code modules and parameters used to 

ompute the clustering statistics available in the Quijote data outputs. 
herefore, the simulation and surrogate summary statistics have the 
ame dimension p s = p r . We transform the snapshots in density
ontrast fields with the Cloud-In-Cell (CiC) algorithm. For the matter 
ower spectra and the correlation functions, we used the PYTHON3 
odule PYLIANS3 , 7 For the bispectra, the results of which appearing 

n Appendix C3 , the post-processing code is PYSPECTRUM . 8 More
etails can be found in CWAV20. 
 ht tps://quijot e-simulations.readthedocs.io/en/latest /
 https:// github.com/franciscovillaescusa/ Pylians3 
 Available at ht tps://github.com/changhoonhahn/pySpect rum 

c  

s  

t
o  

s

.2 The CARPool Bayes estimator and results on clustering 
tatistics 

he following tests of the Bayesian covariance estimation approach 
n this paper use the sample covariance matrix with all the simulations
e have ( n t rut h 

s = 15 000) as the ‘truth’ to compare with other
stimates. Within the main part of this paper we only present a subset
f the estimators that gave the best match in terms of parameters
onstraints with respect to the truth. 

In particular, we use the MAP estimator from Section 3.3.1 with
he ‘diagonal’ empirical Bayes prior � emp , equation ( 24 ), estimated
n the paired set of n cov 

s simulations and surrogates. All our MAP
ovariance estimates with simulations and surrogates use the optimal 
 p determined through the process described in Algorithm 1 with 
 small number of test simulations. We display the total number
f simulations used for each covariance matrix estimate as n s =
 

cov 
s + n test 

s . 
In the following, we will refer to this approach as the ‘CARPool

ayes’ estimator. 
We find that the alternative estimator written in terms of the

egression parameters, Section 3.3.2 , performs comparatively poorer 
han the CARPool Bayes estimator. We show an example on the
ower spectrum covariance and discuss the reasons for this in 
ppendix C2 . Briefly summarized, this estimator requires using a 
roper prior and therefore affords us less flexibility in choosing the
eight of the prior. It therefore tends to give covariance estimates

hat are more sensitive to the choice of the prior parameters. 
The plan for the remainder of this sections is as follows: we will

rst present the power spectrum results in more details that were
lready partially described in Section 2 . 

Then, we turn to the real space two-point correlation function. 
his is an interesting case because it illustrates the power of

imiting the range of the estimator to the set of all positive definite
ovariance matrices, a feature of the Bayesian version of CARPool. 
he unbiased CARPool approach to the covariance matrix in 
W21 failed to yield positive-definite covariance estimates for this 
pplication in spite of a significant reduction of variance for the
ovariance matrix individual elements. 

For a complete comparison with CW21, we also computed results 
n the bispectrum covariance matrix. Since these show similar, large 
mpro v ement o v er the CW21 approach as for the power spectrum,
e relegate details to Appendix C3 . 

.2.1 Matter power spectrum covariance 

he matter power spectrum [Mpc 3 ], at wavenumber k [ h Mpc −1 ],
nder the conditions of homogeneity and isotropy ( cosmological 
rinciple ), is the average in 3D Fourier space of | δ( k ) | 2 , k ∈ [ k −� k /2,
 + � k /2], where δ( x ) is the matter density contrast in real space. For
ach snapshot, we compute δ( x ) on a square grid of size 1024 with
he CIC algorithm. The following analysis is for k ∈ [8.900 × 10 −3 ,
.0] h Mpc −1 . We have then p s = 158 linearly space bins. Note that the
ower spectrum is not compressed unlike in CWAV20 and CW21, 
aking the covariance estimation tasks more difficult. 
Fig. 1 shows that using only n s = 10 + 5 simulations with

aired surrogates and an additional set of surrogate samples, we get
onfidence bounds for the cosmological parameters which are very 
lose to the ones given by the ‘true’ sample covariance using 15,000
imulations (for p s = 158). This result is all the more encouraging
hat with only 10 simulations we would get a sample covariance 
f rank at most 9. In other words, we can see the small set of
imulations in the ‘CARPool Bayes’ estimate a correction to the 
MNRAS 515, 1296–1315 (2022) 
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Figure 2. Illustration of step 5 of Algorithm 1 for the matter power spectrum 

e xample: for fix ed n s = n cov 
s + n test 

s and fixed prior � emp , we compute the 

likelihood of ̂  � 

MAP 
ss ( n p ) on test simulation samples. 
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igenvalues and eigenvectors of the precision matrix computed from
 biased but correlated surrogate. We also show in Appendix C1
he relatively small gain, in terms of closeness of the parameters
onfidence contours to the truth, of running n s = 40 + 10 simulations
or comparison. 

Here, we examine the procedure to determine the best n p for a
iven n s and � in Fig. 2 . There are several points to notice here: 

(i) For n p ≈ 1, especially for n s ≥ p s + 1 (when the sample
ovariance can be full-rank), the likelihood on test data rapidly
ncreases. It shows for this case that a minimum of ‘regularization’
rought by the prior greatly impro v es the estimate of � ss . 
(ii) Around the empirical n � p , the likelihood is rather flat and slowly

ecreases when n p > n � p . In other words, once a certain threshold
f ‘impro v ement’ is reached with n p , misestimating n p does not
adically worsen the estimate of � ss . 

In Fig. 3 , we visualize the estimated covariance matrices (top row)
nd their inverse (bottom row). For the ‘CARPool Bayes’ estimate
ith the prior � emp , i.e. our ‘headline’ estimate with n s = 10 + 5 that
ives the confidence bounds in Fig. 1 , we notice some structure in
he covariance due to the small number of simulations. The closeness
o the truth of the ‘CARPool Bayes’ covariance with very few
imulations is particularly visible for the structure of the precision
atrix. It can be seen that at low k , where the correlation between

urrogates and simulations is particularly high, the CARPool Bayes
stimate (and the ML estimate without the prior) is significantly less
oisy than the standard estimator even though it uses an order of
agnitude less simulations. 
In Fig. 4 , we compare the covariance estimates to the large-sample

truth’ in the spectral domain, showing the eigenvalues and the co-
iagonalization coefficients. 9 

At the top, we show the ordered eigenvalues ratio of each matrix.
 ratio far from 1, and especially close to zero for the smallest

igenvalues as for the standard sample covariance, indicates a very
NRAS 515, 1296–1315 (2022) 

 For A and B two p × p real symmetric matrices, if A is positive definite, 
hen there exists a matrix M such that M 

T AM = I p and M 

T BM = D with 
D = diag ( d 1 , . . . , d p ). We call the d i ‘co-diagonalization coefficients.’ This 
s a simplified statement from theorem A9.9 in Muirhead ( 1982 ). If D = 1 p 
hen A = B. 

 

d  

p  

o  

e  

c  

c

oor conditioning of the matrix. At the bottom, we see the co-
iagonalization coefficients. A horizontal line at 1 would indicate
hat the matrices are identical. The CARPool Bayes estimate clearly
utperforms the other estimates and a v oids the characteristic under-
stimation of small eigenvalues for covariance matrices estimated
rom a small number of samples. In addition, we clearly see that
he ‘ML w/ surrogates’ estimator (from Section 3.2 ) only impro v es
he underestimated small eigenvalues of the sample covariance by a
light amount. We also found that the parameter contours obtained
ith the ‘ML w/ surrogate’ covariance are much thinner than the

ruth, much like with the sample covariance of simulations in CW21
here we did not impro v e the Fisher matrix using the ‘Hartlap’ factor

or the precision matrix. We do not show the ‘ML w/ surrogates’
ontours in this paper not to o v erload the figures. 

.2.2 Matter correlation function covariance 

he example of the two-point matter correlation function ξ ( r ) for r ∈
 5 . 0 , 160 . 0 ] h 

−1 Mpc ( p s = 159) is of particular interest in our study.
ith the variance reduction approach in CW21 for the covariance
atrix, we found no impro v ement o v er the standard estimator. While

nbiased and strongly reducing the errors of all individual elements
f the covariance matrix the resulting matrix failed to be positive-
efinite. This means that no estimate for the precision matrix could
e obtained, as would be required to derive Fisher matrices or for a
ikelihood approximation to derive parameter constraints. 

As we can observe in Fig. 5 , the structure of the covariance is
articular, with a band of high-magnitude covariances around the
iagonal of variances. As a result, the precision estimate based on
he standard sample covariance estimator is very noisy for n s =
00, which we compare with our estimate including surrogates from
lgorithm 1, with n s = 160 + 20. Looking at the precision matrices

bottom row) would indicate a significantly better reco v ery of the
tructure of the true precision. 

In terms of cosmological parameter forecast constraints, as shown
n Fig. 6 , we get a slight impro v ement with respect to the sample
ovariance matrix (and the precision including the Hartlap factor), but
ot nearly as large as for the matter power spectrum. The CARPool
ayes estimate with n s = 160 + 20 produces bounds for �m 

, n s and
8 that are closer to the truth than with the sample covariance with
 s = 180. But the confidence regions for �b and h are not impro v ed.
Similarly to the previous section, in Fig. 7 , the ‘CARPool Bayes’

stimator raises up the smallest eigenvalues – as well as the smallest
co-diagonalization’ coefficient – contrarily to the ML solutions with
nd without surrogates where they are close to 0. 

The wide band of correlations visible in Fig. 5 indicate that our
hoice of ‘diagonal’ prior is not optimal for this case. Choosing a prior
ith a more gradual falloff of correlation from the diagonal would

ikely produce better results (and we would likely see that the smallest
igenvalues are not as o v erestimated as in Fig. 7 ). Fig. 8 indicates that
or various number of simulations n s , the CARPool Bayes estimator
or the matter correlation function covariance consistently prefers
ow n p (i.e. prior weight) values with the ‘diagonal’ prior from
ection 3.4.2 . 
In summary, the application to the matter correlation function

emonstrates that the CARPool Bayes estimator is guaranteed to
roduce positive definite matrices. It visibly impro v es the structure
f the precision matrix (Fig. 5 ) and the relative errors of the small
igenvalues (Fig. 7 ). This translates into some, but not all, parameter
onfidence bounds being closer to the truth than for the sample
ovariance based on 180 simulations. 
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Figure 3. Matter power spectrum covariance estimates (top row) and their inverse (bottom row). We show the covariances as correlation matrices with the 

normalization D 

−1 ̂ � D 

−1 with the diagonal D = 

√ 

diag 
(̂ � 

)
, and the precision matrices below are the inverses of these correlation matrices. Columns from 

left to right show the standard sample covariance estimate from 200 simulations; the reference covariance from 15 000 simulations; the ML estimate using 
the combination of surrogates and 200 simulations (Section 3.2 ); and the ‘CARPool Bayes’ estimate with a ‘diagonal’ prior, combining n s = 10 + 5 GADGET 

simulations with surrogates. 

Figure 4. Comparison of the CARPool Bayes covariance estimate (Sec- 
tion 3.3.1 ), the standard ML estimator, and the ML estimator combining 
simulations and surrogates (Section 3.2 ) with the large-sample ‘truth’ in 
the spectral domain. We show ordered eigenvalue ratio at the top and co- 
diagonalization coefficients at the bottom. In the lower panel, a perfect method 
(with respect to the ‘true’ covariance) would have a value of 1 for every mode. 
The CARPool Bayes estimator a v oids the characteristic underestimation of 
small eigenvalues for covariance matrices estimated from a small number of 
samples. See discussion in the text. 
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 DI SCUSSI ON  A N D  C O N C L U S I O N  

.1 A flexible Bayesian framework for mean and covariance 
stimation 

e consider the problem of estimating the covariance matrices of 
osmological summary statistics within a Bayesian framework, when 
aired simulations and surrogates are available. 
This study constitutes an extension of the CARPool principle, 

resented in CWAV20 and applied to covariance matrices in 
W21. Our method impro v es on the latter work by solving a
AP optimization directly in the space of symmetric positive 

emidefinite matrices and allows introducing priors in analogy 
o frequentist shrinkage estimators. We pro v e that our approach,
ubbed CARPool Bayes, guarantees positive definite estimates, for 
he price of abandoning the guarantee of unbiasedness of individual 
ovariance matrix elements provided by the first-order estimator 
escribed in CW21. The guarantee of positive (semi)definiteness 
mplies bias, since otherwise a matrix that has one or more zero
igenv alues should gi v e a ne gativ e definite estimator some fraction
f the time. We note that the literature strongly tends to propose
f ficient cov ariance estimators that are biased. 

By casting CWAV20 in a Bayesian framework, we provide a new
olution to covariance estimation with simulations and surrogates. 
e demonstrate that this estimator can strongly impro v e o v er

revious approaches such as the sample covariance or the first-order 
ARPool approach in CW21 according to multiple criteria. These 

mpro v ements are particularly noticeable for the inverse covariance 
r precision matrix required for many applications such as computing 
isher matrices, or for the Gaussian likelihood approximations 
requently used for parameter estimation. 

Our Bayesian approach combines estimations for the both the 
ean (through the well-known regression μs| r , equation 16 ) and 
MNRAS 515, 1296–1315 (2022) 
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Figure 5. Matter correlation function covariance estimates (top) and their inverse (bottom), shown similarly to Fig. 3 . The ‘CARPool Bayes’ estimates uses 
n s = 160 + 20 GADGET simulations. 
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he covariance of simulation summary statistics using surrogates.
n this paper, we focused on showing the results for the simulation
ovariance estimates � ss since this is the first time that the control
ariate approach has been cast in a Bayesian framework for
ovariance estimation. 

Our Bayesian approach used a multi v ariate Gaussian model for the
imulations and surrogates and includes a conjugate In verse–W ishart
istribution prior for the covariance matrix. In the generic case we
ound a ‘diagonal’ prior on the block covariance of simulation and
urrogate summary statistics, whose diagonal elements were e v alu-
ted on simulation-surrogate pairs, Section 3.4.2 , to give excellent
esults, especially for the matter power spectrum and bispectrum.

e obtain the same confidence bounds as with the true covariance
f the power spectrum with p s = 158 bins up to k ≈ 1 . 0 h Mpc −1 

ith only n s = 10 + 5 simulations. In this case, we can think of the
ctual 10 simulations of the covariance estimate as correcting the
igenspectrum of the well-converged covariance of the correlated
urrogate that incorporates many samples. 

The same outstanding gain appears for the bispectrum, as we show
n Appendix C3 for two triangle configurations. This demonstrates
he superiority of the CARPool Bayes approach o v er CW21. 

Regarding the two-point matter correlation function in real space,
e do get positive-definite estimates by construction – this is not
uaranteed in CW21 – and we obtain a slight impro v ement on
he parameter constraints with respect to the sample covariance of
imulations when n s � p s + 1 is close to the dimension of the
ummary statistics. But in a case where running a high enough
umber (we tested n s = 300) of simulations is possible, the gain
 v er the sample covariance diminishes as n s increases, at least
egarding the impact of the matter correlation function covariance
n the parameter constraints. 
Throughout this study, we applied the ‘diagonal’ empirical Bayes

rior through taking the diagonal of each block of the summary
tatistics as a concatenation of the simulation and surrogate output.
sing the former was sufficient to demonstrate the capability of the
ethod for the case where we consider the problem of estimating
NRAS 515, 1296–1315 (2022) 

he whole block covariance � to then extract the simulation block 
 ss . In summary, we claim that our method should al w ays be
e used o v er the standard unbiased sample covariance in cases
here you have access to surrogates, since it guarantees positive-
efiniteness and allows computing robust, well-conditioned covari-
nces of simulation summary statistics, even with ‘na ̈ıve’ prior
tructures which lead to Bayesian shrinkage in the MAP closed-form
olutions. Having a small test set serves to set the prior hyperparam-
ters, as we did in Algorithm 1 which is the main recipe in this
tudy. 

Regarding the inclusion of priors (but the use of surrogates), the
oti v ations of our approach are similar to Hall & Taylor ( 2019 ),
here theoretical covariance matrices improve the estimator based
n simulations. This reference proposes a closed-form solution for
 covariance estimate that appears as a particular case of linear
hrinkage estimator, but extracted from a marginal likelihood derived
n a Bayesian framework. The authors succeeded in computing a
obust estimate with a much lower number of simulations than the
ample covariance estimate. In addition, the authors investigate the
nfluence of the chosen W 

−1 distribution hyperparameter on the
esulting covariance in a similar spirit to our study. In our method,
e can use improper priors with lo w v alues of n p since we do not
arginalize the posterior distribution. 
We deri ved ne w MAP estimators in Section 3.3.2 where we

irectly estimate the regression parameters allowing to compute
he simulation block of the covariance using � ss ≡ ( � / � rr ) +
 sr � 

−1 
rr � rs from the hypothesis of data sampled from a MVN

istribution. This new estimator did not provide improvement in our
ests o v er the sample co variance, which we attribute to the strong
rior dependence inherent in it. We leave for future studies the
uestion whether the this different parametrization can turn beneficial
or cosmological surv e y forecasts when theoretically moti v ated
ovariances for the prior are available. 

.2 Generating samples from the posterior 

s an alternative to focusing on closed-form point estimates of the
ovariance by taking the MAP of the posterior distribution we could

art/stac1837_f5.eps
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Figure 6. Confidence contours of the cosmological parameters computed using the Fisher matrix based on the estimated matter correlation function covariance 
matrix. The estimators which we compare are the same as in Fig. 1 . 
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ave considered generating samples of the simulation covariance 
atrix from the posterior. This is possible using a Gibbs sampling 

pproach where we explicitly include the missing simulations s ∗

s latent variables. We briefly sketch the approach here: first draw 

 from a conditional In verse–W ishart for positive (semi)definite 
ov ariance matrices gi ven the data augmented by the latest s ∗ sample.
ince the augmented data are a complete set of simulation-surrogate 
airs, the � sample would therefore be guaranteed to be positive 
semi)definite. Simply extracting the simulation autocorrelation 
lock from � would produce samples from the marginal posterior 
or � ss . 

While samples from the marginal posterior would potentially be 
seful to propagate the uncertainty in the estimates, or to study
ther posterior summaries such as the posterior mean, we do not 
xplore this approach further, for two reasons: one is computational 
ost though that is perhaps tolerable for summaries with moderate 
imension (i.e. up to (100)); the other is that we would like to
btain a point estimate for the covariance that we can use in other
ontexts, without worrying if the Monte Carlo estimate, e.g. of the 
osterior mean of the signal covariance, has converged to sufficient 
ccuracy. 
P

.3 Potential for future applications in cosmology and beyond 

ur numerical experiments demonstrate the capability of running 
e wer intensi ve simulations in order to get theoretical predictions
f the means and covariances of observables for next-generation 
urv e ys. Man y additional applications of these techniques remain to
e explored. The free choice of what to use as surrogates makes our
ethods very broadly applicable. 
Some surrogates might be useful because they are nearly free com-

utationally. A case in point would be Eulerian linear perturbation 
heory for the power spectrum applied to the initial conditions of an
 -body simulation. In this case each simulation comes with the paired 

urrogate for free (since the initial conditions are necessary to run
he simulation in the first place) and its expectation and covariance 
an be computed analytically nearly for free. It could be argued that
uch automatic surrogates ought to be exploited systematically when 
redicting commonly used clustering statistics from simulations. A 

ery similar application of this idea to a non-perturbative statistic 
ould be to the computation of halo number functions: apply the
ress–Schechter approach to the initial conditions as a surrogate for 

he mass function for a given realization. In this example, the classical 
ress–Schechter formula provides the expectation of the surrogate 
MNRAS 515, 1296–1315 (2022) 
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Figure 7. Same as Fig. 4 for the matter correlation function. 

Figure 8. Same plot as in Fig. 2 for the matter correlation function, still with 
� emp . 
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nd would reduce the variance in the number function for the largest
and rarest) clusters in the simulations, thus increasing the ef fecti ve
olume of the simulations. 

In other cases, the surrogates may consist of costly simulations
hat have already been run at a different set of parameters. In this
ase it may be possible to ‘update’ the means and covariances from
he previous simulation set to a new set of parameters by pairing a
mall number of the existing old simulations (now surrogates) with
he same number of new simulations. 

The availability of perturbative results and analytical estimates,
he increasing need for accurate simulations to analyse current and
pcoming data sets in all subfields of cosmology, and the vast
arameter space to explore with cosmological simulations make it
ikely that the concepts described here will continue to find powerful
pplications. We look forward to seeing the cosmological advances
hat CARPool will enable. 
NRAS 515, 1296–1315 (2022) 
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PPENDI X  A :  D E R I VAT I O N  O F  ESTI MATO RS  

N D  P RO O F  O F  POSI TI VE  DEFINITENESS  

SI NG  EXPECTATI ON  MAXI MI ZATI ON  

1 Expectation maximization 

n this section, we aim at showing the equi v alence of the results given
y the expectation–maximum (EM) algorithm – which naturally 
omes to mind in the presence of missing samples – and the simple
esult from the ML and MAP problems formulated in Sections 3.2
nd 3.3.1 . 

1.1 Iterative algorithm 

he EM algorithm (Dempster et al. 1977 ) is an iterative technique
o maximize the likelihood (or posterior) in the presence of missing
ata. Briefly, it works by casting the problem as a sequence of simpler
ptimization problems. Each iteration consists of two steps: the E- 
tep which remo v es the missing data from the log-likelihood by
aking its expectation with respect to the missing data assuming 
he current iterates are the true values of the parameters; and the

-step which updates the parameters by finding their values that 
aximize the expected log-likelihood from the E-step. We focus in 

his appendix on the covariance estimation; including the solution 
or the estimators of the mean is straightforward and we give the
esult in the main text. 

We recall equation ( 7 ) here for convenience as a starting point 

−2 ln 
[
L ( { x } , { x ∗}| � ) 

] = ( n s + n r ) ln [ det ( 2 π� ) ] 

+ 

( 

n s ∑ 

i= 1 

x T i � 

−1 x i 

) 

+ 

⎛ ⎝ 

n r ∑ 

j= 1 

x ∗j 
T � 

−1 x ∗j 

⎞ ⎠ , (A1) 

E-step. Consider conditional expectation of the log-likelihood 
 v er missing data s ∗ given the (observed) data and the covariance at
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he k -th step, � [ k] 

−2 E s ∗| r ∗
[
ln 
[
L ( { x } , { x ∗}| � [ k]) 

]] = ( n s + n r ) ln [ det ( � [ k] ) ] 

+ 

( 

n s ∑ 

i= 1 

x T i � [ k] −1 x i 

) 

+ E s ∗| r ∗

⎡ ⎣ 

⎛ ⎝ 

n r ∑ 

j= 1 

x ∗j 
T � [ k] −1 x ∗j 

⎞ ⎠ 

⎤ ⎦ + c

Using linearity of expectation we can look at each summand of
he last term on the RHS 

 

[(
x ∗T 

i � [ k] −1 x ∗i 
)] = tr 

(
� [ k] −1 E 

[
x ∗i x 

∗
i 

T 
])

(A2) 

Define 

A i ≡ E 

[
x ∗i x 

∗
i 

T 
] = 

(
A i , s s A i , s r 

A 

T 
i , s r A i, r r 

)
. (A3) 

Then 

A i , s s = ( � / � r r ) + B r ∗i r 
∗
i 

T B 

T (A4) 

A i , s r = B r ∗i r 
∗
i 

T (A5) 

A i, r r = r ∗i r 
∗
i 

T (A6) 

e stress that equations ( A4 ), ( A5 ), and ( A6 ) depend on k because
e use � [ k] as � . 
Writing 

 s ̂
 � = 

n s ∑ 

i= 1 

x i x T i 

nd 

 r A [ k] = 

n r ∑ 

i= 1 

A i [ k] , 

e find the expected log-likelihood 

−2 E s ∗| r ∗
[
ln 
[
L ( { x } , { x ∗}| � [ k]) 

]] = ( n s + n r ) ln [ det ( � [ k]) ] 

+ tr 
[ 
� 

−1 
(
n s ̂  � + n r A [ k] 

)] 
+ c (A7) 

M-step. Maximizing the expected log-likelihood, equation ( A7 )
o find the next value of the parameter is now trivial: 

 [ k + 1] = 

1 

n s + n r 

(
n s ̂  � + n r A [ k] 

)
(A8) 

1.2 Inclusion of an Inverse–Wishart prior for � 

he generalization to maximizing the posterior for � with a conju-
ate prior taking the In verse–W ishart form is immediate. Taking � 

o be the parameter of the prior, P = 2 dim ( s), and ν > P − 1 the
umber of degrees of freedom, then this modifies the EM update,
quation ( A8 ) to 

 [ k + 1] = 

1 

n s + n r + ( ν + P + 1) 

(
n s ̂  � + n r A [ k] + � 

)
(A9) 

hen n s ≈ P , the MAP estimator is quite different from the ML
stimator. 

1.3 Proof that EM iterations conserve positive (semi)definiteness 
f � 

o pro v e the positiv e definiteness of the estimated co variance matrix,
e recall the following very useful characterization of positive

emidefinite ( psd ) matrices using the Schur complement: 
NRAS 515, 1296–1315 (2022) 
Lemma (e.g. Gallier 2011 ): Let M 22 be positive definite, M 22 > 0.
hen 

M = 

(
M 11 M 12 

M 

T 
12 M 22 

)
≥ 0 (A10) 

f and only if ( M / M 22 ) ≥ 0. 
We wish to show that as long as we have enough surrogates such

hat covariance matrix estimated from them is positive definite, then
t is true that if we initialize � [0] such that ( � [0] / � r r [0]) ≥ 0 then
 [ k] ≥ 0 throughout the EM iteration and therefore also for the fixed
oint. This follows directly from Lemma 1, as follows. 
At step k of the EM iteration assume � [ k] is such that

 � [ k ] / � r r [ k ]) ≥ 0. By assumption we al w ays have enough surro-
ates so that A rr > 0. Therefore A r r is invertible and we have that 

 A / A r r ) = ( � [ k ] / � r r [ k ]) ≥ 0 (A11) 

y assumption. This implies A ≥ 0 by the Lemma. The sum of
wo psd matrices is itself psd , and since ̂ � is manifestly psd , this
uarantees that � [ k + 1] ≥ 0. The ‘only if’ direction of the Lemma
uarantees that ( � [ k + 1] / � r r [ k + 1]) ≥ 0 at the next iteration.
herefore, � [ k] ≥ 0 for all i ≥ 0 by induction. 

1.4 The Maximum Likelihood and A Posteriori solutions as Fixed 
oint of the EM iterations 

hile the iterations are computationally very light, since we have
losed-form solutions for the iterative updates (Sections 3.2 and 3.3 ),
e can do even better by deriving a closed-form solution directly for

he iterativ e fix ed point and thus demonstrate the equi v alence with

M. Solving � [ k + 1] = � [ k] ≡ ̂ � 

MAP 
by combining equation ( A8 )

ith equations ( A4 ), ( A5 ), and ( A6 ) gives 

̂ 
 r r 

EM = 

n r A r r + ( n s + n p ) ̂  � 

� 

r r 

n s + n r + n p 
(A12) 

̂ 

 sr 
EM = ( n s + n p ) ̂  � 

� 

sr (A13) 

×
(

( n s + n r + n p ) 1 p r − [ ̂  � rr 

EM 

] −1 n r A r r 

)−1 
(A14) 

̂ B 

EM = 

̂ � sr 
EM 

[ ̂  � rr 

EM 

] −1 (A15) 

̂ 

 ss 
EM = 

( n s + n p ) ̂  � 

� 

ss + n r ̂  B 

EM ( A r r − ̂ � r r 
EM 

) ̂  B 

EM 

T 

n s + n p 
(A16) 

Equation ( A16 ) is equi v alent to equation ( 17 ), even though it looks
ore complicated. This is because solving for the EM introduces

he block covariance A of the unpaired surrogates and missing
imulations vector x ∗ (the A r r block is ̂  � rr ) and not the covariance
f the paired and unpaired surrogates ̂ � 

� 
r r . 

2 Case when the surrogate co v ariance is known 

e can rewrite the simulation summary statistics covariance from
ection 3.3.1 as 

̂ 

 

MAP 
ss = 

̂ � 

� 

ss + 

n r 

n r + n s + n p 
̂ B MAP 

(̂ � rr −̂ � rr 

� 

) ̂ B 

T 
MAP . (A17) 

hich is strictly equi v alent to equation ( 17 ). 
The case when a theoretical covariance � rr for the surrogates is

vailable directly obtains from the limit of equation ( A17 ) as n r →



CARPool Bayes 1311 

∞
�

A
(

T  

f  

A  

w
c
d
f

p
i
A
w

P

a
a  

A

L

T
(  

e  

u

 

{
 

w  

a

A

C

W  

u
s  

v  

m  

r  

r
m
c

C

W  

f  

s
w  

c  

t  

T
o  

b  

1
f  

p  

s  

e  

c  

c
t  

b

C

H  

r  

T  

f  

i  

c  

(

r  

t
B  

B
 

l
(  

a
n  

u

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/1/1296/6628658 by IN
IST-C

N
R

S IN
EE IN

SB user on 07 April 2023
 ̂ 
 

MAP , � r r 
ss = lim 

n r →∞ ̂

 � 

MAP 
ss = 

̂ � 

� 

ss + 

̂ B MAP 

(
� rr − ̂ � 

� 

rr 

) ̂ B 

T 
MAP . (A18) 

PPEN D IX  B:  M A P  D E R I VAT I O N  

REGR ESSION  PARAMETERS)  

his section presents the deri v ation of the closed-form solutions
or the covariance in Section 3.3.2 . We can extend Anderson’s in
nderson ( 1957 ) deri v ation by including an In verse-W ishart Prior
ith parameters � and ν. Under the hypothesis that the block 

ovariance � of simulation and surrogates summary statistics is 
rawn from and In verse–W ishart distribution (equation 11 ), the 
ollowing properties hold true: 

(i) � rr ⊥⊥ � rr 
−1 � rs = B 

T . 
(ii) � r r ⊥⊥ � s| r . 
(iii) � r r ∼ W 

−1 ( � r r , ν − p s ). 
(iv) � s| r ∼ W 

−1 ( � s| r , ν) with � s| r ≡ ( � / � r r ). 
(v) B 

T | � s| r ∼ MN ( 	 rr 
−1 	 rs , � s| r ⊗ 	 rr 

−1 ), 

where ⊥⊥ indicates probabilistic independence, ⊗ is the Kronecker 
roduct and MN designates the matrix normal distribution. This 
s particularly convenient for our problem and we can extend 
nderson’s result straightforwardly to a MAP estimate. In particular, 
e can reparametrize the distribution 

( � ) = P( B 

T | � s| r ) P( � s| r ) P( � r r ) . (B1) 

Let’s index the unpaired surrogate samples as r ∗i with i = 1, . . . , n r 
nd the surrogate samples that are part of the pairs x i i = 1 , . . . , n s 
s r i with i = n r + 1, . . . , n r + n s . We factorize the likelihood as
nderson, that is to say 

 ( { x } , { r ∗}| � ) = 

n s ∏ 

i= 1 

P ( x i | μs , � ss ) 
n r ∏ 

j= 1 

P ( r ∗j | μr , � r r ) 

= 

n s + n r ∏ 

i= 1 

P ( r i | μr , � r r ) 
n s ∏ 

i= 1 

P ( s i | μs i | r i , � s| r ) (B2) 

he right-hand side depends separately on � r r , � s| r and B 

T 

through μs| r ) as the prior, so we can solve the MAP problem from
quation ( 12 ). Note that since in the factorization we regroup the
npaired and paired surrogates, we drop the r ∗ notation and just use 

r for the rest of the deri v ation. 
Then the natural logarithm posterior distribution is 

−2 ln [ P( � |{ s } , { r } ] = ( n s + n r + ν − p s + p r + 1) ln [ det ( � r r ) ] 

+ ( n s + ν + 2 p s + 1) ln 
[
det ( � s| r ) 

]
+ Tr 

([ n s + n r ∑ 

i= 1 

( r i − μr )( r i − μr ) 
T + � r r 

]
� r r 

−1 

)

+ Tr 

([ n s ∑ 

j= 1 

( s j − μs| r )( s j − μs| r ) T + � s| r 

+ ( B 

T − � 

T ) T � r r ( B 

T − � 

T ) 

]
� s| r −1 

)
(B3)

We then solve successively ∂ ln [ P( � |{ s } , { r } ] 
∂α

= 0 for α ∈ 

� r r , B 

T , � s| r }, after a bit of deri v ation and linear algebra, and
e find the solutions from Section 3.3.2 , i.e. equations ( 19 ), ( 20 ),
nd ( 21 ) which allow to compute ̂ � 

MAP 
ss from equation ( 22 ). 

PPENDI X  C :  SOME  A D D I T I O NA L  RESULTS  

1 Relati v e gain for the po wer spectrum 

e simply show the confidence bounds for the � CDM parameters
sing the power spectrum covariance matrix, this time with more 
imulations for the CARPool Bayes covariance, i.e n s = 40 + 10
ersus n s = 10 + 5 in Section 2 . Fig. C1 shows CARPool Bayes
arginal bounds even closer to the truth than in Fig. 1 at the price of

unning 50 simulations in total instead of 15. This demonstrates the
elative gain of running more simulations is small for the covariance 
atrix when the simulation and surrogate summary statistics are well 

orrelated. 

2 MAP on the r egr ession parameters 

e chose to present one particular example of the MAP estimate
rom Section 3.3.2 on the power spectrum, which showed the most
uccessful results with the ‘block’ parametrization from Section 3.3.1 
ith only n s = 10 + 5 simulations. We fix ν = 2 ∗p s + 2 in this

ase and do not consider it a free parameter, nor do we allow it
o define an improper prior, i.e. we do not allow ν ≤ 2 ∗ps − 1.
his corresponds to the lowest integer for which the expectation 
f the In verse–W ishart exists. In Fig. C2 , the marginal confidence
ounds are much wider than the truth for both n s = 10 and n s =
60 for the CARPool Bayes estimator (this time the ‘regression’ 
ramework from Section 3.3.2 ). Since the MAP on the regression
arameters does not allow for an improper prior, the estimator of the
imulation covariance puts too much weight on the na ̈ıve diagonal
mpirical Bayes prior we use (Section 3.4.2 ). For future studies, we
an explore whether having a ‘smarter prior’, for instance a model
ovariance computed from theoretical approximations to parametrize 
he In verse–W ishart distribution, can significantly impro v e or not
oth the CARPool Bayes estimators from Sections 3.3.1 and 3.3.2 . 

3 Results from the bispectrum 

ere, we directly present the confidence bounds for the � CDM pa-
ameter found using v arious cov ariance estimators of the bispectrum.
he moti v ation here is to demonstrate the impro v ement o v er CW21

or the same summary statistics. The first summary statistics we test
s the set of squeezed isosceles triangles, that is to say the bispectra
omputed for k 1 = k 2 and in ascending order of the ratio k 3 / k 1 ≤ 0.20
 p s = 98 in this case). 

Fig. C3 demonstrates that we get parameter constraints much more 
epresentative of the truth with n s = 20 + 10 simulations that with
he sample covariance using n s = 110 simulations. The CARpool 
ayes estimator is the one from Section 3.3.1 using the empirical
ayes prior from Section 3.4.2 . 
Then, we take a look at the reduced bispectrum of equilateral equi-

ateral triangles with k 1 = k 2 = k 3 varying up to k max = 0 . 75 h Mpc −1 

 p s = 40). In Fig. C4 , we observe the CARPool Bayes estimator gives
lmost identical parameters marginal contours to the truth with only 
 s = 10 + 5 simulations, while the sample covariance of simulations
ses n s = 100 simulations. 
MNRAS 515, 1296–1315 (2022) 
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Figure C1. Fisher confidence contours of the cosmological parameters based on the estimated covariance matrix of the matter power spectrum. The estimators 
which we compare are the same as in Fig. 1 , except that we have now n s = 40 + 10 simulations for CARPool Bayes (empirical Bayes prior on the block 
covariance). 
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Figure C2. Confidence contours of the cosmological parameters computed using the Fisher matrix based on the estimated matter power spectrum covariance 
The ‘CARPool Bayes’ estimates follow the computations of Section 3.3.2 , where the prior, still the empirical Bayes one from Section 3.4.2 , is parametrized 
given the regression parameters. We stress that this is the only Figure in the paper that shows a computation of the ‘regression’ MAP from Section 3.3.2 . 
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Figure C3. Confidence contours of the cosmological parameters computed using the Fisher matrix based on the estimated matter bispectrum covariance matrix, 
for a set of squeezed isosceles triangles. The estimators result from the same computations as in Fig. 1 . 
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Figure C4. Confidence contours of the cosmological parameters computed using the Fisher matrix based on the estimated matter bispectrum covariance matrix, 
for a set of equilateral triangles. The estimators we compare are the same as in Fig. 1 . 
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