
Pomset Bisimulation and Unfolding for Reset Petri Nets

Thomas Chataina, Maurice Comlanb, David Delfieuc,∗, Löıg Jezequelc,
Olivier-Henri Rouxc,∗∗

aENS Cachan, LSV, France
bUniversité d’Abomey-Calavi, Bénin

cUniversité de Nantes and École Centrale de Nantes, LS2N UMR 6004, France

Abstract

Reset Petri nets are a particular class of Petri nets where transition firings can
remove all tokens from a place without checking if this place actually holds to-
kens or not. In this paper we look at partial order semantics of reset Petri nets.
In particular, we propose a pomset bisimulation for comparing their concurrent
behaviours. Building on this pomset bisimulation we then propose a generaliza-
tion of the standard finite complete prefixes of unfolding for this class of Petri
nets.

Keywords: Reset Petri nets, Pomset behaviour, Unfolding

1. Introduction

Petri nets are a well-suited formalism for specifying, modeling, and analyz-
ing systems with conflicts, synchronization and concurrency. Many interesting
properties of such systems (reachability, boundedness, liveness, deadlock, . . .)
are decidable for Petri nets. Over time, many extensions of Petri nets have5

been proposed in order to capture specific, possibly quite complex, behaviors
in a more direct manner. These extensions offer more compact representa-
tions and/or increase expressive power. One can notice, in particular, a range
of extensions adding new kinds of arcs to Petri nets: read arcs and inhibitor
arcs [1, 2, 3] (allowing to read variables values without modifying them), and10

reset arcs [4] (allowing to modify the values of variables independently of their
previous value).

These extensions do not only aim at constraining the executions of the mod-
els, but also at expressing other properties, like concurrency, that cannot simply
be described in terms of recognized languages. For example, the commonly used15

∗Principal corresponding author
∗∗Corresponding author

Email addresses: chatain@lsv.fr (Thomas Chatain), comlan@hotmail.fr (Maurice
Comlan), david.delfieu@univ-nantes.fr (David Delfieu), loig.Jezequel@univ-nantes.fr
(Löıg Jezequel), Olivier-h.roux@ec-nantes.fr (Olivier-Henri Roux)

Preprint submitted to Journal of LATEX Templates August 23, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S089054012030167X
Manuscript_f9c0d6ba6753c79458a67e9da8c7f331

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S089054012030167X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S089054012030167X

read arcs (with their common semantics) do not add expressivity in terms of se-
quential semantics, but allow one to explictly model concurrent access to shared
resources.

One interest of this explicit modeling of concurrency is that it enables dedi-
cated analysis algorithms which exploit concurrency in order to avoid the state-20

space explosion due to interleavings of concurrent actions. These algorithms
are partial order reduction techniques [5] and unfoldings [6]. Finite complete
prefixes of unfoldings [7, 8] are sufficient to decide many verification properties
and can be up to exponentially smaller than full state space exploration.

Petri nets unfolding has also gained interest of researchers beyond the ver-25

ification community, for instance in planning [9] and in diagnosis [10], where
the explicit distinction between concurrency and causality is a key to track the
origin of observed faults. At last, in [11], the authors produce behavioral rela-
tions between workflow nets by analyzing the event relations of their respective
branching processes.30

Our contribution: The necessary preliminary for applying these rich tech-
niques is to define and study the partial-order semantics of the models. This was
done for Petri nets in [12, 13, 14], and for contextual Petri nets in [15, 16, 17, 18].
The aim of this paper is to do it for bounded reset Petri nets.

For that, we characterise the concurrent behaviour of reset Petri nets by35

defining a notion of pomset bisimulation. This has been inspired by several
works on pomset behaviour of concurrent systems [19, 20, 21].

Based on true concurrency, pomset bissimulation makes fine behavioral dis-
tinctions and thus the proposed unfolding process preserves the concurrent be-
haviour of a reset Petri net.40

We show that it is not possible to remove reset arcs from safe reset Petri
nets while preserving their behaviours with respect to this pomset bisimula-
tion. Then we propose a notion of finite complete prefixes of unfolding of safe
reset Petri nets that allows for reachability analysis while preserving pomset be-
haviour. As a consequence of the two other contributions, these finite complete45

prefixes do have reset arcs.
After a questionning and a reflection on the computation of a prefix for the

general class of unbounded reset Petri nets, we propose to extend the computing
of a finite complete prefix to the class of (unsafe) bounded reset Petri nets. We
conjecture that similar propositions and algorithms could be established for50

general weighted reset Petri nets, at the expense of combinatorial explosion.
This paper is organized as follows: We first give basic definitions and nota-

tions for bounded (safe) reset Petri nets. Then, in Section 3, we propose the
definition of a pomset bisimulation for reset Petri nets. In Section 4, we show
that, in general, there is no Petri net without reset arcs which is pomset bisimi-55

lar to a given reset Petri net. In Section 5 – building on the results of Section 4
– we propose a finite complete prefix construction for reset Petri nets. Finally,
in Section 6, we extend our results to the case of unsafe reset Petri nets.

2

2. Reset Petri nets

Definition 1 (structure). A reset Petri net structure is a tuple (P , T , F ,R)60

where P and T are disjoint sets of places and transitions, F ⊆ (P×T)∪(T×P)
is a set of arcs, and R ⊆ P × T is a set of reset arcs.

An element x ∈ P ∪ T is called a node and has a preset •x = {y ∈ P ∪
T : (y, x) ∈ F} and a postset x• = {y ∈ P ∪ T : (x, y) ∈ F}. If, moreover, x
is a transition, it has a set of resets �x = {y ∈ P : (y, x) ∈ R}.65

For two nodes x, y ∈ P ∪ T , we say that: x is a causal predecessor of y,
noted x ≺ y, if there exists a sequence of nodes x1 . . . xn with n ≥ 2 such that
∀i ∈ [1..n − 1], (xi, xi+1) ∈ F , x1 = x, and xn = y. If x ≺ y or y ≺ x we say
that x and y are in causal relation. The nodes x and y are in conflict, noted
x#y, if there exists two sequences of nodes x1 . . . xn with n ≥ 2 and ∀i ∈ [1..n−70

1], (xi, xi+1) ∈ F , and y1 . . . ym with m ≥ 2 and ∀i ∈ [1..m − 1], (yi, yi+1) ∈ F ,
such that x1 = y1 is a place, x2 6= y2, xn = x, and ym = y. It is important to
note that this does not exactly define what one would intuitively called a conflict
(which would be difficult to define in a general Petri net as this is a notion which
depends on the order in which events occur). This definition assets that for two75

nodes, it exists a common ancestor that produces a divergence between some
paths to which theses nodes belong, thus the conflict is potential. However, this
definition is necessary and sufficient in the remainder of this section and of the
paper. Notice that, in the particular nets called occurrence nets, defined later,
this definition really reflects the intuitive notion of conflict. At last, nodes are80

said to be concurrent when they are not in causal relation nor in conflict.
A marking is a set M ⊆ P of places. An occurence of a place p in a marking

M is called a token. |M |p ∈ {0, 1} is the number of occurences of a place p in
the marking M , i.e., the number of tokens in the place p for the marking M . A
marking enables a transition t ∈ T if ∀p ∈ •t, p ∈M . In this case, t can be fired85

from M , leading to the new marking M ′ = (M \ (•t ∪ �t)) ∪ t•. The fact that
M enables t and that firing t leads to M ′ is denoted by M [t〉M ′.

Definition 2 (reset Petri net). A reset Petri net is a tuple NR =(P , T , F ,R,M0)
where (P , T , F ,R) is a reset Petri net structure and M0 is a marking called the
initial marking.90

Figure 1 (left) is a graphical representation of a reset Petri net. It has five
places (circles) and three transitions (squares). Its set of arcs contains seven
elements (arrows) and there is one reset arc (line with a diamond).

A marking M is said to be reachable in a reset Petri net if there exists a
sequence M1 . . .Mn of markings such that: ∀i ∈ [1..n − 1],∃t ∈ T ,M i[t〉M i+195

(each marking enables a transition that leads to the next marking in the se-
quence), M1 = M0 (the sequence starts from the initial marking), and Mn = M
(the sequence leads to M). The set of all markings reachable in a reset Petri
net NR is denoted by [NR〉.

As an example, consider the reset Petri net of Figure 1 (left). From the100

marking {p1, p3} (represented on the figure), the transition t2 is enabled. Firing

3

p1

t1

p2

p3

t2

p4t3

p5

c1

e1

c2

c3

e2

c4

c1 c2 c3 c4 e1 e2
h p1 p2 p3 p4 t1 t2

Figure 1: A reset Petri net (left) and one of its processes (right)

it leads to the new marking {p1, p4}. From there, t1 is enabled, and firing it
leads to {p2, p4}. Then, t3 is enabled, and firing it leads to {p5}. Hence, {p5}
is reachable in this reset Petri net.

A reset Petri net with an empty set of reset arcs is simply called a Petri net.105

Definition 3 (underlying Petri net). Given NR = (P , T , F ,R,M0) a reset Petri
net, we call its underlying Petri net the Petri net N = (P , T , F , ∅,M0).

The above formalism is in fact a simplified version of the general formalism
of reset Petri nets: arcs have no multiplicity and markings are sets of places
rather than multisets of places. We use it because it suffices for representing110

safe nets.

Definition 4 (safe reset Petri net). A reset Petri net (P , T , F ,R,M0) is said to
be safe if for any reachable marking M and any transition t ∈ T , if M enables
t then (t• \ (•t ∪ �t)) ∩M = ∅.

Informally a reset Petri net is said to be safe, if from any reachable marking115

M , no enabled transition t can produce at least one token already present in M
without removing this token before.

The reader familiar with Petri nets may notice that our results generalize
to larger classes of nets: unbounded reset Petri nets (where places can contain
an unbounded number of tokens) for our pomset bisimulation (Section 3), and120

bounded reset Petri nets (where places can contain at most k ∈ N tokens) for
our prefix construction (Section 5).

In the rest of the paper, unless the converse is specified, we consider reset
Petri nets such that the preset of each transition t is non-empty: •t 6= ∅. Notice
that this is not a restriction to our model: one can equip any transition t of125

a reset Petri net with a place pt such that pt is in the initial marking and
•pt = p•t = {t}.

One may need to express that two (reset) Petri nets have the same behaviour.
This is useful in particular for building minimal (or at least small, that is with
few places and transitions) representatives of a net; or for building simple (such130

as loop-free) representatives of a net. A standard way to do so is to define a

4

bisimulation between (reset) Petri nets, and state that two nets have the same
behaviour if they are bisimilar.

The behaviour of a net is an observation of its transition firing, this obser-
vation being defined thanks to a labelling of nets associating to each transition135

an observable label or the special unobservable label ε.

Definition 5 (labelled reset Petri net). A labelled reset Petri net is a tuple
(NR,Σ, λ) such that: NR = (P , T , F ,R,M0) is a reset Petri net, Σ is a set of
transition labels, and λ : T → Σ ∪ {ε} is a labelling function.

On every further figure of this paper, if the label matches with a node (tran-140

sition or place) it will be noted only once. For example in Figure 2, the label
t2 matches to the transition t2. If a label and a node are different, the node
will be noted in parenthesis beside the label. For example, in the net NR,4 of
Figure 5 the transitions e1 and e2 have the same label λ(e1) = λ(e2) = t2.

In such a labelled net we extend the labelling function λ to sequences of145

transitions in the following way: given a sequence t1 . . . tn (with n ≥ 2) of
transitions, if λ(t1) ∈ Σ then λ(t1 . . . tn) = λ(t1)λ(t2 . . . tn), else (that is if
λ(t1) = ε) λ(t1 . . . tn) = λ(t2 . . . tn). From that, one can define bisimulation as
follows.

Definition 6 (bisimulation). Let (NR,1,Σ1, λ1) and (NR,2,Σ2, λ2) be two la-150

belled reset Petri nets with NR,i = (P i, T i, F i, Ri,M0,i). They are bisimilar if
there exists a relation ρ ⊆ [NR,1〉 × [NR,2〉 (a bisimulation) such that:

1. (M0,1,M0,2) ∈ ρ,

2. if (M1,M2) ∈ ρ, then

(a) for every transition t ∈ T 1 such that M1[t〉M1,n there exists a se-155

quence t1 . . . tn of transitions from T 2 and a sequence M2,1 . . .M2,n

of markings of NR,2 such that: M2[t1〉M2,1[t2〉 . . . [tn〉M2,n, λ2(t1 . . .
tn) = λ1(t), and (M1,n,M2,n) ∈ ρ

(b) the other way around (for every transition t ∈ T 2. . .)

p1

t1

p2

p3

t2

p4

NR,1

p1

t1

p2

p3

t2

p4

p5

NR,2

Figure 2: Two bisimilar nets

This bisimulation however abstracts from an important part of the be-160

haviours of (reset) Petri nets: For example, consider Figure 2 where NR,1 and
NR,2 are bisimilar (we identify transition names and labels). In NR,1, t1 and

5

t2 are concurrent while in NR,2 they are in causal relation. It is interesting
to note that NR,1 modelizes the parallel execution of two processes ending by
occurrences of t1 and t2, while NR,2 modelizes the mutual exclusion of t1 and165

t2.
To avoid this loss of information, a standard approach is to define bisimula-

tions based on partially ordered sets of transitions rather than totally ordered
sets of transitions (the transition sequences used in the above definition). Such
bisimulations are usually called pomset bisimulations.170

3. Pomset bisimulation for reset Petri nets

In this section, we propose a definition of pomset bisimulation for reset
Petri nets. It is based on an ad hoc notion of processes (representations of the
executions of a Petri net, concurrent counterpart of paths in automata).

3.1. Processes of reset Petri nets175

We recall a standard notion of processes of Petri nets and show how it can
be extended to reset Petri nets. As a first step, we define occurrence nets which
are basically Petri nets without loops and without backward conflicts.

Definition 7 (occurrence net). An occurrence net is a (reset) Petri net
(B,E, FO, RO,MO0) such that, ∀b ∈ B, ∀x ∈ B ∪ E: (1) |•b| ≤ 1, (2) x is180

not in causal relation with itself, (3) x is not in conflict with itself, (4) {y ∈
B ∪ E : y ≺ x} is finite, (5) b ∈MO0 if •b = ∅.

The places of an occurrence net are usually referred to as conditions and the
transitions as events. In an occurrence net, if two nodes x, y ∈ B ∪ E are such
that x 6= y, are not in causal relation, and are not in conflict, they are said to185

be concurrent. Moreover, in an occurrence net, the causal relation is a partial
order.

There is a price to pay for having reset arcs in occurrence nets. With no
reset arcs, checking if a set E of events together form a feasible execution (i.e.,
checking that the events from E can all be ordered such that they can be fired in190

this order starting from the initial marking) is linear in the size of the occurrence
net (it suffices to check that E is causally closed and conflict free). With reset
arcs the same task is NP-complete as stated in the below proposition.

Proposition 1. The problem of deciding if a set E of events of an occurrence
net with resets forms a feasible execution is NP-complete.195

Proof sketch. The problem is clearly in NP: In order to check that E is a feasible
execution, it suffices to guess a corresponding firing sequence (of length |E|).

For NP-hardness, we reduce the problem of graph 3-coloring to executability
of an occurrence net. Our construction is illustrated in Figure 3 for the graph
composed of two vertices v1 and v2 connected by an edge.200

The idea for the reduction is to build an occurrence net where each vertex
vi of the graph is represented by an event ei, all the ei being concurrent. We

6

•
v1

•
v2

a1 b1 a2 b2 a3 b3 a4

e1

(1, 2)

e(1,2)

e2

(2, 1)

e(2,1)

Figure 3: Reduction from 3-coloring to executability of an occurrence net. In the construction,
events e2 and e(2,1) reset the places of the sequence at bottom, like e1 and e(1,2). For
readability, these reset arcs are not represented.

add a sequence of fresh events a1 ≺ b1 ≺ a2 ≺ b2 ≺ a3 ≺ b3 ≺ a4 and, using
reset arcs from the places before a1, a2 and a3, we enforce that, in every firing
sequence containing all the events of the constructed occurrence net, the ei fire205

in three separate slots: between a1 and b1, between a2 and b2 or between a3 and
b3. Indeed, if any ei fires outside these slots, its resets arcs consume the token
in the sequence at the bottom of Figure 3 and prevents remaining events of the
sequence from firing later.

These three slots represent the three colors of the coloring. Every feasible210

execution of the occurrence net assigns every ei to a slot, like the color of the
corresponding vertex.

It remains to represent the edges of the graph, i.e., for every edge (vi, vj),
force ei and ej to fire in distinct slots. This is done using two conditions (i, j)
and (j, i) and two events e(i,j) and e(j,i), with (i, j) ∈ e•i and •e(i,j) = {(i, j)}215

(and symmetrically (j, i) ∈ e•j and •e(j,i) = {(j, i)}). Moreover e(i,j) and e(j,i)
have reset arcs to conditions in the sequence at bottom, enforcing them to
occur outside of the three slots allowed for the ei. In an execution where all
these events fire, assume without loss of generality that ei fires before ej , then
e(i,j) must fire between ei and ej (while the token in (i, j) is present). This is220

only possible if ei and ej fire in different time slots.
Everything is now ready to show that the graph has a 3-coloring iff the

constructed occurrence net is executable:

• Assume there exists a 3-coloring. It partitions the vertices of the graph
in three sets V1, V2 and V3. It induces the following firing sequence of our225

occurrence net: a1 fires first, then all the ei corresponding to the vi ∈ V1,
then b1, then all the e(i,j) for vi ∈ V1, then a2, then all the ei corresponding
to the vi ∈ V2, then b2, then all the e(i,j) for vi ∈ V2, then a3, then all
the ei corresponding to the vi ∈ V3, then b3, then all the e(i,j) for vi ∈ V3,
then a4. Notice that no reset arc consumes tokens in this firing sequence.230

• Conversely, assume there exists a firing sequence which executes all our
occurrence net. The ei must fire in the three separate slots as we an-
nounced earlier. Because of the e(i,j), if vi and vj are connected in the

7

graph, then ei and ej have to fire in separate slots. Therefore the partition
in slots induces a valid 3-coloring for the graph.235

Back to the example of Figure 3, let’s build a sequence where all events are
present: e1, e2, e(1,2), e(2,1), a1, b1, . . . , a4. First, a1 must come before e1 and e2.
Let’s consider, after a1, the occurrence of e1, then b1 must follow: if e2 had
occurred instead of b1, it would have prevented the occurrence of e(1,2); also the
occurrence e(1,2) would have prevented the one of b1. Hence b1 imposes that240

e1 belongs to the first slot. After b1, two scenarios are possible: e2 in the slot
a2, b2 or in the slot a3, b3. In the first case e(1,2) must come before a2, in the
second case e(1,2) must come between b2 and a3. Finally, the complete guess
of a feasible sequence containing every event of this net assigns to e1 and e2 a
different slot.245

The branching processes of a Petri net are then defined as particular occur-
rence nets linked to the original net by homomorphisms.

Definition 8 (homomorphism of nets). Let N 1 and N 2 be two Petri nets
such that N i = (P i, T i, F i, ∅,M0,i). A mapping h : P 1 ∪ T 1 → P 2 ∪ T 2 is
a homomorphism of nets from N 1 to N 2 if ∀p1 ∈ P 1,∀p2 ∈ P 2,∀t ∈ T 1:250

(1) h(p1) ∈ P 2, (2) h(t) ∈ T 2, (3) p2 ∈ •h(t) ⇔ ∃p′1 ∈ •t, h(p′1) = p2, (4)
p2 ∈ h(t)• ⇔ ∃p′1 ∈ t•, h(p′1) = p2, (5) p2 ∈M0,2 ⇔ ∃p′1 ∈M0,1, h(p′1) = p2.

Definition 9 (processes of a Petri net). Let N = (P , T , F , ∅,M0) be a Petri
net, O = (B,E, FO, ∅,MO0) be an occurrence net, and h be a homomorphism
of nets from O to N . Then (O, h) is a branching process of N if ∀e1, e2 ∈255

E, (•e1 = •e2 ∧ h(e1) = h(e2)) ⇒ e1 = e2. If, moreover, ∀b ∈ B, |b•| ≤ 1, then
(O, h) is a process of N .

Consider for example the Petri net N of Figure 4 (left). Figure 4 (mid-
dle) is one branching process of N (the occurrence net is represented with the
homomorphism h below) and Figure 4 (right) is a process of N .260

p1

t1 t2

p2

N

b1

e1 e2

b2 b3

O1

b1 b2 b3 e1 e2
h1 p1 p2 p1 t1 t2

b1

e1

b2

O2

b1 b2 e1
h2 p1 p1 t1

Figure 4: A Petri net N (left), one branching process of N (middle, constituted of the
occurrence net O1 and the homomorphism h1), and one process of N (right, constituted of
the occurrence net O2 and the homomorphism h2).

8

Finally, a process of a reset Petri net is obtained by adding reset arcs to a
process of the underlying Petri net (leading to what we call below a potential
process) and checking that all its events can still be enabled and fired in some
order.

We consider safe reset Petri nets whose underlying Petri net is also safe.265

This restriction will be released at the end of the paper.

Definition 10 (potential processes of a reset Petri net).
Let NR = (P , T , F ,R,M0) be a reset Petri net and N be its underlying Petri net,
let O = (B,E, FO, RO,MO0) be an occurrence net, and h be a homomorphism
of nets from O to NR. Then (O, h) is a potential process of NR if (1) (O′, h) is270

a process of N with O′ = (B,E, FO, ∅,MO0), (2) ∀b ∈ B, ∀e ∈ E, (b, e) ∈ RO if
(h(b), h(e)) ∈ R.

Intuitively, it may be possible that no sequence of firings of NR involves all
the events of (O, h). Hence we define the processes of a reset Petri net as follows:

Definition 11 (processes of a reset Petri net). Let NR = (P , T , F ,R,M0)275

be a reset Petri net, O = (B,E, FO, RO,MO0) be an occurrence net, and h
be a homomorphism of nets from O to NR. Then (O, h) is a process of NR
if (1) (O, h) is a potential process of NR, and (2) if E = {e1, . . . , en} then
∃M1, . . . ,Mn ⊆ B such that MO0 [ek1〉M1[ek2〉 . . . [ekn〉Mn with {k1, . . . , kn} =
{1, . . . , n}.280

Notice that processes of reset Petri nets and processes of Petri nets do not
exactly have the same properties. In particular, two properties are central in
defining pomset bisimulation for Petri nets and do not hold for reset Petri nets.

Property 1. In any process of a Petri net with set of events E, consider any
sequence of events e1e2 . . . en (1) that contains all the events in E, (2) such that285

∀i, j ∈ [1..n] if ei ≺ ej then i < j. Necessarily, there exist markings M1, . . . ,Mn

such that MO0 [e1〉M1[e2〉 . . . [en〉Mn.

This property (which, intuitively, expresses that processes are partially or-
dered paths) is no longer true for reset Petri nets. Consider for example the
reset Petri net of Figure 1 (left). Figure 1 (right) is one of its processes (the290

occurrence net with the homomorphism h below). As not e2 ≺ e1, there should
exist markings M1,M2 such that M0[e1〉M1[e2〉M2. However, M0 = {c1, c3}
indeed enables e1, but the marking M1 such that M0[e1〉M1 is {c2}, which does
not enable e2.

Property 2. In a process of a Petri net all the sequences of events e1e2 . . . en295

verifying (1) and (2) of Property 1 lead to the same marking (i.e., Mn is always
the same), thus uniquely defining a notion of maximal marking of a process.

This property defines the marking reached by a process. As a corollary of
Property 1 not holding for reset Petri nets, there is no uniquely defined notion
of maximal marking in their processes. Back to the example, {c2} is maximal300

(no event can be fired from it) as well as {c2, c4}.

9

To transpose the spirit of Properties 1 and 2 to processes of reset Petri nets,
we define below a notion of maximal markings in such processes.

Definition 12 (maximal markings). Let P = (O, h) be a process with set of
events E = {e1, . . . , en} and initial marking MO0 of a reset Petri net. The set305

Mmax(P) of maximal markings of P contains exactly the markings M such that
∃M1, . . . ,Mn−1, verifying MO0 [ek1〉M1[ek2〉 . . .Mn−1[ekn〉M for some
{k1, . . . , kn} = {1, . . . , n}.

In other words, the maximal markings of a process are all the markings that
are reachable in it using all its events. This, in particular, excludes {c2} in the310

above example.

3.2. Abstracting processes

We show how processes of labelled reset Petri nets can be abstracted as
partially ordered multisets (pomsets) of labels.

Definition 13 (pomset abstraction of processes). Let (NR,Σ, λ) be a labelled315

reset Petri net and (O, h) be a process of NR with O = (B,E, FO, RO,MO0).
Define E′ = {e ∈ E : λ(h(e)) 6= ε}. Define λ′ : E′ → Σ as the function such
that ∀e ∈ E′, λ′(e) = λ(h(e)). Define moreover < ⊆ E′ × E′ as the relation
such that e1 < e2 if e1 ≺ e2 (e1 is a causal predecessor of e2 in O). Then,
(E′, < , λ′) is the pomset abstraction of (O, h).320

This abstraction (E,< , λ′) of a process is called its pomset abstraction
because it can be seen as a multiset of labels (several events may have the same
associated label by λ′) that are partially ordered by the < relation. In order
to compare processes with respect to their pomset abstractions, we also define
the following equivalence relation.325

Definition 14 (pomset equivalence). Let (E,< , λ) and (E′, < ′, λ′) be the
pomset abstractions of two processes P and P ′. These processes are pomset
equivalent, noted P ≡ P ′ if there exists a bijection f : E → E′ such that
∀e1, e2 ∈ E: (1) λ(e1) = λ′(f(e1)), and (2) e1 < e2 if f(e1) < ′f(e2).

Intuitively, two processes are pomset equivalent if their pomset abstractions330

define the same pomset: same multisets of labels with same partial orderings.
Finally, we also need to be able to abstract processes as sequences of labels.

Definition 15 (linear abstraction). Let (NR,Σ, λ) be a labelled reset Petri
net, let P = (O, h) be a process of NR with O = (B,E, FO, RO,MO0), and
let M be a reachable marking in O. Define λ′ : E → Σ as the function335

such that ∀e ∈ E, λ′(e) = λ(h(e)). The linear abstraction of P with respect
to M is the set lin(M,P) such that a sequence of labels ω is in lin(M,P)
if in O there exist markings M1, . . . ,Mn−1 and events e1, . . . , en such that
MO0 [e1〉M1[e2〉 . . .Mn−1[en〉M and λ′(e1 . . . en) = ω.

10

3.3. Pomset bisimulation340

We now define a notion of pomset bisimulation between reset Petri nets,
inspired by [19, 20, 21]. Intuitively, two reset Petri nets are pomset bisimilar
if there exists a relation between their reachable markings such that the mark-
ings that can be reached by pomset equivalent processes from two markings in
relation are them selves in relation. This is formalized by the Definition 16.345

Definition 16 (pomset bisimulation for reset nets). Let (NR,1,Σ1, λ1) and
(NR,2,Σ2, λ2) be two labelled reset Petri nets with NR,i = (P i, T i, F i, Ri,M0,i).
They are pomset bisimilar if there exists a relation ρ ⊆ [NR,1〉 × [NR,2〉 (called
a pomset bisimulation) such that:

1. (M0,1,M0,2) ∈ ρ,350

2. if (M1,M2) ∈ ρ, then

(a) for every process P1 of (P 1, T 1, F 1, R1,M1) there exists a process P2

of (P 2, T 2, F 2, R2, M2) such that P1 ≡ P2 and

• ∀M ′1 ∈Mmax(P1),∃M ′2 ∈Mmax(P2) such that (M ′1,M
′
2) ∈ ρ,

• ∀M ′1 ∈Mmax(P1),∀M ′2 ∈Mmax(P2),355

(M ′1,M
′
2) ∈ ρ⇒ lin(M ′1,P1) = lin(M ′2,P2).

(b) the other way around (for every process P2. . .)

Remark that pomset bisimulation implies bisimulation, as expressed by the
following proposition. The converse is obviously not true.

For example, in the Figure 2, NR,1 and NR,2 are bisimilar but not pomset-360

bisimilar. It can also be noted that while every Petri net is bisimilar to its
marking graph, it is not necessarily pomset bisimilar to it. In the Figure 5, the
reset Petri nets NR,3 and NR,4 (with λ(e1) = λ(e2) = t2) are pomset bisimilar
to NR,1 of Figure 2.

p1

t1

p2

p3

t2

p4

NR,3

p1

t1

p2

p3

e1 (t2) e2 (t2)

p4

NR,4

Figure 5: Pomset bisimilar reset Petri nets

Proposition 2. Let (NR,1,Σ1, λ1) and (NR,2,Σ2, λ2) be two pomset bisimilar365

labelled reset Petri nets, then (NR,1,Σ1, λ1) and (NR,2,Σ2, λ2) are bisimilar.

Proof. It suffices to notice that Definition 6 can be obtained from Definition 16
by restricting the processes considered, taking only those with exactly one tran-
sition whose label is different from ε.

11

4. Reset arcs removal and pomset bisimulation370

From now on, we consider finite (reset) Petri nets, i.e., their sets of places
and transitions are finite.

t1 p2

p1

t2

t3

N pat
R

t1

p1

p1

p2

t2

t3 (t3)

t3

(t3)
N pat

str

p0 t1

p1 t3

p2

t2p3

N 0R

b1(p0) b2(p2)

e1(t1) e2 (t3)

b4(p0) b5(p1) b6(p2)

e3 (t2)b3(p3)

b7(p3)F0R

Figure 6: A remarkable pattern N pat
R and its structural transformation N pat

str , a labelled reset
Petri net N 0R including the pattern NR, and a finite complete prefix F0R of N 0R . Transition
labels are given on transitions.

In this section, we prove that it is, in general, not possible to remove reset
arcs from safe reset Petri nets while preserving their behaviours up to pomset
bisimulation. More precisely, we prove that it is not possible to build a safe375

labelled Petri net without reset arcs which is pomset bisimilar to a given safe
labelled reset Petri net (while this is out of the scope of this paper, the reader
familiar with Petri nets may notice that this is the case for bounded labelled
Petri net). For that, we exhibit a particular pattern – Figure 6 (left) – and
show that a reset Petri net including this pattern cannot be pomset bisimilar380

to a Petri net without reset arcs.
As a first intuition of this fact, let us consider the following structural trans-

formation that removes reset arcs from a reset Petri net.

Definition 17 (Structural transformation). Let (NR,Σ, λ) be a labelled reset
Petri net such that NR = (P , T , F ,R,M0), its structural transformation is the
labelled Petri net (NR,str,Σstr, λstr) where NR,str = (P str, T str, F str, ∅,M0,str)
such that:

P str = P ∪ P with P = {p : p ∈ P ∧ ∃t ∈ T , (p, t) ∈ R},
T str = T ∪ T with T = {t : t ∈ T ∧ �t 6= ∅},
Fstr = F ∪ {(p, t) : t ∈ T , (p, t) ∈ F} ∪ {(t, p) : t ∈ T , (t, p) ∈ F} (1)

∪ {(p, t) : p ∈ P , (t, p) ∈ F} ∪ {(t, p) : p ∈ P , (p, t) ∈ F} (2)

∪ {(p, t) ∈ P × T : (t, p) ∈ F} ∪ {(t, p) ∈ T × P : (p, t) ∈ F} (3)

∪ {(p, t), (t, p), (p, t), (t, p) : (p, t) ∈ R}, (4)

M0,str = M0 ∪ {p ∈ P : p /∈M0},

and moreover, Σstr = Σ, ∀t ∈ T, λstr(t) = λ(t), and ∀t ∈ T , λstr(t) = λ(t).

12

Intuitively, in this transformation, for each reset arc (p, t), a copy p of p and385

a copy t of t are created. The two places are such that p is marked if and only if
p is not marked, the transition t will perform the reset when p is marked and t
will perform it when p is not marked (i.e., when p is marked). For that, new arcs
are added to F such that: t mimics t (1), the link between p and p is enforced
(2, 3), and the resets are either performed by t or t depending of the markings390

of p and p (4). This is examplified in Figure 6 (left and middle left).

Lemma 1. A labelled reset Petri net (NR,Σ, λ) and its structural transforma-
tion (NR,str,Σstr, λstr) as defined in Definition 17 are bisimilar.

Proof. The bisimulation relation is ρ ⊆ [NR〉× [NR,str〉 defined by (M,Mstruct)
∈ ρ iff ∀p ∈ P, |M |p = |Mstruct|p and ∀p ∈ P such that p ∈ P , we have395

|Mstruct|p + |Mstruct|p = 1. See proof of lemma 3 for k-bounded nets.

For the transformation of Definition 17, a reset Petri net and its transfor-
mation are bisimilar but not always pomset bisimilar. This can be remarked
on any safe reset Petri net including the pattern N pat

R of Figure 6. Indeed, this

transformation adds in N pat
str a causality relation between the transition labelled400

by t1 and each of the two transitions labelled by t3. From the initial marking of
N pat

str , for any process whose pomset abstraction includes both t1 and t3, these
two labels are causally ordered. While, from the initial marking of N pat

R there is
a process whose pomset abstraction includes both t1 and t3 but does not order
them. We now generalize this result.405

Let us consider the labelled reset Petri Net N 0R of Figure 6 (middle right).
It uses the pattern N pat

R of Figure 6 in which t1 and t3 can be fired in different
order infinitely often. In this net, the transitions with labels t1 and t3 are not
in causal relation.

Notice that the firing of t3 prevents the firing of t2; then t3 and t2 are in410

conflict and share an input place which has to be marked again after the firing
of t1. This place generates a causality between t1 and t3. This is formalized
and proved in the following lemma.

Lemma 2. Any safe labelled Petri net with no reset arcs which is bisimilar (see
definition 6) to N 0R has a causal relation between two transitions labelled by t1415

and t3 respectively.

Proof. Assume there exists a safe labelled Petri net N0 = (N 0,Σ0, λ0) bisimilar
to the labelled reset Petri net N0R without any transitions t ≺ t′ such that
λ0(t) = t1 and λ0(t′) = t3.

Let us consider in N0R a marking MR such that p1 and p2 are marked. Both420

t2 and t3 are fireable (in N0R we identify transitions with their labelling as this
is not ambiguous).

By definition of the bisimulation, in N0 there exists a marking M bisim-
ilar to MR and from which two sequences τ1 . . . τkτ t

′′ and ε1 . . . εkεt
′, with

λ0(τ1 . . . τkτ t
′′) = λ0(t′′) = t2 and λ0(ε1 . . . εkεt

′) = λ0(t′) = t3, are fireable in425

the orders given by the sequences. Note that the set of transitions in ε1 . . . εkε

13

and the set of transitions in τ1 . . . τkτ are not necessarily disjoint. Without loss
of generality, we take M , τ1 . . . τkτ , and t′′ such that the sequence τ1 . . . τkτ t

′′

can be fired infinitely often, that is, such that there exists a sequence of firing of
transitions from the initial marking of N0 in which the subsequence τ1 . . . τkτ t

′′
430

appears infinitely many times (this is possible due to the finiteness of the set of
transitions of N0 and the fact that t2 can be fired infinitely often in N 0R).

When t′ occurs from M , the firing of t′′ becomes impossible. Otherwise a
sequence of transitions w such that λ0(w) = t3t2 would be possible in N0, which
contradicts bisimilarity with N 0R where firing t2 immediately after t3 (i.e., with435

no firing of t1 in the meantime) is not possible.
From that, one can deduce that from M the two sequences τ1 . . . τkτ t

′′

and ε1 . . . εkεt
′ necessarily have a direct conflict: there are a transition τ in

τ1 . . . τkτ t
′′ and a transition ε in ε1 . . . εkεt

′ whose presets share at least one
place. We call p′1 such a place both in •τ and in •ε. We have p′1 ≺ t′′ (recall440

that λ0(t′′) = t2) and p′1 ≺ t′ (recall that λ0(t′) = t3).
Notice that it can exist a non-empty set SP1

of such places p′1, because
|•τ ∩ •ε| ≥ 1. Since t2 and t3 can occur infinitely often in N0R , and since
the number of places in N0 is finite, one could have chosen t′ and thus ε such
that all the places in SP1

is marked infinitely often in some infinite sequence of445

transitions firing in N0 in which τ1 . . . τkτ t
′′ appears infinitely often and which

reaches M infinitely often (recall that we chose t′′ to have such a sequence).
Assume that we chose p′1 in such a SP1

.
As a last step before concluding our proof, we show that t′′ ≺ p′1. Assume

this is not the case. Remark that firing τ1 . . . τkτ t
′′ removes, at some point in450

the sequence of firings, p′1 from the marking, by firing τ . However, p′1 is marked
infinitely often in some infinite sequence w of transitions firing in N0 in which
τ1 . . . τkτ t

′′ appears infinitely often and which reaches M infinitely often. If
t′′ ≺ p′1 is false, it means that, at some point in w, p′1 is marked thanks to a
transition that is not a causal successor of t′′ (i.e., t′′ is not a causal predecessor455

of this transition), all the places in the preset of this transition must neither be
causal successors of t′′. By induction, one can find an infinite subsequence of w
of transitions firing which infinitely often marks p′1 while it is already marked.
This is in contradiction with the assumption that N0 is safe (for the reader
familiar with Petri nets, this would work exactly the same for bounded Petri460

nets in a more general setting). Thus, t′′ ≺ p′1.
We have shown that t′′ ≺ p′1 and p′1 ≺ t′. Moreover, by definition of bisim-

ilarity we know that there exists t in N0 such that t ≺ t′′ and λ0(t) = t1
(because t1 ≺ t2 in N 0R). Hence, by transitivity, we get t ≺ t′ with λ0(t) = t1
and λ0(t′) = t3, which concludes the proof.465

Proposition 3. There is no finite safe labelled Petri net (i.e., without reset
arcs) that is pomset bisimilar to the labelled reset Petri net N 0R .

Proof. Any finite safe labelled Petri net with no reset arcs which is bisimilar
to N 0R has a causal relation between two transitions labelled by t1 and t3
respectively (Lemma 2). From that, by Proposition 2, we get that any such470

14

labelled Petri net N which would be pomset bisimilar to N 0R would have a
process from its initial marking whose pomset abstraction is such that some
occurrence of t1 and some occurrence of t3 are ordered, while this is never the
case in the processes of N 0R . This prevents N from being pomset bisimilar to
N 0R , and thus leads to a contradiction, proving the proposition.475

5. Finite complete prefixes of unfolding of safe reset Petri nets

In this section, we propose a notion of finite complete prefixes of unfolding
of safe reset Petri nets that allows reachability analysis while preserving pomset
behaviour.

The results of the previous section imply that these finite complete prefixes480

do have reset arcs.
The unfolding of a Petri net is a particular branching process (generally

infinite) representing all its reachable markings and ways to reach them. It also
preserves concurrency.

Definition 18 (Unfolding of a Petri net). The unfolding of a net can be de-485

fined as the union of all its branching processes [6] or equivalently as its largest
branching process (with respect to inclusion).

In the context of reset Petri nets, no notion of unfolding has been defined
yet. Accordingly to our notion of processes for reset Petri nets and because of
Proposition 4 below we propose Definition 19. In it and the rest of the paper,490

nets and labelled nets are identified (each transition is labelled by itself) and
labellings of branching processes are induced by homomorphisms (as for pomset
abstraction).

Definition 19 (Unfolding of a reset Petri net). Let NR = (P , T , F ,R,M0) be
a safe reset Petri net and N = (P , T , F , ∅,M0) be its underlying Petri net (that495

we assume to be safe). Let U = (B,E, FU , ∅,MU
0) be the unfolding of N . The

unfolding UR = (B,E, FU , RU ,MU
0) of NR is obtained by adding reset arcs to

U as follows : ∀b ∈ B, ∀e ∈ E, (b, e) ∈ RU if (h(b), h(e)) ∈ R.

Proposition 4. Any safe (labelled) reset Petri net NR and its unfolding UR are
pomset bisimilar.500

Proof. (Sketch) This extends a result of [22], stating that two Petri nets having
the same unfolding (up to isomorphism) are pomset bisimilar (for a notion of
bisimulation coping with our in absence of resets). Clearly, a Petri net N and
its unfolding U have the same unfolding, U itself. Thus, N and U are pomset
bisimilar.505

Moreover, from Definition 11, one gets that the processes of NR are a subset
of the processes of N (to which reset arcs are added). Similarly, the processes of
UR are a subset of the processes of U (to which reset arcs are added). Because
N and U are pomset bisimilar, they have the same processes (up to pomset
abstraction). Thus, NR and UR have the same processes (up to pomset abstrac-510

tion) as well.

15

Finally, by definition of pomset bisimulation, inN and U two processes taken
from markings in bisimulation and with the same pomset abstraction, must also
reach markings in bisimulation. Because the addition of reset arcs mimics the
resets arcs of NR in UR (i.e., adding reset arcs to the processes of N or to the515

processes of U is done exactly in the same way) and because their processes are
the same, we get the same property about bisimulation between markings in
NR and UR than in N and U .

Petri nets unfolding is however unpractical for studying Petri nets behaviour
as it is generally an infinite object. In practice, finite complete prefixes of it are520

preferred [8, 7].

Definition 20 (finite complete prefix, reachable marking preservation). A finite
complete prefix of the unfolding of a safe Petri net N is a finite branching
processes (O, h) of N verifying the following property of reachable marking
preservation: a marking M is reachable in N if there exists a reachable marking525

M ′ in O such that M = {h(b) : b ∈M ′}.

In this section, we propose an algorithm for the construction of finite com-
plete prefixes for safe reset Petri nets. For that, we assume the existence of an
algorithm for building finite complete prefixes of safe Petri nets (without reset
arcs). Notice that such algorithms indeed do exist [8, 7].530

Because of Proposition 3, we know that such finite prefixes should have reset
arcs to preserve pomset behaviour. We first remark that directly adding reset
arcs to finite complete prefixes of underlying nets would not work.

Proposition 5. Let U be the unfolding of the underlying Petri Net N of a safe
reset Petri net NR, let F be one of its finite and complete prefixes. Let F ′ be the535

object obtained by adding reset arcs to F according to (2) in Definition 10. The
reachable marking preservation is in general not verified by F ′ (with respect to
NR).

Proof. Let us consider the reset Petri net NR of Figure 7 (left).
Applying the prefix construction procedure of [8] or [7] on the unfolding U540

of its underlying Petri net leads to the finite prefix F of Figure 7 (middle). The
object F ′ obtained by adding reset arcs to F is represented in Figure 7 (right).
It does not verify the reachable marking preservation property. Indeed, in NR,
the sequence of transition firings t1t3t2t4t5 allows to reach the marking {p6},
while in F ′ no sequence of transition firings permits to reach the marking {b6}545

(which is the only one which could correspond to {p6}).

The proof of this proposition relies on the fact that some reachable markings
of NR are not represented in F ′. This suggests that this prefix is not big enough.
We however know an object that contains, for sure, every reachable marking of
NR along with a way to reach each of them: its structural transformation NR,str550

(Definition 17). We thus propose in Algorithm 1 to compute finite prefixes of
reset Petri nets from their structural transformations: in this algorithm, Fstr

16

p1

t1

p3

t3

p4

t4

p2

t2

p5

t5

p6

NR

b1(p1)

e1(t1)

b3(p3)

e3(t3)

b5(p4)

b2(p2)

e2 (t2)

b4(p5)

e5 (t5)

b6(p6)

F

b1(p1)

e1(t1)

b3(p3)

e3(t3)

b5(p4)

b2(p2)

e2 (t2)

b4(p5)

e5 (t5)

b6(p6)

F ′

Figure 7: A reset Petri net NR (left), a finite complete prefix F of its underlying Petri net
(middle), and the same prefix after addition of reset arcs F ′ (right).

is used to determine the deepness of the prefix (i.e., the length of the longest
chain of causally ordered transitions).

Algorithm 1: Finite complete prefix for safe reset Petri nets

Data: a safe reset Petri net NR
Result: a finite complete prefix FR for NR
Step 1: compute the structural transformation NR,str of NR
Step 2: compute a finite complete prefix Fstr of NR,str

Step 3: compute a finite prefix F of U (the unfolding of the underlying
net N) that simulates Fstr (a labelled net N 2 simulates a labelled net
N 1 if they verify Definition 6 except for condition 2.b.)

Step 4: compute FR by adding reset arcs from NR to F according to
(2) in Definition 10

555

Applying Algorithm 1 to the net N 0R of Figure 6 (middle right) – using
the algorithm from [7] at step 2 – leads to the reset Petri net F0R of Figure 6
(right).

Notice that the computation of Fstr – step 1 and 2 – can be done in expo-
nential time and space with respect to the size of NR. The computation of F560

from Fstr (step 3) is linear in the size of F . And, the addition of reset arcs
(step 4) is at most quadratic in the size of F .

We conclude this section by showing that Algorithm 1 actually builds finite
complete prefixes of reset Petri nets.

Proposition 6. The object FR obtained by Algorithm 1 from a safe reset Petri565

net NR is a finite and complete prefix of the unfolding of NR.

Proof. Notice that if NR is safe, then NR,str is safe as well. Thus Fstr is finite
by definition of finite complete prefixes of Petri nets (without reset arcs). Fstr

is finite and has no node in causal relation with itself (i.e., no cycle), hence any

17

b1(p0) b2(p2)

e1(t1) e2 (t3)

b4(p0) b5(p1) b6(p2)

e3 (t2)b3(p3)

b7(p3)

Figure 8: A finite complete prefix of the unfolding of the safe reset Petri net N 0R of Figure 6.

net bisimilar with it is also finite, this is in particular the case of F . Adding570

reset arcs to a finite object does not break its finiteness, so FR is finite.
Moreover, Fstr is complete by definition of finite complete prefixes of Petri

nets (without reset arcs). As F simulates Fstr it must also be complete (it
can only do more). The reset arcs addition removes semantically to F only
the unexpected sequences (i.e., the sequence which are possible in F but not in575

Fstr). Therefore, FR is complete.

6. Unsafe reset Petri nets

In this section we extend the above results to unsafe reset Petri nets. In
other words, nets where it is possible to fire transitions when their postsets are
marked. This implies to be able to represent the fact that a place is marked580

with more than one token. We achieve it by representing markings as multisets
of places rather than sets of places.

6.1. Markings as multisets

Definition 21 (Multiset). A multiset is a couple M = (S, f) where S is a set
and f : S → N∪{∞} is a function associating a multiplicity to each element in585

S.

For simplicity and homogeneity with the above definitions (i.e., to avoid
using the f function), we adopt the following notations: |M | =

∑
s∈S f(s) is

the cardinality of M , |M |s = f(s) is the number of occurrences of the element s
in M , and we note s ∈M when |M |s >= 1. We also need to be able to perform590

unions and differences of multisets in order to express transition firing. They
can be defined as follows.

Definition 22 (Union of multisets). The union of two multisets M1 = (S1, f1)
and M2 = (S2, f2) is the multiset M1 ⊕M2 = (S1 ∪ S2, f) where ∀s1 ∈ S1 \
S2, f(s1) = f1(s1), ∀s2 ∈ S2 \ S1, f(s2) = f2(s2), and ∀s ∈ S1 ∩ S2, f(s) =595

f1(s) + f2(s).

18

Definition 23 (Difference of multisets). The difference of two multisets M1 =
(S1, f1) and M2 = (S2, f2) is the multiset M1 	M2 = (S, f) where S = (S1 \
S2)∪S′ with S′ = {s ∈ S1 ∩S2 : f1(s) > f2(s)}, ∀s1 ∈ S1 \S2, f(s1) = f1(s1),
and ∀s ∈ S′, f(s) = f1(s)− f2(s).600

From that, Petri nets are defined exactly as before. The only difference being
that markings are multisets and that the firing rules are defined using multisets
operations. For a node x, we simply define •x and x• as the same sets as above,
with multiplicity 1 for each element. For a transition t, we define �t as the same
set as above, with multiplicity ∞ for each element. A marking M enables a605

transition t if ∀p ∈ •t, |M |p > 0. In this case, firing t from M leads to the new
marking M ′ = (M 	 (•t⊕ �t))⊕ t•.

Among unsafe nets, we distinguish two classes, based on the markings that
are reachable. Unbounded nets are those nets where there exists at least one
place p such that there is no bound k ∈ N verifying k ≥ |M |p for all reachable M .610

In other words, they are the nets with infinite number of reachable markings.
Bounded nets are the other nets: those where such a bound k can be found.

In the rest of this section we extend to unbounded reset Petri nets the notions
of Pomset bisimulation and unfolding. Then, we extend our other results to
bounded reset Petri nets.615

6.2. Unbounded reset Petri nets

6.2.1. Pomset bisimulation for unbounded reset Petri nets

We first extend the definition of pomset bisimulation for reset Petri nets to
unbounded reset Petri nets. As before, this implies to define a notion of process
for unbounded reset Petri nets. This notion is in fact closely related to the one620

defined in Section 3.
The first step to define processes is to define occurrence nets. As this no-

tion does not depend on the markings, one can keep it as is (notice that our
occurence nets thus remain safe nets: markings are sets). Then, one needs a
notion of homomorphism, to link Petri nets and occurrence nets representing625

the processes. The notion of homomorphism needs to be modified a little bit,
as it does not yet take into account the possibility for an initial marking to be
a multiset. The idea is to enforce building a copy of each initially marked place
for each occurrence of it in the multiset representing the initial marking. This
gives the following new definition630

Definition 24 (updated homomorphism of nets). Let N 1 and N 2 be two Petri
nets such that N i = (P i, T i, F i, ∅,M0,i). A mapping h : P 1 ∪ T 1 → P 2 ∪ T 2

is an homomorphism of nets from N 1 to N 2 if ∀p1 ∈ P 1,∀p2 ∈ P 2,∀t ∈ T 1:
(1) h(p1) ∈ P 2, (2) h(t) ∈ T 2, (3) p2 ∈ •h(t) ⇔ ∃p′1 ∈ •t, h(p′1) = p2, (4)
p2 ∈ h(t)• ⇔ ∃p′1 ∈ t•, h(p′1) = p2, (5) |M0,2|p2 = k ⇔ |{p′1 ∈ M0,1 : h(p′1) =635

p2}| = k.

From that, the notion of processes of a Petri net (without reset arcs) is
defined exactly as before, simply replacing the previous notion of homomorphism

19

with the new one. The notion of potential processes of a reset Petri net as well
as the notion of processes of a reset Petri net are then similarly derived from it.640

Finally, the notions of pomset abstraction and pomset bisimulation of un-
bounded reset Petri nets have the same definition as before. Simply notice that
the new definition of homomorphism is used, in order to deal with markings
that are not safe (this is needed, in particular, in (2) of Definition 16).

6.2.2. Unfolding of unbounded reset Petri nets645

As above, the unfolding can be defined from the branching processes of a
reset Petri net in the unbounded case. We illustrate it on an example (the
formal definition remains the same). For that, consider the net of Figure 9. It
has been obtained by adding a token generator to the example of Figure 7. It
is clearly unbounded, t6 acting as a perpetual token provider for the place p5.650

p1

t1

p3

t3

p4

t4

p2

t2

p5

t5

p6

p7

t6

Figure 9: An unbounded reset Petri net

The unfolding of the underlying net is represented in Figure 10. This un-
folding is infinite, so only two occurrences of t6 and two occurrences of t3 are
represented. The token provider appears in the rigth part of the figure. Dashed
arcs represent the control of all the occurrences of the transition t5 by all the
conditions bi such as λ(bi) = p3.655

The Figure 11 shows the adding of reset arcs.

6.3. Bounded reset Petri nets

We now extend to bounded reset Petri nets the structural translation pre-
serving bisimulation given for safe reset Petri nets in definition 17 as well as our
technique for computing finite complete prefixes.660

In all this section we assume that the nets we consider are k-bounded, that
is bounded with a known bound k.

20

b1(p1)

e1(t1)

b3(p3)

e3(t3)

b5(p4)

e4(t4)

b7(p3)

e6(t3)

e2(t2)

b2(p2)

b4(p5)

e5(t5)

e′5(t5)

b′6(p6)

b6(p6)

b8(p7)

e7(t6)

b10(p5)

e9(t5)

e′9(t5)

b′12(p6)

b12(p6)

b9(p7)

e8(t6)

b11(p5)

e10(t5)

e′10(t5)

b′13(p6)

b13(p6)

b9(p7)

Figure 10: Infinite ufolding without reset arcs

6.3.1. Strutural transformation for a bounded reset Petri net

For each reset arc (p, t), a copy p of p is created and the transition t is
translated into k + 1 transitions t0 . . . tk . The two places are so that M(p) +665

M(p) = k (recall that the net is k-bounded) and the transition tn will perform
the reset when the number of token in p is n. For that, new arcs are added to F
(as shown in figure 12) such that if t is fireable in the initial net, one and only
one copy of t is firable in the translated net : if the number of tokens in p is n
then the number of tokens in p is k−n and only the transition tn is fireable and670

its firing leads to a marking such that M(p) = 0 and M(p) = k i.e. the reset is
performed.

This translation uses weighted arcs that are not allowed in our class of Petri
net but it is well known that for every k-bounded Petri Net with weighted arcs,
there is a safe Petri Net without weighted arcs which, if not pomset bisimilar,675

has the same interleaving behaviour and there exists well known straightforward
approaches [23, 24] performing this translation.

For the sake of conciseness, we will keep the weighted arcs in our translation
and, in the following paragraph, for a transition (p, t), resp. (t, p), with a weight
n, we use the notation (p, t)n, resp. (t, p)n.680

Definition 25 (Structural transformation). Let (NR,Σ, λ) be a k-bounded la-
belled reset Petri net such that NR = (P , T , F ,R,M0), its structural transfor-

21

b1(p1)

e1(t1)

b3(p3)

e3(t3)

b5(p4)

e4(t4)

b7(p3)

e6(t3)

e2(t2)

b2(p2)

b4(p5)

e5(t5)

e′5(t5)

b′6(p6)

b6(p6)

b8(p7)

e7(t6)

b10(p5)

e9(t5)

e′9(t5)

b′12(p6)

b12(p6)

b9(p7)

e8(t6)

b11(p5)

e10(t5)

e′10(t5)

b′13(p6)

b13(p6)

b9(p7)

Figure 11: Addition of reset arcs to the infinite unfolding

mation is the labelled Petri net (NR,str,Σstr, λstr) which is such that NR,str =
(P str, T str, F str, ∅,M0,str) with:

P str = P ∪ P with P = {p : p ∈ P ∧ ∃t ∈ T , (p, t) ∈ R},

T str = T ∪

(
k⋃

n=1

Tn

)
with Tn = {tn : t ∈ T ∧ �t 6= ∅},

Fstr = F ∪

(
k⋃

n=1

{(p, tn) : tn ∈ Tn, (p, t) ∈ F} ∪ {(tn, p) : tn ∈ Tn, (t, p) ∈ F}}

)
∪{(p, t) : p ∈ P , (t, p) ∈ F} ∪ {(t, p) : p ∈ P , (p, t) ∈ F}

∪

(
k⋃

n=1

{(p, tn) ∈ P × Tn : (t, p) ∈ F} ∪ {(tn, p) ∈ Tn × P : (p, t) ∈ F}

)
∪{(p, t)k, (t, p)k, (p, tk)k, (tk, p)

k : (p, t) ∈ R}

∪

(
k−1⋃
n=1

{(p, tn)k−n, (p, tn)n, (tn, p)
k}

)
M0,str = M0 ∪ {p ∈ P : p /∈M0},

and moreover, Σstr = Σ, ∀t ∈ T , λstr(t) = λ(t), and ∀tn ∈ Tn, λstr(tn) = λ(t).

22

t1 p2

p1

t2

t3n

NKpat
R

t1

np1 k-n

p1

t2

p2

t3n (t3)

t3k

(t3)

t3 (t3)

. . .

. . .

k
k

n

k − n

k

k

k

NKpat
str

Figure 12: Translating reset arcs for bounded nets

Lemma 3. A k-bounded labelled reset Petri net (NR,Σ, λ) and its structural
transformation (NR,str,Σstr, λstr) as defined in Definition 25 are bisimilar.

Proof. (Sketch) The bisimulation relation is ρ ⊆ [NR〉 × [NR,str〉 defined by
(M,Mstruct) ∈ ρ iff ∀p ∈ P, |M |p = |Mstruct|p and ∀p ∈ P such that p ∈ P , we685

have |Mstruct|p + |Mstruct|p = k. We give the sketch of the proof on the pattern

NKpat
R of figure 12 assuming that the net that includes the pattern is k-bounded,

making the pattern also k-bounded. The proof can easily be generalised to any
k-bounded labelled reset Petri nets. Applying the translation to the reset Petri
net NKpat

R on the left gives the Petri net NKpat
str .690

Assume that (M1,M1
struct) ∈ ρ. If |M1|p1

= |M1
struct|p1

= n < k then
|M1

struct|p1
= k − n and the firing of t1 leads respectively to M2 and M2

struct

such that |M2|p1 = |M2
struct|p1 = n + 1 and |M2

struct|p1 = k − (n + 1) and
(M2,M2

struct) ∈ ρ. If |M1|p1 = |M1
struct|p1 = n > 0 then M1

struct(p1) = k − n
and the firing of t2 leads respectively to M3 and M3

struct such that |M3|p1
=695

|M3
struct|p1

= n− 1 and |M3
struct|p1

= k − (n− 1) and (M3,M3
struct) ∈ ρ.

Now assume |M1|p2
= |M1

struct|p2
≥ 1 and |M1|p1

= |M1
struct|p1

= n then
M1

struct(p1) = k − n. The transition t3 is fireable in the initial net and, in
the translated net, the only fireable transition ti (with i ∈ {0 . . . n}), such
that λstruct(ti) = t3 is tn. The firing of t3 (resp. tn) leads to M4 (resp.700

M4
struct) such that |M4|p1

= |M4
struct|p1

= 0 and |M4
struct|p1

= k. Moreover
|M4|p2

= |M4
struct|p2

= |M1|p2
− 1 then (M4,M4

struct) ∈ ρ

6.3.2. Finite complete prefixes of Bounded reset Petri nets

As the notion of unfolding, the notion of finite complete prefix naturally
extends to bounded Petri nets. Using the same notations as for safe nets, our705

finite complete prefix construction can be extended to bounded reset Petri nets
as follows. We consider k-bounded reset Petri nets whose underlying Petri
nets are also k-bounded. This assumption can be lifted by using an on the fly

23

construction (merging step 3 and 4 of Algorithm 2) that will not be discussed
in this paper.710

Algorithm 2: Finite complete prefix for bounded reset Petri nets

Data: a k-bounded reset Petri net N k
R

Result: the finite complete prefix Fk
R for N k

R

Step 1: compute the structural transformation N k
R,str of N k

R

(according to Definition 25)
Step 2: compute a finite complete prefix Fk

str of the unfolding Uk
str of

N k
R,str

Step 3: compute a finite prefix Fk of Uk that simulates Fk
str

Step 4: compute Fk
R by adding reset arcs to Fk

The following proposition establishes the computability and the complete-
ness of Fk

R. The finiteness is granted by step 3 of the above algorithm.

Proposition 7. The object Fk
R can be computed by the Algorithm 2 from a

k-bounded reset Petri net N k
R and is a complete prefix of the unfolding of N k

R.715

Proof. We first show that Fk
R is computable. The feasability of step 1 is granted

by the definition of the structural transformation. Then, one can notice that,
if a net is k-bounded, its transformation is bounded as well, so it exists at least
one finite complete prefix of its unfolding (which is computable by standard
techniques), thus step 2 is feasible as well. In step 3 we only require a simulation720

(not a bisimulation) which makes it straightforward to build Fk simply by a
standard unfolding procedure that would stop as soon as a part of Uk that does
not simulates Fk

str is reached (recall that Uk simulates Uk
str). Finally step 4

simply constists in the addition of a finite number of reset arcs (because Fk is
finite). This grants the computability of Fk

R.725

The completeness of Fk
R is directly obtained from the completeness of Fk

str

and the fact that Fk
R simulates Fk

str.

7. Conclusion

Our contribution in this paper is four-fold. First, we have proposed a notion730

of pomset bisimulation for reset Petri nets. This notion is, in particular, in-
spired from a similar notion that has been defined for Petri nets (without reset
arcs) in [19]: it extends this notion, in the sens that, for Petri nets without reset
arcs our notion of pomset bisimulation corresponds to the one of [19]. Second,
we have shown that it is not possible to remove reset arcs from safe reset Petri735

nets while preserving their behaviours with respect to this pomset bisimula-
tion. Third, we proposed a notion of finite complete prefixes of unfolding of safe
reset Petri nets that allows for reachability analysis while preserving pomset

24

behaviour. As a consequence of the two other contributions, these finite com-
plete prefixes do have reset arcs. Last, we have extended the previous results740

to unsafe reset Petri nets.

References

[1] P. Baldan, A. Corradini, U. Montanari, Contextual Petri nets, asymmet-
ric event structures and processes, Information and Computation 171 (1)
(2001) 1–49.745

[2] U. Montanari, F. Rossi, Contextual nets, Acta Inf. 32 (6) (1995) 545–596.

[3] Y. Chen, Z. Li, K. Barkaoui, N. Wu, M. Zhou, Compact supervisory con-
trol of discrete event systems by petri nets with data inhibitor arcs, IEEE
Transactions on Systems, Man, and Cybernetics: Systems 47 (2016) 1–16.

[4] T. Araki, T. Kasami, Some undecidable problems for Petri nets, Systems,750

Computers, Controls 7 (1) (1976) 20–28.

[5] P. Godefroid, Partial-Order Methods for the Verification of Concurrent Sys-
tems - An Approach to the State-Explosion Problem, Vol. 1032 of Lecture
Notes in Computer Science, Springer, 1996.

[6] J. Esparza, K. Heljanko, Unfoldings – A Partial-Order Approach to Model755

Checking, Springer, 2008.

[7] J. Esparza, S. Römer, W. Vogler, An improvement of McMillan’s unfolding
algorithm, Formal Methods in System Design 20 (3) (2002) 285–310.

[8] K. L. McMillan, Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits, in: CAV, 1993, pp. 164–177.760

[9] S. Hickmott, J. Rintanen, S. Thiébaux, L. White, Planning via Petri net
unfolding, in: IJCAI, 2007, pp. 1904–1911.

[10] A. Benveniste, E. Fabre, S. Haar, C. Jard, Diagnosis of asynchronous
discrete-event systems: a net unfolding approach, IEEE TAC 48 (5) (2003)
714–727.765

[11] M. Wang, G. Liu, P. Zhao, C. Yan, C. Jiang, Behavior consistency computa-
tion for workflow nets with unknown correspondence, IEEE/CAA Journal
of Automatica Sinica 5 (1) (2018) 281–291.

[12] M. Nielsen, G. D. Plotkin, G. Winskel, Petri nets, event structures and
domains, part I, Theoretical Computer Science 13 (1981) 85–108.770

[13] U. Goltz, W. Reisig, The non-sequential behavior of Petri nets, Information
and Control 57 (2/3) (1983) 125–147.

[14] E. Best, R. Devillers, Sequential and concurrent behaviour in Petri net
theory, Theor. Comput. Sci. 55 (1) (1987) 87–136.

25

[15] P. Baldan, A. Corradini, U. Montanari, Contextual Petri nets, asymmet-775

ric event structures, and processes, Information and Computation 171 (1)
(2001) 1–49.

[16] N. Busi, G. M. Pinna, Non sequential semantics for contextual P/T nets,
in: Application and Theory of Petri Nets, Vol. 1091 of Lecture Notes in
Computer Science, Springer, 1996, pp. 113–132.780

[17] J. Winkowski, Processes of contextual nets and their characteristics, Fun-
damenta Informaticae 36 (1) (1998).

[18] W. Vogler, Partial order semantics and read arcs, Theoretical Computer
Science 286 (1) (2002) 33–63.

[19] E. Best, R. R. Devillers, A. Kiehn, L. Pomello, Concurrent bisimulations785

in Petri nets, Acta Inf. 28 (3) (1991) 231–264.

[20] R. J. van Glabbeek, U. Goltz, Equivalence notions for concurrent systems
and refinement of actions, in: MFCS, 1989, pp. 237–248.

[21] W. Vogler, Bisimulation and action refinement, Theor. Comput. Sci. 114 (1)
(1993) 173–200.790

[22] R. J. van Glabbeek, F. W. Vaandrager, Petri net models for algebraic
theories of concurrency, in: PARLE, 1987, pp. 224–242.

[23] Best, Eike, In quest of a morphism, Petri Nets Newsletters 18 (1984) 14–18.

[24] Pelz, E., Normalization of place/transition-systems preserves net be-
haviour, RAIRO-Theor. Inf. Appl. 26 (1) (1992) 19–44.795

26

