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Abstract
The presence of background noise and reverberation, especially
in far distance speech utterances diminishes the performance
of speaker recognition systems. This challenge is addressed
on different levels from the signal level in the front end to the
scoring technique adaptation in the back end. In this paper, two
new variants of ResNet-based speaker recognition systems are
proposed that make the speaker embedding more robust against
additive noise and reverberation. The goal of the proposed
systems is to extract x-vectors in noisy environments that are
close to their corresponding x-vector in a clean environment. To
do so, the speaker embedding network minimizes the speaker
classification loss function and the distance between pairs of
noisy and clean x-vectors jointly. The experimental results
obtained by our systems are compared with the baseline ResNet
system. In different situations with real and simulated noises
and reverberation conditions, the modified systems outperform
the baseline ResNet system. The proposed systems are tested
with four evaluation protocols. In the presence of artificial
noise and reverberation, we achieved 19% improvement of
EER. The main advantage of the proposed systems is their
efficiency against real noise and reverberation. In the presence
of real noise and reverberation, we achieved 15% improvement
of EER.
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Reverberation, Robustness

1. Introduction
A speaker recognition (SR) system authenticates the identity of
a claimed user from a speech utterance. The state-of-the-art sys-
tems mainly rely on Deep Neural Networks (DNN) for speaker
modeling. From their emergence until now, numerous DNN
architectures have been introduced in the speaker recognition
realm in which TDNN [1] and ResNet [2] systems are among
the well-known and efficient systems. Although DNN-based
SR systems have shown a degree of robustness in the presence
of background noise and reverberation, their performance re-
duces in severe conditions [3].

The problem of noise and reverberation is addressed at dif-
ferent levels of speaker recognition systems, including signal
level [4], feature level [5], speaker modeling level [6], x-vector
level [7] and scoring technique adaptation [8]. Data augmen-

tation is another approach to making the speaker recognition
systems robust against noise. Researches show that data aug-
mentation brings a degree of robustness to the speaker recogni-
tion system [1, 3], but still, their performance degrades in noisy
environments because there is no constraint on the speaker em-
bedding system to extract identical or close x-vectors for pairs
of noisy-clean version of the same signal.

Noise compensation in x-vector level, the estimation of
clean x-vector from its corresponding noisy version, by doing a
transformation between pairs of noisy/clean x-vectors is another
approach that performed well in the compensation of artificial
noise and reverberation [9, 3]. Although this approach performs
well in some cases [7], it doesn’t bring a significant improve-
ment with all speaker embedding systems [10] and in all en-
vironments. The behavior of different speaker embedding sys-
tems is different because they just consider the speaker classifi-
cation accuracy (inter-speaker and intra-speaker distance) dur-
ing optimization and they don’t put an explicit constraint on
the noise impact. This characteristic makes noise compensation
more difficult in some speaker embedding systems. To over-
come this challenge, in the current paper, we propose two train-
ing strategies of ResNet-based speaker recognition systems that
impose on the speaker embedding to extract x-vector for noisy
signals that are close to their corresponding version in the clean
environment.

In the first approach, the objective is to optimize the speaker
embedding in a manner that converges toward the same point
for the pairs of noisy/clean samples. In this system, two loss
functions are used. The cross-entropy loss function is mini-
mized for speaker classification and at the embedding layer, the
mean square error (MSE) between noisy and clean x-vectors is
optimized. Although the system improves for noise and rever-
beration, its performance is lower than the baseline system for
clean environments.

To solve this problem, we propose a second system. In
the second system firstly an optimal x-vector extractor for the
clean environment is trained. After that, another speaker em-
bedding is trained that jointly reduces the cross-entropy of the
speaker classifier and mean square error (MSE) between the
output of the embedding layer and an optimal clean x-vector
extracted with the pretrained system. Since it is imposed on the
output of the embedding layer to converge toward an optimum
clean space, the performance of the speaker embedding is pre-
served for clean environments. Our proposed approaches, in all



cases with different types of simulated and real noises, outper-
forms the baseline ResNet system. For the sake of readability
in the next parts of the paper, we call the first proposed system
ResNet-MSE1 and the second system named ResNet-MSE2.

The rest of the paper is organized as: the related works are
reviewed in section 2, in section 3 the architecture of the pro-
posed systems is described, the experiment’s setup is described
in section 4, the results are discussed in section 5.

2. Related works
Noise and reverberation are treated in the different parts of
speaker recognition systems. Here we just review works in the
speaker modeling level (x-vector extractor) and speaker embed-
ding level (x-vector), which are directly related to our work.

In several works, the researchers tried to make the speaker
embeddings robust to noise and reverberation. In [11] a do-
main adaptation technique is proposed that uses mean discrep-
ancy distance (MMD) as a regularizer with speaker embedding
that performs the adaptation between source and target domain.
In this paper the proposed method is tested on language adap-
tation and its efficiency for noise and reverberation adaptation
is not examined. In [12] an adversarial strategy was proposed
to make the speaker embedding more robust against noise. In
the standard x-vector extractors, after the embedding layer, a
DNN speaker classifier is optimized. In this work, a second
classifier is trained adversarially that accepts the type of noise
in the output. In another work, a GAN-based speaker embed-
ding was proposed that uses a binary discriminator to discrimi-
nate the noisiness of the x-vector alongside the speaker recogni-
tion classifier [13]. The main deficiency of adversarial speaker
embedding systems is the labels that should be used in the dis-
criminator. Another important point is that the training of the
network in a manner that can not be able to discriminate the
type of noise or the noisiness of an x-vector doesn’t guarantee
that noisy x-vectors are close enough to their clean version.

Some works are done at the x-vector level to reduce the im-
pact of noise and reverberation in SR systems. In [9] several
denoising autoencoders (DAE) are proposed to remove the im-
pact of additive noise from x-vectors. In [3] the impact of data
augmentation alongside noise compensation is explored. De-
spite having good results for simulated noises this work doesn’t
include real noise and reverberation. In another work two con-
figurations are proposed to denoise different kinds of distortions
such as noise, early reverberation, and late reverberation [7]. In
this paper also the capability of doing noise compensation is not
explored in real environments. Also, in all of them, denoising is
done with TDNN-based speaker embedding. In another work,
it is shown that noise compensation doesn’t bring a significant
gain with x-vectors extracted from ResNet SR systems [2].

In the current paper, we introduce two training strategies
that impose on the speaker embedding network to extract x-
vectors for a noisy/reverberated signal that is close to its the
corresponding clean version.

3. Proposed system
In this section, the architecture of the baseline ResNet system
and the proposed variants are described.

3.1. Baseline system

The baseline embedding extractor used in this paper is a variant
based on ResNet [14]. The ResNet model for extracting em-

Table 1: The baseline ResNet-34 architecture.
Layer name Structure Output
Input – 60 × 400 × 1
Conv2D-1 3 × 3, Stride 1 60 × 400 × 32

ResNetBlock-1
[
3× 3, 32
3× 3, 32

]
× 3 , Stride 1 60× 400× 32

ResNetBlock-2
[
3× 3, 64
3× 3, 64

]
× 4, Stride 2 30× 200× 64

ResNetBlock-3
[
3× 3, 128
3× 3, 128

]
× 6, Stride 2 15×100×128

ResNetBlock-4
[
3× 3, 256
3× 3, 256

]
× 3, Stride 2 8× 50× 256

Pooling – 8× 256
Flatten – 2048
Dense1 – 256
Dense2 (Softmax) – N
Total – –

beddings consists of three modules: a set of ResNet Blocks, a
statistics-level layer, and segment-level representation layers.

• ResNet (Residual Network) uses stacks of many Resid-
ual Blocks. A Residual Block is made up of two 2-
dimensional convolutional Neural Networks (CNN) lay-
ers separated by a non-linearity (ReLU). The input of the
Residual Block is added to its output in order to consti-
tute the input of the next Residual Block.

• The statistics-level component is an essential component
to convert a variable-length speech signal into a single
fixed-dimensional vector. The statistics level is com-
posed of one layer: the statistics-pooling, which aggre-
gates over frame-level output vectors of the DNN and
computes their mean and standard deviation.

• The segment-level component maps the segment-level
vector to speaker identities. The mean and standard devi-
ation are concatenated together and forward to additional
hidden layers and finally to the softmax output layer.

The detailed topology of the used ResNet is shown in Ta-
ble 1. Batch-norm and ReLU layers are not shown. The di-
mensions are (Frequency×Channels×Time). The input is com-
prised of 60 filter banks from speech segments. During training,
we use a fixed segment length of 400. The speaker ResNet sys-
tem is trained with Cross Entropy loss function (Eq. 1):

LCrossEntropy = −
N∑

c=1

yo,c log(po,c) (1)

where N is the number of speakers, o is a speech signal, yo,c
is the truth label of o, and po,c is the output of the softmax
activation function.

3.2. ResNet-MSE1

In this subsection, the first proposed system is described (Fig.
1). In the proposed system a noisy signal and its corresponding
clean version are given to the network. At the embedding layer
the mean square error (MSE) between the noisy and clean x-
vectors is calculated at each minibatch (Eq. 2):

LMSE =

B∑
i=1

D∑
j=1

(yj − xj)
2 (2)



Figure 1: Optimize the network in noisy and clean environment
towards the same space.

Figure 2: Train the network towards an ideal clean environment

where B is the size of minibacth, D is the size of x-vector, xj is
the jth dimension of clean x-vector and yj is jth dimension of
noisy x-vector.

Both versions of the signal (i.e. clean and noisy) are given
to the classifier. In this system a combination of cross-entropy
and mean square error is used as the loss function (Eq. 3):

LResNet−MSE = LCrossEntropy + LMSE (3)

During the training process, the speaker embedding con-
verges toward an intermediate space between clean and noisy
environments. Minimizing the MSE distance between noisy
and clean x-vectors improves the performance in noisy environ-
ments while the performance in clean environments becomes a
little worse because the clean samples move toward the noisy
sample. This attribute is shown in Figure 3a. In the second
proposed system, we resolve this problem.

3.3. ResNet-MSE2

In the second proposed system, the performance degradation in
the clean environment is resolved. To do that, we used an as-

Figure 3: a) MSE reduction in ResNet-MSE1 (left) b) MSE re-
duction in ResNet-MSE2 (right)

sistance pretrained network which is the same as the baseline
system. Firstly a speaker embedding network with a mixture of
clean and noisy data is trained. We used both noisy and clean
data to train this network because the previous research shows
using more data and data argumentation improves the perfor-
mance of speaker recognition systems for both clean and noisy
environments [3]. The pretrained network is used to extract x-
vectors for the clean version of the training dataset. We assume
these vectors as the best version we can achieve. After that,
another network is used to shift the noisy version of x-vectors
towards the clean version extracted in the previous step. In this
step, the system is trained from scratch with samples containing
noisy and clean signals. At the speaker embedding layer, the
MSE between the fixed clean version and a given training sam-
ple (for both clean and noisy signals) is calculated. Both clean
and noisy versions are given to the classifier and the weights
are updated with all samples. This procedure is depicted in Fig-
ure 2. The steps of convergence towards the clean x-vector are
shown in Figure 3b.

4. Experiments setup
4.1. Dataset

In this subsection, all the corpora used in our paper are de-
scribed.

• Voxceleb. In our experiments we used Voxceleb 2 [15]
for training x-vector extractors. There are 1.2m samples
from 5,994 speakers. The clean version is augmented
with Musan corpus. The final version of training data
included 5.9m samples.

• Musan. Musan is music, speech, and noise corpus com-
prising 109 hours of speech data. This corpus is used for
data augmentation to training x-vector extractors [16].

• Freesound. This corpus included 3,000 RIR files and
4,275 noise files collected from Freesound noises. This
corpus is used as artificial noise for evaluation protocols
[17].

• BBC Noise. BBC Noise includes 16000 noise files, pro-
vided by BBC, these noises are used as artificial noise
for an evaluation protocol 1.

• Fabiole. Fabiole 1 is a French corpus that contains 7,000
files from 130 speakers [18]. We created two protocols
from this dataset.

• Robovox. It is a French corpus collected from the
Robovox project (A mobile robot). Each recording in
this corpus has 5 channels. The fifth channel is a close
microphone which we considered it as clean and the third
channel is the farthest channel that we consider as noisy
and reverberated2.

1http://bbcsfx.acropolis.org.uk
2https://robovox.univ-avignon.fr/



• Voices. Voices are replayed speech recorded from Lib-
rispeech under different types of noises and in four dif-
ferent rooms. We created a protocol from Voices under
the presence of noise in a room with high reverberation
[19].

4.2. x-vector extractors

All x-vector extractors are trained with Voxcleeb in 10,000 iter-
ations. The learning rate at the beginning of the training is set
to 0.2 and weight decay equals to 2 ∗ 10−4. The momentum
is set to 0.9. In all experiments, the stochastic gradient descent
optimizer is used. The size of the feature maps is 32, 64, 128,
and 256 for the 4 ResNet blocks.

• Baseline. In the baseline system, the training samples
are chosen randomly from clean Voxceleb. The training
data includes all clean files of Voxceleb and their aug-
mented version with MUSAN Corpus and reverberated
with a pool of RIR files 3. Kaldi toolkit is used for data
augmentation [20]. The batch size is set to 128.

• ResNet-MSE1. In this system, a clean file from Vocx-
celeb was chosen randomly. After that its augmented
version was chosen. Because we have two versions of
each file at each minibatch, we reduced the size of each
minibatch to 64.

• ResNet-MSE2. In this system at each minibatch, an x-
vector extracted from the baseline system was chosen.
At the same time, the clean or noisy signals of the chosen
files are selected. The modified system tries to reduce
the distance between the clean x-vector and the x-vector
extracted from the given signal.

4.3. Test protocols

• Fabiole1. In the first protocol, the Fabiole corpus is
used. In this protocol 130 files (one file per speaker) are
used as enrollment and 1,870 randomly chosen files are
used for the test. In this protocol, the BBC noise files
are added to the clean signal with different SNRs. In this
protocol, the Kaldi toolkit is used to add noises to clean
files.

• Fabiole2. The test and enrollment files in this protocol
are the same as the previous one. But in this protocol, we
used Freesound noises. We used Pyacoustics4 for data
simulation

• Robovox. In this protocol 26 files, one file per speaker,
are used as the enrollment and 677 files are used as the
test. The enrollment files are chosen from a close micro-
phone with high quality but the test files are chosen from
a far microphone between 1 and 3 meters.

• VoiCes. In this protocol 300 files, one file per speaker,
are used as enrollment and 300 files are used as the test.
The enrollment files adopted from the Librispeech (the
clean version of Voices) and the test files are the replayed
files in VoiCes recorded in room 4 in the presence of
severe music noise and reverberation. We used mic 5,
which is the farthest microphone in Voices.

The details of all protocols are summarized in Table 2.

3http://www.openslr.org/resources/28/rirs noises.zip
4https://github.com/timmahrt/pyAcoustics

Table 2: Test protocols.

Protocols Test Enroll Trials
Fabiole1 1870 130 243k
Fabiole2 1870 130 243k
Robovox 677 26 17k
Voices 300 300 90k

5. Results and discussion
In this section, the obtained results are discussed. Our results
show that in all cases our proposed systems are more robust
in noisy environments. However, the performance of the first
proposed system reduces in clean environments in comparison
to the baseline system, the performance of the second system
for clean environments remains stable.

In Table 3 the results for Fabiole1 protocol are presented.
As it is shown, the modified systems improve significantly in
comparison to the baseline system. The first column shows
the results for clean environments and the other columns in-
clude the results with different SNRs. For example, when SNR
is between 0 and 5 the EER with the second proposed system
(ResNet-MSE2) improves 15% compared to the baseline sys-
tem. In the case of SNR between 10 and 15, the ResNet-MSE2
improves 20% in terms of EER.

Table 3: Fabiole 1 protocol(EER).

System Clean Noisy 0-5 Noisy 5-10 Noisy 10-15
Baseline 5.20 7.96 7.43 7.00

ResNet-MSE1 5.40 7.43 6.79 6.09
ResNet-MSE2 5.19 6.79 5.98 5.66

In the Fabiole2 protocol, we showed the generalizability of
the proposed systems to other noises and RIR simulators. In this
protocol, the same test and enrollment files as Fabiole1 proto-
col are used. But the Freesound noises dataset and Pyacoustics
library are used for data simulation. The test and enrollment
files are preserved as the previous protocol to show the robust-
ness of the proposed systems against the impact of other noises
and reverberations. Table 4 shows that in all cases the proposed
systems reduce the impact of noise and reverberation. It de-
served to be mentioned that in this protocol the results for the
clean situation are worse in comparison to the Fabiole1 proto-
col because test files are truncated to 15 seconds for both clean
and noisy situations. For the SNR between 0 and 5, the EER
improves 14% with the RsNet-MSE2 system.

Table 4: Fabiole 2 protocol(EER).

System Clean Noisy 0-5
Baseline 7.11 12.19

ResNet-MSE1 7.30 11.18
ResNet-MSE2 6.95 10.46

In order to extend the capability of the proposed systems
to real environments, the experiments are done on the Robovox
dataset in Table 5. The first column shows the results with the
best channel with a close microphone. As it is shown in Fabiole
protocol the ResNet-MSE1 system is worse in the clean envi-
ronment in comparison to the baseline system and the results



for the ResNet-MSE2 system are the same as the baseline sys-
tem. In the third column, the results are shown for the far micro-
phone in the presence of noise and reverberation. Both adapted
systems give better results in comparison to the baseline sys-
tem. The last column shows the results with simulated noise in
the Robovox protocol. In this experiment, the clean data from
channel 3 is augmented with Freesound noises and Pyacosutics
with SNR between 0 and 5. In this experiment the behavior
of the proposed systems is the same. For real noise the rela-
tive improvement with the ResNet-MSE2 system is 16% and
for simulated noise the gain is 10%.

Table 5: Robovox protocol (EER).

System Ch5 Ch3 Noisy 0-5
Baseline 2.21 4.38 6.59

ResNet-MSE1 2.36 4.10 6.05
ResNet-MSE2 2.21 3.69 5.90

Finally, the systems are tested with a protocol created from
the VoiCes dataset. The results are shown in Table 6. The ex-
periments show that with the ResNet-MSE2 system there is 5%
improvement of EER.

Table 6: Voices protocol(EER).

System Clean Room 4 music
Baseline 0.66 6.33

ResNet-MSE1 0.66 6.33
ResNet-MSE2 0.66 6.00

The results obtained from ResNet-MSE1 in a clean environ-
ment show that reducing the distance between noisy and clean
environments without fixing the clean point makes the system
worse in clean environments because it converges to a space
between the noisy and clean space. To solve this problem, we
fixed the clean x-vector in the second proposed system. Also,
the results show that the second system is superior in noisy en-
vironments because during the process of reducing the distance
between noisy and clean x-vectors the noisy x-vector moves
closer toward the clean point to minimize the MSE.

The MSE between noisy and clean x-vectors is shown in
Table 7. The big distance between noisy and clean x-vectors
of the same signal in the Baseline system shows that despite
having high accuracy in speaker classification, a noisy x-vector
of the same signal can be far from its clean version because
the speaker classification’s loss function doesn’t impose on the
system to have close or identical representations for the noisy
and clean version of a specific signal. The presented results
show that imposing on the speaker embedding system to extract
close x-vectors for noisy and clean x-vectors makes the system
more robust against noise and reverberation.

Table 7: MSE distance between pairs of noisy-clean x-vectors.

System Fabiole1 Fabiole2 Robovox VoiCes
Baseline 2.85 7.14 4.05 10.23

ResNet-MSE1 0.06 0.015 0.09 0.02
ResNet-MSE2 0.66 1.71 1.01 2.67

6. Conclusion
In this paper, we proposed two strategies to train ResNet-based
speaker embeddings in order to make the speaker recognition
systems more robust against additive noise and reverberation.
In the first system, the network is updated to reduce the distance
between pairs of noisy/clean x-vectors in the embedding layer.
In the second system, an optimal clean point is fixed and at each
iteration, the noisy and clean x-vectors given by the signal in the
input are shifted toward the optimal point. Training x-vector ex-
tractors with the proposed strategies make the speaker embed-
dings more robust against additive noise and reverberation. The
future potential work would be exploring other loss functions to
reduce the difference between noisy and clean x-vectors and/or
exploring different data augmentation techniques with proposed
approaches to make the system more robust in a specific situa-
tion.
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