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Abstract –We investigate theoretically and numerically the diffusion-limited evaporation of a
liquid deposited on a fiber in two configurations: a sleeve and a axisymmetric barrel-shaped
droplet. For a sleeve, the local flux depends on both the aspect ratio and the smallest length of
the problem. By using analytical calculations and 3D finite elements simulations, we predict a
divergence of this flux further localized at the edge as the aspect ratio increases. The evaporation
of axisymmetric drops on a fiber is studied with numerical simulations. For sufficiently large
volumes, we evidence that the evaporation rate is almost independent of the wetting properties of
the liquid, even for small contact angles, and that the droplets evaporate as spheres of the same
volume.

Introduction. – The coating of liquid on a solid is a
common operation in everyday life as well as in industrial
processes (e.g. lubrication, painting). The first theoretical
description of the deposited layer has been made almost
simultaneously by Landau and Levich [1] and Derjaguin
[2]. The coated thickness h is found to be proportional
to the radius a of the fiber and depends in particular of
the entrainment velocity V , the liquid surface tension γ
and the fluid viscosity η through the so-called capillary
number Ca = ηV/γ, which compares the velocity to a fluid
intrinsic velocity. Thus, the thickness h can be written as
h = a f(Ca), where f is a function which can be simplified
under certain conditions on the capillary ranges. Coating
of complex fluids also received some attention, such as
non-Newtonian fluids or water-surfactant solutions [3, 4].

Due to the fiber curvature, the liquid film is unstable;
a mechanism that was first characterized by Plateau [5]
and rationalized by Lord Rayleigh in the 19th century [6].
The liquid surface tension leads to the minimization of
its surface area by breaking the film into a series of regu-
larly spaced droplets. The characteristic growing time of
the Rayleigh-Plateau instability τ = 12ηa4/(γh3) depends
significantly on the coating thickness. For non-Newtonian
fluids, or for colloidal suspensions, the Rayleigh-Plateau
instability can be delayed or suppressed [7–9].

Carroll [10] described the shape of axisymmetric drops
on a fiber, which depends on the wetting properties of
the material and the droplet volume with respect to the
fiber size. Based on Carroll’s results, the drop height and
the length of the wetted area can be used to characterize
the wettability of the liquid on the fiber [11–14]. Beyond

the axisymmetric shape, the equilibrium conformation of a
drop on a fiber can also be a clam-shell: a drop sitting on a
curved surface. Experimental observations have evidenced
that both barrel and clam-shell conformations can coexist
and Chou et al. studied in detail the phase diagrams of
droplet-on-fiber with or without gravity [15].

The aim of the paper is to describe the different evapo-
ration regimes of the fiber coatings when the evaporation
is dominated by the diffusion of water in the atmosphere.
Despite the fact that this is a model system with many
industrial applications, there is a lack of theoretical ratio-
nalization on this subject.

In 1918, Langmuir [16] explained for the first time that
the total diffusive evaporation flux over a spherical droplet
of size R is not proportional to R2, which means that, due
to the curvature of the surface of the droplet, the evapo-
ration flux is not proportional to the surface of the drop.
The case of a sessile drop evaporation (see [17, 18] for a
review) is more complex because of the diverging evap-
orative flux at the triple line [19–21] and several studies
have been devoted to the nature of the substrate. For
instance, the case of a drop on a tilted surface [22], on
crossed fibers [23], on superhydrophobic surfaces [24] or
with complex wetting patterns [25] can be cited. The sit-
uation of a droplet on a curved surface such as a convex
or concave surface [26, 27] has been studied as well, the
latter corresponding to a clam-shell on a fiber.

In this paper, we discuss the two limit cases of the dif-
fusive evaporation of a liquid deposited on a fiber. In a
first part, we study the evaporation of a liquid cylinder
deposited on a fiber that we call the sleeve configuration.
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This configuration corresponds to a deposited layer ob-
served at a time much smaller than the Rayleigh-Plateau
characteristic time or when the instability is inhibited. To
do so, we will develop an analytical model to calculate the
evaporation, valid for small and large aspect ratios. These
predictions are supplemented by a full 3D numerical simu-
lation using finite element method. In the second part, we
study the evaporation of a droplet on a fiber which corre-
sponds to destabilized coating on a fiber. More precisely,
we restricted the study to the axisymmetric barrel situa-
tion which is the common case, in particular for small con-
tact angles of the liquid on the fiber. We first numerically
calculate the shape of a droplet around a fiber using Sur-
face Evolver [28], a surface minimization algorithm, whose
results can be compared to the prediction by Carroll [10]
and Chou et al. [15] in absence of gravity. By using finite
element computations, we calculate the evaporation flux
around the droplet, and show that except for very small
liquid volume, the evaporation rate of the droplets is not
significantly affected by the presence of the fiber, whatever
the liquid contact angle is.

Sleeve. – We consider a sleeve of liquid of length 2L
and of radius a as depicted in figure 1(a), such that the
liquid cylinder has the same radius as the fiber. A natural
geometrical parameter is λ = L/a.

Fig. 1: (a) Notations used to describe a sleeve of length 2L
on a fiber of radius a. The dimensionless length is defined as
λ = L/a. Boundary conditions used to solve equation 1 as well
as the coordinate system are also represented schematically.
Vapor concentration field for (b) λ = 5 · 10−3 and (c) λ = 500,
obtained from COMSOL for sleeves of radius a = 125 µm.

We assume that the liquid evaporation occurs in a
diffusion-limited process in the stationary regime. Thus,
the concentration field c in the gas phase is the solution of
the Laplace equation △c = 0, which reads in cylindrical
coordinates

1

r

∂

∂r

(
r
∂c

∂r

)
+

∂2c

∂z2
= 0. (1)

In this geometry, the boundary conditions are (a) a satu-

rated vapor concentration csat in the vicinity of the inter-
face, i.e. c(r = a, z) = csat for |z| < L, (b) the absence of
evaporative flux at the surface of the fiber, i.e. ∂c

∂r

∣∣
r=a

= 0
for |z| > L, and (c) a constant concentration far from the
liquid, lim

r→∞
c = c∞.

We provide in Supplementary Materials the derivation
of analytical solutions to equation 1 in the limits of small
and large aspect ratios λ. The difficulty associated with
this linear boundary-value problem (BVP) resides in the
discontinuity of the boundary conditions (BC) at the in-
ner boundary r = a. More precisely, two different types of
BCs, namely a Dirichlet-type BC and a Neumann-type BC
are applied on disjoint complementary subdomains of the
cylindrical surface located at r = a. This difficulty pre-
vents the use of the classical Fourier-Hankel analysis of the
problem and, instead, the BVP is reduced to a set of dual
integral equations. Following the theory of Sneddon [29],
these coupled integral equations are then reduced to a sin-
gle integral equation with a weak, logarithmic singularity
that is solved analytically in the asymptotic cases λ ≪ 1
and λ ≫ 1. From the resulting concentration field c(r, z),
we can compute the local evaporative flux j(z) defined as
j(z) = −D ∂c

∂r

∣∣
r=a

, where D is the diffusion coefficient of
the vapor in the gas phase.

We also propose to solve equation 1 by using finite el-
ement method implemented in the proprietary software
COMSOL multiphysics using Transport of Dilute Species
physics in axisymmetric 2D geometry. To compute ac-
curately j(z) while keeping the computational time rea-
sonable, we divide the atmosphere in three concentric do-
mains centered on the liquid. The maximum mesh size
in these domains is chosen according to the variations
of concentration: the area near the three-phase contact
is meshed with more refinement to capture properly the
divergence of the concentration gradient at the contact
line, and as the distance to the fiber increases, the maxi-
mum mesh size allowance is increased. The size of the box
describing the atmosphere is at least one hundred times
larger than the largest of the lengths of the system in or-
der to be considered as infinite with respect to the above
boundary conditions. With this approach, the computa-
tional time is reduced to few hours for the largest aspect
ratios. The numerical computations are performed for a
vapor saturating concentration csat = 1.8 · 10−2 kg/m3, a
vapor concentration far from the liquid c∞ = 0 and a dif-
fusion coefficient of vapor in air D = 2.36 ·10−5 m2/s [30].
These values are chosen to be those of water evaporat-
ing at 20 ◦C and zero relative humidity RH = c∞/csat.
The evaporative flux being proportional to Dcsat(1−RH),
these results can be easily generalized for any value of RH,
D and csat. Sleeves of different aspect ratios are generated
by changing independently the length and the radius.
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Results. In the limit λ ≪ 1, we obtained analytically
the local evaporative flux

jsmall(z) = jsmall
0

(
1− z2

L2

)−1/2

, (2)

where jsmall
0 is the local flux at z = 0 defined as

jsmall
0 =

D(csat − c∞)

L(1− 2γe − ln
(
λ
4

)
)
, (3)

with γe ≈ 0.577, the Euler gamma constant.
Because the geometry is not reduced to a single length-

scale, equation 3 indicates that the flux depends both on
the sleeve length L and the aspect ratio λ, which is found
numerically as shown in the Figure 2a. We find a good
agreement between the numerical results and equation 3.

Equation 2 indicates that the flux diverges at the edge
between the liquid and the solid. This behavior is con-
firmed numerically as observed in the Figure 2b where
numerical results obtained for various λ are compared to
the analytical prediction of equation 2 represented in solid
black line. This divergence is also obtained for sessile
droplets, which indeed exhibit the same diverging expres-
sion in the limit θ → 0 [21].

We also solve analytically equation 1 for infinitely long
sleeves i.e. λ → ∞. Under this hypothesis, the system is
invariant by translation along the fiber axis such that the
local flux is uniform. We can write

jlarge0 =
D(csat − c∞)π

2a
(
2− 2γe + ln 2 + π

2 lnλ
) . (4)

We extend this result to large but finite aspect ratios by
arguing that the local evaporative flux remains mostly uni-
form, such that jlarge(z) ≃ jlarge0 .

Again, we observe a good agreement between numerical
and analytical results for the local flux at the center of the
sleeve j0 as shown in Fig. 2a. As for small λ, because of the
cylindrical geometry, numerical results (Fig. 2a) and equa-
tion 4 indicate that the flux depends on both the sleeve
radius a and the aspect ratio λ.

For λ > 1, Figure 2b shows that the increase of λ leads
to a localization of the divergence at the contact line. For
the largest tested aspect ratios, the flux per unit surface is
nearly constant along the sleeve except close to the contact
line. However, as shown in the inset of Figure 2b, we still
find close to the contact line the classical minus one-half
power-law divergence even for large aspect ratio. Indeed,
mathematically, this divergence with a power −1/2 is the
only one that is solution of equation 1 to describe the
divergence of the local flux at the contact line. For λ =
5 ·103, numerical uncertainties prevent us from concluding
on the expression of the divergence, but we expect that the
classical square root law holds.

The total evaporative flux is defined as Q =
∫
j(z) dS

where the integral is taken over the liquid-vapor surface

area. In the limit of small aspect ratios, the total flux
writes

Qsmall =
2D(csat − c∞)aπ2

1− 2γe − ln
(
λ
4

) . (5)

In the limit of large aspect ratio, we neglect the con-
tribution of the divergence. Indeed, this divergence is
localized and contributes weakly once integrated to the
total flux [31]. Thus, the total evaporative flux writes
Qlarge = jlarge0 4πaL, which gives

Qlarge =
2D(csat − c∞)λaπ2

2− 2γe + ln 2 + π
2 lnλ

. (6)

As shown in figure 3, where we plot the dimensionless total
flux Q/(2D(csat−c∞)aπ2) as a function of the aspect ratio
λ, we observe an excellent agreement between the numeri-
cal results and the analytical model. The good agreement
between numerical results and theory at large aspect ra-
tio demonstrates the small effect of the edge contribution
to the local flux, which is due to the localization of the
divergence when λ increases. Indeed, the more localized
the divergence, the more constant the local flux j can be
considered and the less effect the variation of j with z has
on the total integrated flux Q.

As a final note, the model described here is valid asymp-
totically for λ ≪ 1 and λ → ∞ but still provides an ex-
cellent description of both the local flux in the center of
the liquid j0 (Fig. 2a) and the total evaporative flux Q
(Fig. 3) for λ ∼ 1.

In the next section, we present the method to perform
the numerical computation of equation 1 with the asso-
ciated boundary conditions for axisymmetric droplets on
fibers. We then discuss these results and compare them
to those obtained for sleeves and spherical drops.

Axisymmetric drop on a fiber. – Due to the curva-
ture of the substrate, a droplet of perfectly wetting liquid
put on a fiber does not necessarily adopt a sleeve morphol-
ogy and a macroscopic axisymmetric drop with a vanish-
ing contact angle can exist [10–15]. This morphology is
called a barrel-shaped droplet and is stable for low con-
tact angle θ and quite large volume with respect to a3.
For small volume and/or large contact angle a droplet on
a fiber adopt a clam-shell morphology. Here, we choose to
focus on barrel shaped droplets. To study the evaporation
of such droplets, we vary independently the drop volume
Ω at constant fiber radius, a = 125 µm, and the contact
angle θ. In contrast to the sessile droplet for which the
system is completely defined by the choice of only two pa-
rameters, Ω, and θ, the equilibrium profile of a drop on a
fiber depends on Ω, θ and a. Once two dimensionless pa-
rameters, say θ and Ω/a3 are chosen, the liquid adopts its
equilibrium shape as represented in figure 4a, where the
profile of the drop is defined by h(z). We denote the height
of the liquid at the apex h0 = h(z = 0) and the wetted
length 2L. We define two dimensionless parameters, the
dimensionless length λ = L/a and the drop aspect ratio
H = h0/L.
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Fig. 2: (a) Local evaporative flux the center of the sleeve aj0 as
a function of the dimensionless sleeve length λ = L/a obtained
from numerical computations for various sleeves lengths L and
three different radii a (see caption). The black solid line cor-
responds to equation 3 and the black dashed line corresponds
to equation 4 both multiplied by a. In the inset, the local flux
at the center of the sleeve j0 is plotted as a function L−1 for
the three sleeves radii mentioned above. (b) Dimensionless flux
density j/j0 as a function of dimensionless position z/L along
the sleeve. The points are obtained from numerical computa-
tion for a = 125 µm and various sleeves lengths. The black
solid line corresponds to equation (2) nondimensionalized by
equation 3. The black dashed line corresponds to j = j0 as
predicted for infinitely long sleeve (Eq. 4). In the inset, the
flux j is plotted as a function of the distance to the contact
line for a = 125 µm and various sleeves lengths. The curves
are arbitrarily shifted for clarity. The color gradient represents
the length L of the sleeve on both graphics.

The barrel shape morphology exists for a limited di-
mensionless parameter space (λ,H), which restricts the
studied range of these parameters. Due to the complexity
of the problem arising from the drop shape, this part of
the study is performed numerically.

In the next section, we present the method to get nu-
merically the drop equilibrium profile and then to solve
equation 1 for this system.

10−3 10−2 10−1 100 101 102 103 104

λ

10−1

100

101

102

Q
2D

(c
sa

t−
c ∞

)a
π

2

Fig. 3: Total dimensionless flux as a function of the dimen-
sionless sleeve length λ = L/a obtained from numerical com-
putations for a = 125 µm. The solid black line corresponds to
equation 5 and the dashed black line to equation 6.

Numerical procedure. In contrast to the numerical res-
olution of the sleeve configuration, our numerical proce-
dure for the drop on fibers is decomposed in two steps.
First, we used Surface Evolver [28], a computer program
that minimizes the energy of a surface subject to con-
straints, to obtain the meshed surface of the drop on a
fiber. The parameters are the dimensionless drop volume
Ω/a3 and the liquid contact angle θ. The convergence
of the minimization process is testified by comparing the
drop height h0 and length L (Fig. 4) with the analytical
predictions made by Carroll [10]. Illustrations of the re-
sulting shapes are presented in figure 4(a-c). The second
step consists in computing the vapor concentration field
with COMSOL multiphysics in a similar manner as for
the sleeves except that the simulations are performed in
3D in order to easily import the profiles obtained with Sur-
face Evolver. With COMSOL, the Surface Evolver meshes
are converted in 2D to keep only the boundary surface. A
3D drop is then reconstructed to ensure the compatibility
with other elements of the geometry and to mesh properly
the contact between the drop and the fiber. The boundary
conditions are the same as for the sleeve, the vapor con-
centration is equal to the saturating vapor concentration
near the interface and is constant far from the droplet
i.e. c(r = h, z) = csat, lim

r→∞
c = c∞. Initial conditions

are c = c∞ for the concentration in the atmosphere and
c = csat inside the drop. There is no vapor flux normal to
the surface of the fiber ∂c

∂r

∣∣
r=a

= 0 for |z| > L (Fig. 4a).
As for the sleeve case, the dimension of the box describing
the atmosphere is taken to be at least one hundred times
larger than the longest lengths of the system to ensure
c = c∞ far from the droplet.

Results. First, we want to understand how the pres-
ence of the fiber influences the evaporation speed. To do
so, we obtained numerically the total evaporative flux Q
of barrel-droplets on fibers of radius a = 125 µm. Numer-
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Fig. 4: Surface Evolver profiles of axisymmetric drops on fiber
of radius a = 125 µm. (a) Drop of volume Ω = 1 µL and
contact angle θ = 10◦. The wetted length is L and the height
of the drop h0 is defined between the surface of the fiber and the
apex of the drop. (b) Drop of volume Ω = 0.01 µL and contact
angle θ = 10◦. (c) Drop of volume Ω = 1 µL and contact
angle θ = 45◦. (d) Vapor concentration field from COMSOL
for profile given in (a) a = 125 µm, Ω = 1 µL, θ = 10◦.

ical simulations are performed for various drop volumes Ω
and contact angles θ. We recall that we limit ourselves to
cases of barrel-shaped droplets, which only exists for drops
of sufficiently large volumes that are placed on hydrophilic
substrates [15].

The results are shown in figure 5a where we plot Q as
a function of Ω1/3 and in figure 5b representing the di-
mensionless evaporative flux as a function of the contact
angle. The total evaporative flux of a spherical drop [16],

Qsphere = (48π2)1/3 D (csat − c∞) Ω1/3, (7)

is also represented in dashed black line for comparison. We
observe that the evaporation rate of a barrel-shaped drop
on a fiber is similar to that of a sphere for all the contact
angles studied except for the smallest volumes tested. This
means that varying the contact angle has a negligible effect
on the evaporative flux except for small volume drops. We
also note that, for small volumes, the deviation from the
sphere is increasing as the contact angle is getting smaller,
the largest variation being observed for the 0.01 µL drop
having a contact angle of 10◦ whose profile is given in
figure 4b. From Fig. 5b, we can quantify the deviation
from the sphere, which varies from a few percent for Ω ≥
0.1L to around 35% for θ = 10◦, Ω = 0.01 µL

We can also note that decreasing contact angle has a
small effect on the drop aspect ratio H except for small
volume drops. This is due to the curvature of the substrate
that allows the existence of a macroscopic drop (H ∼ 1)
even for small contact angles.

To understand these observations in more details,
we consider the local evaporative flux of barrel-shaped
droplets. First, we focus on the effect of the contact angle.
In figure 6a, we plot the local flux j as a function of the
position along the interface z for a droplets of volume 1 µL
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Fig. 5: (a) Total evaporative flux of droplets on fiber as a
function of Ω1/3. (b) Total dimensionless evaporative flux as a
function of contact angle. The points are numerical results for
evaporating drops on fiber for different contact angles. Colors
indicate the variation of the droplet aspect ratio H = h0/L.
The dashed black line is the evaporative flux of a sphere (Eq. 7)
in the same condition as the numerical simulations.

with various contact angle corresponding to aspect ratios
H ≃ 1. This figure shows that the flux j diverges in close
vicinity of the drop contact line. The decrease of the con-
tact angle has a very small effect on the local evaporative
flux and this effect is significant only near the contact line.
We also compare the results obtained for barrel drops for
which λ ∈ [5; 10] with those of the sleeves having the same
dimensionless length. These sleeves have an aspect ratio
λ > 1, which means that the divergence of the local flux
has already the localization effect described in the previ-
ous Section. The comparison between the drops and the
sleeves highlight the effect of the drop profile curvatures.
The longitudinal curvature of the surface is estimated by
H, with H = 1 corresponding to a spherical drop whereas
H = 0 is a sleeve. Fig. 6a demonstrates that, due to the
curvature of the drop surface, the divergence of the evap-
oration flux of a drop on a fiber is even more localized
at the triple line than for the sleeve. We propose a phe-
nomenological equation for the local flux j(z) of drops on
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Fig. 6: Dimensionless evaporative flux per unit surface j/j0 as
a function of 1− (z/L)2. The points are obtained by numerical
simulations for droplets of volume Ω and contact angle θ placed
on a fiber of radius a = 125 µm. The dimensionless wetted
length λ = L/a of the droplets are also given and the results
for sleeves with the same λ are plotted for comparison. The
colors represent the droplet aspect ratio H = h0/L. (a) Results
obtained for Ω = 1 µL and contact angle varying from 10 to
80◦ corresponding to λ ranging from 5 to 8 and aspect ratio
H between 0.5 and 0.8. (b) Results obtained for θ = 10◦ and
droplets volumes varying from 0.01 µL to 1 µL corresponding
to λ ranging from 2 to 8 and aspect ratio H varying from 0.1
for the smallest volume tested to 0.5.

fibers defined as

j(z) = j0

[
β

(
1− z2

L2

)−α

+ (1− β)

]
, (8)

where α and β are positive adjustable parameters. Fig-
ure 4 provided in the Supplementary Materials shows
fitted data for 1 µL drops for different contact angle.
The good agreement between numerical results and fitted
curves shows that, unlike sessile drops, the local evapo-
rative flux of a drop on a fiber cannot be described by a
simple power law. If we compare the local flux of barrel-
shaped droplets to the local flux of a spherical droplet

(Fig 2a-b in Supplementary Materials) we see that the lo-
cal flux at the center of the barrel-shaped droplets is about
1.5 times smaller than the evaporative flux of a sphere.
Thus, barrel-shaped drops are evaporating at the same
speed as spherical droplets because the difference in local
fluxes at the center of the drop compensates the localized
divergence of the local flux of barrel-shaped droplets.

Finally, to understand the difference observed between
the total evaporative flux of a spherical drop and the one
of a small volume wetting barrel-drop on a fiber, we plot in
figure 6 the local evaporative flux as a function of the po-
sition along the interface for drops of small contact angle
θ = 10◦ and different volumes. This difference is signifi-
cant for small volumes and small contact angles, i.e. when
H vanishes. In this case, the geometry is similar to a to
liquid cylinder and we obtain results comparable to those
expected for a sleeve. Nevertheless, the drop, which has
a dimensionless length λ ≈ 2.3 can be well compared to
the sleeve for a greater aspect ratio, λ = 5. We interpret
that although h0 tends to 0, the liquid thickness still has
a significant effect on the evaporative flux.

Conclusion. – In this paper, we studied the curva-
ture effect on the evaporation rate of a liquid deposited on
a fiber when the evaporation is isothermal and purely dif-
fusive. Two particular situations where analyzed: a sleeve
of liquid of size L deposited on fiber of radius a and a
droplet of volume Ω and wetting contact angle θ on the
same fiber. The sleeve is obtained when a liquid fiber is
coated by a liquid layer before the onset of destabilization
of the Rayleigh-Plateau instability. The droplet, and more
particularly the axisymmetric barrel shape that we stud-
ied here, is encountered in the late stage of destabilization
when the liquid coating has been destabilized in a series
of liquid pearls.

For the evaporation of the sleeve we obtained an ana-
lytical calculation of the local evaporation rate along the
sleeves and the full evaporation rate in the case of small
and large aspect ratios. For large aspect ratios, the evapo-
ration rate is almost uniform along the sleeve except near
the edges, where we recover the same power divergence
than the one observed for sessile droplets at low contact
angles. For small aspect ratio, the role of the edges pro-
gressively becomes more and more important, the evapo-
ration rate is varying significantly along the sleeve since
the power law divergence invades all the sleeve. We com-
pared our analytical calculation to finite element computa-
tions and shown that our asymptotic calculations captures
quantitatively the simulations even in the regime where
the aspect ratio is close to one.

For the evaporation of the liquid axisymmetric barrels,
we performed numerical simulations in order to calculate
precisely the effect of the fiber on the evaporation rate.
We have evidenced that, for drops of volume Ω ≥ 0.1 µL
corresponding to dimensionless volume Ω/a3 ≥ 50, the
evaporation rate is almost independent of the wetting con-
tact angle and that the droplet evaporates as a sphere of
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the same volume. More precisely, the evaporation flux di-
verges near the triple line, but due to the barrel shape,
the divergence is strongly localized close to the edges and
the evaporation rate is nearly constant. Indeed the diver-
gence close to the edge compensates fortunately the fact
that the longitudinal curvature of the surface at the apex,
estimated by H, is not equal to the one of a spherical drop.

This study provides precise calculations that capture
the drying dynamics of the two important morphologies
on a fiber under the assumption of an isothermal evapora-
tion process. They both emphasize the localization of the
evaporation divergence close to the triple line, in contrast
to sessile drops. To complete this analysis of the evap-
oration of a liquid coated on a fiber, it is necessary in a
future work to focus more precisely on what happens after
the destabilization of the sleeve into a series of regularly
spaced drops. Indeed, additional studies would be neces-
sary to understand and quantify the mutual influence of
the drops on each other.
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In these materials, we report the details of our calculations of the Laplace equation in Section 1. Then,
we show additional data obtained numerically on the evaporative flux in Section 2.

1 Evaporation of liquid sleeves

In this Section, we solve the diffusion equation of an evaporating liquid sleeve with the boundary conditions
specified in the main article that we recall briefly here.

1.1 Problem

All lengths are normalized by the radius a of the fiber. The dimensionless total length of the sleeve is
denoted 2λ. In physical units, its total length is thus 2λa. We also introduce the rescaled concentration
c̃ = (c− c∞) / (csat − c∞) which now has values in the interval [0, 1]. We thus solve the following boundary
value problem:

△c̃ ≡ 1

r

∂

∂r

(
r
∂c̃

∂r

)
+

∂2c̃

∂z2
= 0 (1)

lim
r→∞

c̃ = 0 (2)

c̃(r = 1, z) = 1 for z < λ (3)
∂c̃

∂r

∣∣∣∣
r=1

= 0, for z > λ. (4)

The difficulty associated with this linear boundary value problem resides in the discontinuity of the
boundary condition at r = 1. More precisely, two different types of boundary conditions, namely a
Dirichlet-type boundary condition (3) and a Neumann-type boundary condition (4) are applied on disjoint
complementary subdomains of the surface defined as r = 1. This difficulty prevents the use of the classical
Fourier-Hankel analysis of the problem and a dual integral approach must be employed.

1.2 Solution - theoretical details

Let us introduce the following cosine transform c(k, r) of the dimensionless concentration field c̃(r, z):

c̃(r, z) ≡
∫ ∞

0
c(k, r) cos(kz)dk. (5)

Substituting the transformation (5) in the Laplace equation (1) results in an ordinary differential equation
for c(k, r),
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1

r

∂

∂r

(
r
∂c

∂r

)
− k2c = 0. (6)

This equation can be solved by a standard separation of variable and has two independent Bessel-like
solutions but only one of them vanishes in the limit r → ∞ and thus satisfies (2). This solution can be
written as

c(k, r) = C(k)K0(kr), (7)

where K0 is the modified Bessel function of the second kind of integer order 0. The remaining task is
to find the function C(k) such that (3) and (4) are satisfied. Plugging the transform (5) together with
the solution (7) into the two boundary conditions (3) and (4) leads to the following system know as dual
integral equations

∫ ∞

0
C(k)K0(k) cos(kz)dk = 1, for z < λ, (8)

∫ ∞

0
kC(k)K1(k) cos(kz)dk = 0, for z > λ, (9)

where K1 is the modified Bessel function of the second kind of integer order 1. Introducing the function

κ(k) =
K0(k)

K1(k)
, (10)

as well as the function D(k) = k C(k)K1(k), the dual integral equations (8, 9) can be recast in the
canonical form:

∫ ∞

0

κ(k)

k
D(k) cos(kz)dk = 1 for z < λ, (11)

∫ ∞

0
D(k) cos(kz)dk = 0, for z > λ. (12)

In order to solve (11, 12), we choose the singular integral equation approach and start by noticing that
the second equation (12) is automatically satisfied if we define the auxiliary function g(u) as:

D(k) =

∫ λ

0
g(u) cos(ku)du (13)

=

∫ 1

0
λg(u) cos(λku)du, (14)

where g(u) = g(λu). The result above follows directly from Fourier’s inversion theorem. Substituting
(14) into (11) leads to a double integral equation, which reads, after inverting the order of integration and
introducing the reduced variable z′ = λz:

∫ 1

0
g(u)

(∫ ∞

0

κ(k)

k
cos(λkz′) cos(λku)dk

)
du =

1

λ
, for z′ < 1. (15)

Using usual trigonometric relations and the fact that g is an even function, we may recast (15) as:
∫ 1

−1
g(u)L(λ(z′ − u)) =

2

λ
for |z′| < 1, (16)
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where the kernel L(x) is given by the following integral:

L(x) =
∫ ∞

0

κ(k)

k
cos(kx)dk. (17)

Unfortunately, the kernel (17) cannot be expressed in closed form. In order to make further progress,
let us focus on the asymptotic behavior of equations (16)-(17).

1.3 Small sleeve λ ≪ 1

In the limit where the length of the sleeve is much smaller than the radius of the sleeve, i.e. when λ ≪ 1,
we also have λ(z′ − u) ≪ 1 since {z′, u} ∈ [−1, 1]. We may thus use an approximation of L(x) valid at
small x. In order to obtain such an approximation, we first split the kernel (17) into two integrals:

L(x) =
∫ 1

0

κ(k)

k
cos(kx)dk +

∫ ∞

1

κ(k)

k
cos(kx)dk (18)

Next we replace κ(k) by its small-k approximation (resp. large-k approximation) in the first (resp.
second) integral above. Using the following approximations at small and large k:

κ(k) = −γe − ln
k

2
+O

(
k2 ln k2

)
for k → 0

κ(k) = 1 +O
(
1

k

)
for k → ∞

we obtain the following approximate expansion for the kernel L(x)

L(x) ≈ − ln |x|+
n=∞∑

n=0

bn|x|n for x ≪ 1 (19)

where the first few terms of the development are given in table 1.3 and γe = 0.577... is the Euler gamma
constant. Note that the value of the coefficient bn’s depends on the underlying approximation for κ. We
now look for a series solution of (16) in the following form:

g(x) =
1

λ

∞∑

n=0

λngn(x, lnλ) (20)

Inserting the previous relations (19) and (20) into the singular integral equation, we obtain the following
recurrent chain of integral equation defined in the domain |z′| < 1:

∫ 1

−1
gn(u, lnλ)

(
ln |z′ − u| − b0 + lnλ

)
du = fn(z

′, lnλ), (21)

where the right hand side of (21) is given by:

f0(z
′, lnλ) = −2,

fn(z
′, lnλ) =

n∑

m=1

∫ 1

−1
bm|z′ − u|mgn−m(u, lnλ)du.

Introducing the parameter β = −b0 + lnλ as well as the following transforms:
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z′ = e−βw,

u = e−βτ,

gn(u, lnλ) = Gn(τ, lnλ),

fn(z
′, lnλ) = e−βFn(w, lnλ),

we obtain the following recurrent chain of singular integral equations defined for all w in the interval
[−e−β, e−β]:

∫ eβ

−eβ
Gn(τ, lnλ) ln |w − τ |du = Fn(w, lnλ) (22)

that we recognize as the Carleman integral equation used in various problems of hydrodynamics, elasticity,
etc. Its solution is given by:

Gn(τ, lnλ) =
1

π2
√
(τ + eβ) (eβ − τ)

×
{∫ eβ

−eβ

√
(s+ eβ) (eβ − s)∂Fn

∂w |w=s

s− τ
ds+

1

ln (2eβ/4)

∫ eβ

−eβ

Fn(s, lnλ)√
(s+ eβ) (eβ − s)

ds

}
.

(23)

We can find that the first terms in the solution of the original equations (16)-(17) are

g(z′) =
2

λπ(1− 2γe − ln
(
λ
4

)
)
√
1− z′2

+ λ
(7 + 6γe − 6 ln 2)((2z′2 − 1)(2γe + ln λ

4 )− 2z′2)

18π
√
1− z′2

(
1− 2γe − ln

(
λ
4

))2

+ O(λ3). (24)

We only provide here the first two terms as higher-order terms rapidly become rather lengthy expres-
sions but we note that the exponent of the divergence of the flux near the edge of the sleeve is preserved
in the development. We can now find the function D(k) using (14):

D(k) =
J0(λk)

1− 2γe − ln
(
λ
4

)

− λ2
(7 + 6γe − 6 ln 2)(J0(λk)

2−2γe−ln(λ
4 )

1−2γe−ln(λ
4 )

− 2J1(λk)
λk )

36
(
1− 2γe − ln

(
λ
4

))

+ O(λ3). (25)

The quantity of interest being the total flux integrated over the surface of the sleeve, let us first recast
the flux jsmall(z) per unit of surface of the sleeve in physical units,

jsmall(z) =
D(csat − c∞)

a

∫ ∞

0
D (k) cos

(
k
z

a

)
dk, (26)

which becomes, after integration (we only provide here the integration of the first term in the expansion
of D(k)):
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jsmall(z) =
D(csat − c∞)

(1− 2γe − ln
(
λ
4

)
)
√
λ2a2 − z2

. (27)

Now the total flux Qsmall is found by integrating the flux per unit surface over the surface of the sleeve

Qsmall =

∫ λa

−λa
dz

∫ 2π

0
adθjsmall(z), (28)

and we find immediately that

Qsmall =
2D(csat − c∞)aπ2

1− 2γe − ln
(
λ
4

) . (29)

Table 1: Values of the first bn’s coefficients in equation (19).
b0 1− 2γe + ln 2

b1 0

b2
7+6γe−6 ln 2

36

b3 0

b4
−21−20γe+20 ln 2

2400

1.4 Large sleeve λ ≫ 1

The asymptotic result for the total diffusive flux in the limit of large sleeves λ ≫ 1 can be found in an
approximate fashion. Let us first introduce the scaled variables u′ = λu and z′′ = λz′ and rewrite (16) as:

∫ 1

0
g(u′/λ)L(z′′ − u′)du′ +

∫ λ

1
g(u′/λ)L(z′′ − u′)du′ = 1 for |z′′| < λ (30)

Noting that the kernel L(x) has the following expansions at small and large x:

L(x) ≈ 1− 2γe − ln
|x|
2

for x → 0

L(x) ≈ π

2|x| for x → ∞,

we now replace the kernel L(x)) appearing in the first (resp. second) integral above by its small x
(resp. large x) approximation to obtain:

∫ 1

0
g(u′/λ)

(
1− 2γe − ln

( |z′′ − u′|
2

))
du′ +

∫ λ

1

πg(u′/λ)

2|z′′ − u′|du
′ = 1 for |z′′| < λ. (31)

In the limit of an infinitely long sleeve, we expect the evaporative flux to become invariant by translation
along the axis of the fiber. In order to find this constant value, we set z′′ = 0 in (31) and we look for a
constant solution for g, which simply reads after integration

g(z′) =
1

2− 2γe + ln 2 + π
2 lnλ

. (32)

Inserting this solution into (14), we find the function D(k) in the limit of large sleeves:
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D(k) =
λ sinc(λk)

2− 2γe + ln 2 + π
2 lnλ

, (33)

where sinc(x) = sin(x)/x is the cardinal sine function. This leads to the following expression for the
constant evaporation flux:

jlarge(z) =
D(csat − c∞)π

2a
(
2− 2γe + ln 2 + π

2 lnλ
) . (34)

Integrating the flux per unit surface over the surface of the sleeve, we finally find the total flux in the
large sleeve limit:

Qlarge =
2λD(csat − c∞)aπ2

2− 2γe + ln 2 + π
2 lnλ

. (35)

1.5 Summary

To summarize, we have the two following limits for the total diffusive flux:

Q =





2D(csat−c∞)aπ2

1−2γe−ln(λ
4 )

, λ ≪ 1

2λD(csat−c∞)aπ2

2−2γe+ln 2+π
2
lnλ , λ ≫ 1.

(36)

As a final note, let just add that the results above are valid in the limit where the thickness of the
diffusive layer is much larger than any other length scale of the problem (namely a and λa). If this
thickness becomes comparable to any of those lengths, we expect a saturation of the diffusive flux and the
emergence of a different scaling involving this new length.

1.6 Comparison between analytical description and numerical results

Figure 1 shows numerical results of the local evaporative flux of sleeves of radius a = 125 µm and various
lengths. In black lines are plotted the predictions obtained by the model developed here, equation 27 for
small aspect ratio sleeves (solid line) and equation 34 for large aspect ratio sleeves (dashed line).
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λ = 2E+03

λ = 5E+03

Theoretical prediction λ� 1

Theoretical prediction λ� 1

Figure 1: Dimensionless flux density j/j0 as a function of
(
1− z2

L2

)−1/2
obtained from numerical compu-

tations for a = 125 µm. The black solid line corresponds to the local flux described by equation (27) made
dimensionless by its value at the center of the fiber (z = 0). The black dashed line corresponds to j = j0
as predicted for infinitely long sleeve (Eq. (34)).

2 Evaporation of axisymmetric drops on fiber

2.1 Comparison between j0 and jsphere

In the figure 2a, we show comparison between the local evaporative flux of barrel-shaped droplets on fiber
of radius a = 125 µm and local evaporative flux of a spherical drop (jsphere in black dashed line). The
volume of the drops is Ω = 1 µL. In the figure 2b, we plot j/jsphere as a function of Ω−1/3 for three different
contact angles. The spherical case is in black dashed line.

2.2 Fitting expression for j = f(z)

Figure 3 shows the dimensionless local flux as a function of the dimensionless position along the interface
for barrel-shaped droplets on fiber. The volume of the drops is Ω = 1 µL and the fiber radius is a = 125 µm.
We propose to fit curves of the figure 3 (black dashed lines) with :

j(z) = j0

[
β

(
1− z2

L2

)−α

+ (1− β)

]
, (37)

where α and β are positive adjustable parameters.
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Figure 2: (a) Local flux j as a function of dimensionless position along the air/liquid interface z/L for
barrel-shaped droplets on fibers, a = 125 µm, Ω = 1 µL and θ is varied between 10 and 80◦. (b)
Local flux at the center of the drop j0 divided by local flux of a sphere evaporating under the same
experimental conditions as a function of Ω−1/3. Black dashed lines represent local flux of a sphere jsphere =(
4π
3

)1/3D (csat − c∞)Ω−1/3. Colors represent the aspect ratio H = h0/L of barrel-shaped drops.
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Figure 3: Dimensionless flux density j/j0 as a function of 1 − (z/L)2. The points are obtained from
numerical computation for drops of volume 1 µL placed on a fiber of radius a = 125 µm and various
contact angles (see captions). The results are fitted by equation (37) (black dashed line) where α and β
are given in the caption for each contact angle.
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