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The Identity of Indiscernibles is a principle of analytic ontology first explicitly formulated by Wilhelm Gottfried Leibniz in his Discourse on Metaphysics Section 9 (Loemker 1969 : 308). It states that no two distinct things exactly resemble each other, and is usually formulated as follows: if for every property P, object x has P if and only if object y has P, then x is identical to y.

1

Recent work on the interpretation of quantum mechanics suggests that the applicability of the principle in the quantum domain is controversial (Gühne, O.; Tóth, G.(2009).Physics Reports.474(1-6) : 1-75). Note the mention that the identity of indiscernibles represents one of the three axioms of metric spaces. The aim of the present article is to introduce the theory of Quiver spaces. This new kind of space allows a general representation of the identity of indiscernibles without using the notion of metric.

Introduction

The first abstract formulation of the notion of distance is due to Maurice Fréchet [START_REF] Fréchet | Sur quelques points du calcul fonctionnel[END_REF]. This notion, which was later given the name metric space by Felix Hausdorff, is based on the introduction of a function d that assigns a nonnegative real number d(p, q) to every pair (p, q) of points of a set E, This function is assumed to satisfy three properties, namely :

1. The identity of indiscernibles : ∀p, q ∈ E, d(p, q) = 0, if and only if p = q . A metric is positive between two different points, and is zero precisely from a point to itself.

2. The symmetry : ∀p, q ∈ E, d(p, q) = d(q, p) .The metric between p and q is the same in either direction.

The triangle inequality :

∀p, q, r ∈ E, d(p, q) ≤ d(p, r) + d(r, q)

The distance between two points is the shortest distance along any path. Together with the set, it makes up a metric space.

An ultrametric space [START_REF] Fréchet | Sur quelques points du calcul fonctionnel[END_REF] is a metric space in which the triangle inequality is strengthened to : ∀p, q, r ∈ E, d(p, q) ≤ sup{d(p, r), d(r, q)} Hence, the notion of neighborhood for each point p of the set E can be defined.

In 1937 Andre Weil [START_REF] Weil | Sur les espaces à structure uniforme et sur la topologie générale[END_REF] introduced the concept of uniform space a generalization of metric space endowed with additional structure that is used to define uniform properties such as completeness, uniform continuity and uniform convergence. This concept is designed to formulate the weakest axioms needed for most proofs in analysis. In 1942 Karl Menger introduced the notion of a statistical metric space [START_REF] Menger | Statistical metrics[END_REF] as natural generalisation of metric space in which the distance d(p, q) between two points p and q is replaced by a distribution function F pq . The value of this function at every real number can be interpreted as the probability that the distance between p and q is less than x. This kind of generalization continue to use a metric space (The space of distribution functions). For the historical details, as well as for the motivations behind the introduction of Probabilistic Metric spaces, the reader should refer to the book by Schweizer and Sklar [7] [8], where all the developments up to the early 80s are collected.

Recent progress in theoretical and experimental physics of elementary particles shows that the intuitive notion of distance and subsequently the identity of indiscernibles is controversial because of Quantum entanglement [START_REF] Gisin | L'Impensable Hasard : Non-localité, téléportation et autres merveilles quantiques[END_REF] which is a physical phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. Hence, very distant particles in space can be strongly correlated, even if in modern physics the concept of the distance was formalized in a subtle way using Von Neumann algebras where the algebra of coordinates is considered non-commutative, and the synthesis was done by Alain Connes [START_REF] Connes | Noncommutative Geometry[END_REF].

The purpuse of this paper is to introduce the theory of Quiver spaces. This new kind of space allows a faithfail and general representation of the identity of indiscernibles without using the notion of metric.

2 Quiver spaces we recall the notion of partially ordered set.

A partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation ( A binary relation over sets E and F is a new set of ordered pairs (x, y) consisting of elements x in E and y in F ) indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a partial order.

Definition: 2.1

Let G be non empty set, and let ≤ be a binary relation on G, (G, ≤) is called a partially ordered set, if the following axioms are satisfied :

∀x ∈ G, x ≤ x (reflexivity) ∀x, y ∈ G, x ≤ y and y ≤ x ⇒ x = y (anti-symmetry) ∀x, y, z ∈ G, x ≤ y and y ≤ z ⇒ x ≤ z (transitivity)
Let E and G be two non empty sets, we suppose that (G, ≤) is a partially ordered set which contains the least element i.e ∃e 0 ∈ G, ∀x ∈ G, e 0 ≤ x and let * be an operation on G.

ψ is a maps such that :

ψ : E × E → G (x, y) → ψ(x, y) = ψ x,y
Definition: 2.2 (E, ψ) is called a Quiver space on (G, ≤, * ) if the following tree axioms are satisfied :

1. ∀ x, y ∈ E, ψ x,y = e 0 ⇔ x = y.

2. ∀ x, y ∈ E, ψ x,y = ψ y,x .

3. ∀ x, y, z ∈ E, ψ x,y ≤ ψ x,z * ψ z,y . Definition: 2.3 (E, ψ) is called a pseudoquiver space on (G, ≤, * ) if it differs from a quiver space only in that ψ x,y = e 0 need not imply x = y.

In the sequal ,we will consider the special case where : G = P(F ) : the power set of a given set F .

≤=⊆. * : an operation on P(F ).

Let E be a non empty sets, ψ is a maps such that :

ψ : E × E → P(F ) (x, y) → ψ(x, y) = ψ x,y
If (E, ψ) is a Quiver space on (P(F ), ⊆, * ), then :

1. ∀ x, y ∈ E, ψ x,y = ∅ ⇔ x = y. 2. ∀ x, y ∈ E, ψ x,y = ψ y,x . 3. ∀ x, y, z ∈ E, ψ x,y ⊆ ψ x,z * ψ z,y .
To simplify the notation, and since ≤= ⊆ is fixed, in the sequal we call (E, ψ) is a Quiver space on (P(F ), * ).

Proposition: 2.1

Let (E, d) be a metric space, and R + denote the set of non-negative real numbers, ψ d is a maps such that :

ψ d : E × E → P(R + ) (x, y) → ψ d (x, y) = ψ x,y = (0, d(x, y)) then, (E, ψ d
) is a Quiver space on (P(R + ), +), where, + is the operation defined by :

∀A, B ∈ P(R + ) A + B = {a + b | a ∈ A , b ∈ B} If E is an ultrametric space, then (E, ψ d ) is a Quiver space on (P(R + ), ∪) Proof: 1
Let E be a non emty set, and d a metric on E, for all x, y ∈ E,

x = y ⇔ d(x, y) = 0 ⇔ ψ x,y = (0, d(x, y)) = ∅. For all x, y ∈ E, d(x, y) = d(y, x) ⇔ ψ x,y = (0, d(x, y)) = (0, d(y, x)) = ψ y,x . For all x, y, z ∈ E, d(x, y) ≤ d(x, z)+d(z, y) ⇔ ψ x,y = (0, d(x, y)) ⊆ (0, d(x, z)+d(z, y)) = (0, d(x, z)) + (0, d(z, y)) = ψ x,z + ψ z,y .
Then, (E, ψ d ) is a Quiver space on (P(R + ), +).

If d is an ultrametric, we obtain : For all x, y, z

∈ E, d(x, y) ≤ sup(d(x, z), d(z, y)) ⇔ ψ x,y = (0, d(x, y)) ⊆ (0, sup{d(x, z), d(z, y)}) = (0, d(x, z)) ∪ (0, d(z, y)) = ψ x,z ∪ ψ z,y
then, (E, ψ d ) is a Quiver space on (P(R + ), ∪).

Remark: 2.1

Observe that we can also generalize the case where the distance can take infinite value at point

(x 0 , y 0 ) ∈ E × E, therefore, ψ d (x 0 , y 0 ) = (0, ∞) = R * + .
If (E, d) is a metric space (resp an ultrametric space), then, (E, d) is a quiver space on (R + , ≤, +), where ≤ is the standard less-than-or-equal relation on real numbers( resp on (R + , ≤, sup)).

We recall the notion of a pseudometric space,

Definition: 2.4 A pseudometric space is a pair (E, d) where d is a function d : E × E → R +
that satisfies the following conditions for all x, y, z ∈ E : 

1. d(x, y) ≥ 0; 2. d(x, x) = 0; 3. d(x, y) = d(y, x);

Proposition: 2.2

Let (E, d) be a pseudometric space, then (E, ψ d ) is a pseudoquiver space on (P(R + ), +) where:

ψ d : E × E → P(R + ) (x, y) → ψ d (x, y) = ψ x,y = (0, d(x, y))
Proof: 2 According to proposition 2.1.

Proposition: 2.3

Let E be a non empty set, p ∈ E and d an ultrametric on E, then :

(E, ψ p ) is a Quiver space on (P(E), ∪), such that,

ψ p : E × E → P(E) (x, y) → ψ p (x, y) = B(p, d(x, y)) = {z ∈ E | d(p, z) < d(x, y)} Proof: 3 For all x, y ∈ E, x = y ⇔ ψ p (x, y) = B(p, d(x, y)) = {z ∈ E | d(p, z) < d(x, y)} = ∅.
For all x, y ∈ E,

ψ p (x, y) = B(p, d(x, y)) = B(p, d(y, x)) = ψ p (y, x).
For all x, y, z ∈ E,

ψ p (x, y) = B(p, d(x, y)) ⊆ B(p, d(x, z)) ∪ B(p, d(z, y)) = ψ p (x, z) ∪ ψ p (z, y).
Therefore, (E, ψ p ) is a Quiver space on (P(E), ∪).

Remark: 2.2

If there is an operation ⊥ on P(F ) such that :

∀A, B ∈ P(F ) A * B = A ⊥ B
Where, A is the complement set of set A, (E, ψ) is a quiver space on (P(F ), * ), then the maps φ defined by :

φ : E × E → P(F ) (x, y) → φ(x, y) = φ x,y = ψ(x, y)
satisfies the following axioms :

∀ x, y ∈ E, φ x,y = E ⇔ x = y. ∀ x, y ∈ E, φ x,y = φ y,x . ∀ x, y, z ∈ E, φ x,z ⊥ φ z,y ⊆ φ x,y .
The maps φ is called the conjugate of ψ, and (E, φ, ⊥) the conjugate quiver space of (E, ψ, * ) on P(F ).

Let (E, ψ 1 ) and (E, ψ 2 ) be two quiver spaces on (P(F ), ∪), then (E, ψ 3 ) is also a quiver space on (P(F ), ∪), such that,

∀x, y ∈ E, ψ 3 (x, y) = ψ 1 (x, y) ∪ ψ 2 (x, y)
We note ψ 3 = ψ 1 ψ 2 , then, the set of all ψ : E ×E → P(F ) such that (E, ψ) is a quiver space on (P(F ), ∪) is closed under operation . Hence, if (ψ i ) i∈N is a family of maps from E × E to P(F ) such that : ∀i ∈ N, (E, ψ i ) is a pseudoquiver space on (P(F ), ∪), then ∀i, j ∈ N, (E, ψ i ψ j ) is a pseudoquiver space on (P(F ), ∪).

Example 2.1

1. Let E be a non emty set, d a metric on E, and let φ d be defined by :

φ d : E × E → P(R + ) (x, y) → φ d (x, y) = [d(x, y), +∞)
Then, (E, φ d , +) is the conjugate quiver space of (E, ψ d , +) on P(R + ) ( ψ d is the maps of proposition 2.1).

2. If d is ultrametric, therefore (E, φ d , ∩) is the conjugate quiver space of (E, ψ d , ∪) on P(R + ).

Conversely, in which case a Quiver space on P(R + ) can be a metric space (resp ultrametric space) ?

Proposition: 2.4
Let E be a non empty set, ψ is a maps from E × E to P(R + ) such that, (E, ψ) is a quiver space on (P(R + ), +) (resp on (P(R + ), ∪)). We suppose that for all x, y ∈ E, ψ(x, y) is bounded from above and ψ(x, y) = {0}, then : E is a metric space ( resp ultrametric space ) Proof: 4 Let δ be a maps defined from E × E to R + by :

δ(x, y) = sup(ψ(x, y)) , if x = y 0 , if x = y
Since (E, ψ) is a quiver space on (P(R + ), +), then, For all x, y ∈ E, ψ(x, y)

= ∅ ⇔ x = y ⇔ δ(x, y) = 0, because ψ(x, y) = {0}, for all x, y ∈ E. Therefore, ∀x, y ∈ E, δ(x, y) = 0 ⇔ x = y
For all x, y ∈ E, ψ(x, y) = ψ(y, x), then :

∀x, y ∈ E, δ(x, y) = δ(y, x)
For all x, y, z ∈ E, ψ(x, y) ⊆ ψ(x, z) + ψ(z, y), therefore, sup(ψ(x, y)) ≤ sup{ψ(x, z) + ψ(z, y)} = sup(ψ(x, z)) + sup(ψ(z, y))

then, for all x, y, z ∈ E, δ(x, y) ≤ δ(x, z) + δ(z, y). Hence (E, δ) is a metric space.

Respectively, if (E, ψ) is a quiver space on (P(R + ), ∪), then, for all x, y, z ∈ E, ψ(x, y) ⊆ ψ(x, z) ∪ ψ(z, y), therefore, sup(ψ(x, y)) ≤ sup{ψ(x, z)∪ψ(z, y)} = sup{sup(ψ(x, z)); sup(ψ(z, y))} ⇒ ∀x, y, z ∈ E, δ(x, y) ≤ sup(δ(x, z); δ(z, y)).

Hence (E, δ) is a ultrametric space.

3 The notion of the Quiver

We will define the equivalent of the balls for the quiver space. Let E and G be non empty sets,

Definition: 3.1
Let (E, ψ) be a Quiver space on (G, ≤, * ), x ∈ E and g ∈ G,

H(x, g) = {z ∈ E | ψ(x, z) ≤ g}
is called the Quiver of Target g centered at a point x.

We will show some properties of these Quivers,

Proposition: 3.1
Let (E, ψ) be a quiver space on (G, ≤, * ) where e 0 is the least element of G,

x ∈ E and g a , g b ∈ G,

1. ∀x ∈ E, H(x, e 0 ) = {x} 2. If G contains the greatest element e ∞ i.e ∃e ∞ ∈ G, ∀x ∈ G, x ≤ e ∞ , therefore, ∀x ∈ E, H(x, e ∞ ) = E 3. ∀x, y ∈ E, ∀g ∈ G, y ∈ H(x, g) ⇔ x ∈ H(y, g) 4. ∀x ∈ E, ∀g a , g b ∈ G, g a ≤ g b ⇒ H(x, g a ) ⊆ H(x, g b )
Proof: 5

Let (E, ψ) be a quiver space on (G, ≤, * ) where e 0 is the least element of G,

x ∈ E and g a , g b ∈ G, 1.

H(x, e 0 ) = {y ∈ E | ψ(x, y) ≤ e 0 } = {y ∈ E | ψ(x, y) = e 0 } = {x} 2. H(x, e ∞ ) = {y ∈ E | ψ(x, y) ≤ e ∞ } = E
3. By symmetry of ψ.

4. Suppose that g a ≤ g b ,

y ∈ H(x, g a ) ⇔ ψ(x, y) ≤ g a ⇒ ψ(x, y) ≤ g b (≤ is transitive) ⇔ y ∈ H(x, g b )
Let E, F , and I are tree non empty sets, * is an operation on P(F ). For example, let (E, ψ) be a quiver space on (P(F ), * ), x ∈ E and A ∈ P(F ),

H(x, A) = {z ∈ E | ψ(x, z) ⊆ A}
is the quiver of target A centered at a point x.

Proposition: 3.2

Let (E, ψ) be a quiver space on (P(F ), * ), x ∈ E and A, B ∈ P(F ),

a. ∀x ∈ E, H(x, ∅) = {x} b. ∀x ∈ E, H(x, E) = E c. ∀x, y ∈ E, ∀A ∈ P(F ), y ∈ H(x, A) ⇔ x ∈ H(y, A) d. ∀x ∈ E, ∀A, B ∈ P(F ), A ⊆ B ⇒ H(x, A) ⊆ H(x, B) e. Let (A i ) i∈I be a family of subsets of F and x ∈ E, H(x, i∈I A i ) = i∈I H(x, A i ) f. Let (A i ) i∈I be a family of subsets of F and x ∈ E, i∈I H(x, A i ) ⊆ H(x, i∈I A i ) g. ∀x ∈ E, H(x, A) = H(x, A ∩ ψ(E × E)), then if A ⊆ ψ(E × E), therefore H(x, A) = {x}
Proof: 6

Let (E, ψ) be a quiver space on (P(F ), * ), x ∈ E and A, B ∈ P(F ),

To prove a, b, c and d, Let (E, ψ) be a quiver space on (P(F ), ⊆, * ), according to proposition 3.1 where e 0 = ∅ and e ∞ = E, indeed,

∀A ∈ P(F ), ∅ ⊆ A And ∀A ∈ P(F ), A ⊆ E . e. Let (A i ) i∈I be a family of subsets of F and x ∈ E, y ∈ H(x, i∈I A i ) ⇔ ψ(x, y) ⊆ i∈I A i ⇔ ∀i ∈ I, ψ(x, y) ⊆ A i ⇔ ∀i ∈ I, y ∈ H(x, A i ) ⇔ y ∈ i∈I H(x, A i ) f. Let (A i ) i∈I be a family of subsets of F and x ∈ E, y ∈ i∈I H(x, A i ) ⇔ ∃i 0 ∈ I, y ∈ H(x, A i 0 ) ⇔ ∃i 0 ∈ I, ψ(x, y) ⊆ A i 0 ⇒ ψ(x, y) ⊆ i∈I A i ⇔ y ∈ H(x, i∈I A i )
g. According to a.

Proposition: 3.3

Let (E, ψ) be a quiver space on (G, ≤, * ), such that, * is an associative operation (i.e ∀x, y, z ∈ G, (x * y) * z = x * (y * z)). We suppose that the relation ≤ is compatible with the operation * (i.e ∀x, y, z, t ∈ G, x ≤ y and z ≤ t ⇒ (x * z) ≤ (y * t)) and every element g in G is idempotent by * (g * g = g, ∀g ∈ G) then :

1. ∀x, y ∈ E, ∀g a , g b ∈ G, H(x, g a ) ∩ H(y, g b ) = ∅ ⇒ H(y, g b ) ⊆ H(x, g a * g b )
2. In a special case g a = g b , we obtain :

∀x, y ∈ E, H(x, g a ) ∩ H(y, g a ) = ∅ ⇔ H(x, g a ) = H(y, g a ) Proof: 7 1.
Let (E, ψ) be a quiver space on (G, ≤, * ), such that * is an associative operation. We suppose that the relation ≤ is compatible with the operation * and every element g in G is idempotent by * . Let x, y ∈ E, g a , g b ∈ G, suppose that H(x, g a ) ∩ H(y, g b ) = ∅, then there is z ∈ E such as ψ(x, z) ≤ g a and ψ(y, z) ≤ g b , therefore, let s ∈ H(y, g b ), since ψ(x, s) ≤ ψ(x, y) * ψ(y, s) and ψ(x, y) ≤ ψ(x, z) * ψ(z, y) ≤ g a * g b , then ,

ψ(x, s) ≤ (g a * g b ) * g b = g a * (g b * g b ) = g a * g b Therefore, s ∈ H(x, g a * g b ), it follows that, H(y, g b ) ⊆ H(x, g a * g b ).
2. In a special case g a = g b ⇒ H(y, g a ) ⊆ H(x, g a ) and H(x, g a ) ⊆ H(y, g a ) then, H(x, g a ) = H(y, g a ). Since ∀x ∈ E, H(x, g a ) is non empty, therefore,

H(x, g a ) ∩ H(y, g b ) = ∅ ⇔ H(x, g a ) = H(y, g a ) Proposition: 3.4
Let (E, ψ) a quiver space on (P(F ), ∪), then :

1. ∀x, y ∈ E, ∀A, B ∈ P(F ),

H(x, A) ∩ H(y, B) = ∅ ⇒ H(y, B) ⊆ H(x, A ∪ B)
2. In a special case A = B, we obtain :

∀x, y ∈ E, H(x, A) ∩ H(y, A) = ∅ ⇔ H(x, A) = H(y, A)
Proof: 8

According to proposition 3.3, indeed, if (E, ψ) is a quiver space on (P(F ), ∪), we have :

∀A, B, C ∈ P(F ), (A ∪ B) ∪ C = A ∪ (B ∪ C), then ∪ is associative. ∀A, B, C, D ∈ P(F ), A ⊆ B and C ⊆ D ⇒ A ∪ C ⊆ B ∪ D, then ⊆ is compatible with ∪.
∀A ∈ P(F ), A ∪ A = A, then every A in P(F ) is idempotent by ∪.

Remark: 3.1

Let (E, ψ) be a quiver space on (G, ≤, * ), and let g in G.

For a given g, ∀x ∈ E, ψ(x, x) = e 0 ≤ g, then x ∈ H(x, g), hence,

∀g ∈ G, E = x∈E H(x, g)
For example, if (E, ψ) be a quiver space on (P(F ), ⊆, ∪),then,

∀A ∈ P(F ), E = x∈E H(x, A)
If * is an associative operation, ≤ is compatible with the operation * and every element g in G is idempotent by * , therefore, the set of Quivers of target g defined on E constitutes a partition of E. By increasing g i.e by choosing (if there exists) a Chains of G, we can form a chain of fineness between these partitions, from the finest (discrete partition for g = e 0 ) to the less fine (universal partition g = e ∞ if G contains the greatest element).

If * = ∪, A is a given set in P(F ) and (E, ψ) is a quiver space on (P(F ), ⊆) , we can define a binary relation on E by :

∀x, y ∈ E, x ∼ A y ⇔ H(x, A) ∩ H(y, A) = ∅ ⇔ H(x, A) = H(y, A)
The binary relation ∼ A is reflexive, symmetric and transitive, then ∼ A is an equivalence relation on E.

Topologies

A topological space [START_REF] Dixmier | Topologie générale[END_REF], [START_REF] Joshi | Introduction to General Topology[END_REF] is a set on which a topology is defined, which consists of a collection of subsets that are said to be open, and satisfy the axioms given below. 

: if O 1 , . . . , O n ∈ τ then n i=1 O i ∈ τ
Let (E, ψ) a quiver space on (P(F ), * ), N denote the set of all nonnegative integers, and let A = (A n ) n∈N be an intersection-closed family of subsets of F i.e ∀i, j ∈ N, ∃k ∈ N, A i ∩ A i = A k , we define :

τ ψ A = {ω ∈ P(E) | ∀x ∈ ω, ∃n ∈ N, H(x, A n ) ⊆ ω} Proposition: 4.1 τ ψ A is a topology on E. Proof: 9 ∀x ∈ ∅, ∃n ∈ N, H(x, A n ) ⊆ ∅, then ∅ ∈ τ ψ A ∀x ∈ E, ∃n ∈ N, H(x, A n ) ⊆ E, then E ∈ τ ψ A
Let (ω i ) 1≤i≤p be a family of elements of τ ψ A , and let x ∈ p i=1 ω i then, for all 1 ≤ i ≤ p, x ∈ ω i therefore, For all

1 ≤ i ≤ p, ∃n i ∈ N, H(x, A n i ) ⊆ ω i , it follows that, p i=1 H(x, A n i ) = H(x, p i=1 A n i ) ⊆ p i=1 ω i Since A = (A n ) n∈N is an intersection-closed family, therefore, ∃N ∈ N, such that, p i=1 A i = A N , hence, ∀x ∈ p i=1 ω i , ∃N ∈ N, H(x, A N ) ⊆ p i=1 ω i We conclude that p i=1 ω i ∈ τ ψ A Let x ∈ i∈I ω i , then ∃i 0 ∈ I, x ∈ ω i 0 , therefore, ∃n 0 ∈ N, H(x, A n 0 ) ⊆ ω i 0 ⊆ i∈I ω i , we conclude that i∈I ω i ∈ τ ψ A τ ψ A is a topology on E. Remark: 4.1
The result remains true, if the family A = (A n ) n∈N is monotonic.

A metric topology is a topology induced by a metric d defined on a metric space E. The open sets are all subsets that can be realized as the unions of open balls : B(x, r) = {y ∈ E | d(y, x) < r} , where x ∈ E and r > 0, then a metric topology induced by d is :

τ d = {ω ∈ P(E) | ∀x ∈ ω, ∃r > 0, B(x, r) ⊆ ω}
According to the proposition 2.1, if (E, d) is a metric space, then (E, ψ d ) is a quiver space on (P(R + ), +), where ψ d is the maps of proposition 2.1, if we note :

τ ψ d = {ω ∈ P(E) | ∀x ∈ ω, ∃r > 0, H(x, (0, r)) ⊆ ω} then, τ d = τ ψ d . Proposition: 4.2 Let (E, d) be a metric space, then τ d = τ ψ d Proof: 10 Let ω ∈ τ d , and x ∈ ω, then ∃r x > 0 such that B(x, r x ) ⊆ ω therfore, ∀z ∈ E, d(x, z) ≤ rx 2 < r x ⇒ z ∈ ω, it follows that, ∀z ∈ E, ψ d (x, z) = (0, d(x, z)) ⊆ (0, rx 2 ) ⇒ z ∈ ω, therefore, ∀x ∈ ω, ∃r = r x 2 > 0, H(x, (0, r)) ⊆ ω
We conclude that ω ∈ τ ψ d .

Conversely, let ω ∈ τ ψ d , and x ∈ ω, then, ∃r x > 0, H(x, (0, r x )) ⊆ ω i.e ∃r x > 0 such that ∀z ∈ H(x, (0, r

x )), z ∈ ω, it follows that, ∀z ∈ E, ψ d (x, z) = (0, d(x, z)) ⊆ (0, r x ), z ∈ ω then for all z ∈ E, d(x, z) < r x ⇒ z ∈ ω, hence, ∀x ∈ ω, ∃r > 0, B(x, r) ⊆ ω We conclude that ω ∈ τ d , then τ d = τ ψ d .

Quiver topology

Let (E, ψ) be a quiver space on (P(E), * ), where * is an operation on P(E), we define Q ψ by :

Q ψ = {ω ∈ P(E) | ∀x ∈ E, ω ⊆ H(x, ω)}
6 A contraction of Quiver space Definition: 6.1 Let (E, ψ) be a quiver space on (G, ≤, * ), and f is a mapping from E to itself, f is said to be a

h-contraction of E related to (G, ψ, * ) if, ∃h ∈ G, ∀x, y ∈ E, ψ(f (x), f (y)) ≤ h * ψ(x, y). Example 6.1
Let (E, ψ) be a quiver space on (P(F ), ∪), and f is a mapping from E to itself, if f is a ∅-contraction of E related to (P(F ), ψ, ∪) therefore, ∀x, y ∈ E, ψ(f (x), f (y)) ⊆ ψ(x, y).

Remark: 6.1

Let (E, ψ) be a quiver space on (G, ≤, * ), f a maps from E to itself, and let x ∈ E, x is a fixed point of f ⇔ ψ(f (x), x) = e 0 . Proposition: 6.1 Let (E, ψ) be a quiver space on (G, ≤, * ), if * have the identity element ( i.e ∃i 0 ∈ G, ∀x ∈ G, i 0 * x = x), and if f is a i 0 -contraction of E related to (G, ψ, * ), then, ∀x ∈ E, ∀g ∈ G, f (H(x, g)) ⊆ H(f (x), g).

Proof: 13

Let x ∈ E and g ∈ G, since f is a i 0 -contraction of E related to (G, ψ, * ), then, ∀x, y ∈ E, ψ(f (x), f (y)) ≤ i 0 * ψ(x, y) = ψ(x, y)

Therefore, z ∈ H(x, g) ⇔ ψ(x, z) ≤ g ⇒ ψ(f (x), f (z)) ≤ ψ(x, z) ≤ g ⇒ f (z) ∈ H(f (x), g), it follows that, ∀z ∈ H(x, g), f (z) ∈ H(f (x), g), then, ∀x ∈ E, ∀g ∈ G, f (H(x, g)) ⊆ H(f (x), g). Proposition: 6.2 Let f be a ∅-contraction of E related to (P(F ), ψ, ∪), then, ∀x ∈ E, ∀A ∈ P(F ), f (H(x, A)) ⊆ H(f (x), A).

Proof: 14

According to proposition 6.1 Remark: 6.2 Let x ∈ E, if x is a fixed point of a i 0 -contraction f related to (G, ψ, * ), where i 0 is the identity element of * then, ∀g ∈ G, f (H(x, g)) ⊆ H(x, g) hence, for all g ∈ G, H(x, g) is an invariant by f . Let E be a set and f : E → E be a function. We define f n as the n-th iterate of f , where n ∈ N, by : f 0 = id E and f n+1 = f • f n Proposition: 6.3 Let (E, ψ) be a quiver space on (G, ≤, * ), and let f be a i 0 -contraction of E related to (G, ψ, * ) where i 0 is the identity element of * then, ∀x ∈ E, ∀g ∈ G, ∀n ∈ N, f (H(f n (x), g)) ⊆ H(f n+1 (x), g).

Proof: 15

Let x ∈ E, g ∈ G and n ∈ N, z ∈ H(f n (x), g)) ⇔ ψ(f n (x), z) ≤ g, since f is a i 0 -contraction of E related to (G, ψ, * ) then, ψ(f n+1 (x), f (z)) ≤ ψ(f n (x), z) ≤ g, it follows that, f (z) ∈ H(f n+1 (x), g))

We conclude that, ∀x ∈ E, ∀g ∈ G, ∀n ∈ N, f (H(f n (x), g)) ⊆ H(f n+1 (x), g)

and 4 .

 4 d(x, z) ≤ d(x, y) + d(y, z).

  More precisely, let E be a set. A family τ of subsets of E is a topology on E, and the elements of τ are the open sets of the topology if : Both E and ∅ are open sets: E ∈ τ and ∅ ∈ τ Any union of open sets is an open set: if {O i : i ∈ I} ⊆ τ then i∈I O i ∈ τ Any finite intersection of open sets is an open set

Proposition: 5.1 Let (E, ψ) be a quiver space on (P(E), * ), then Q ψ is a topology on E called the Quiver topology induced by ψ.

Proof: 11

For every

Remark: 5.1 If * = ∪, for all x, y ∈ E and ω ∈ Q ψ , we have, ω ⊆ H(x, ω) ∩ H(y, ω), according to the proposition 3.2 , then, ω = ∅ ⇒ H(x, ω) = H(y, ω), therefore,

Remark: 5.2 If * = ∪ and there exists ω 1 and ω 2 non emty sets of Q ψ , such that ω 1 ∩ ω 2 = ∅, then Q ψ = P(E). Indeed, since ω 1 = ∅ then, H(x, ω 1 ) ∈ Q ψ , ∀x ∈ E, idem for ω 2 , therefore, H(x, ω 1 ) ∩ H(x, ω 2 ) = H(x, ω 1 ∩ ω 2 ) = H(x, ∅) = {x} ∈ Q ψ