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A Methodology for the Comparison of Human Judgments With Metrics for Coreference Resolution

We propose a method for investigating the interpretability of metrics used for the coreference resolution task through comparisons with human judgments. We provide a corpus with annotations of different error types and human evaluations of their gravity. Our preliminary analysis shows that metrics considerably overlook several error types and overlook errors in general in comparison to humans. This study is conducted on French texts, but the methodology should be language-independent.

Introduction

Coreference resolution is still one of the most challenging tasks in Natural Language Processing. Several metrics have been proposed to evaluate the task, each of them meant to rectify the weaknesses of the previous ones. However, neither their correctness nor their ability to reflect the real quality of algorithms is easily be provable from their mathematical definition. Consequently, some additional tests should be conducted in order to confirm their pertinence. This work aims to compare the evaluation measures used for coreference resolution task with human judgments, i.e. to study them in terms of interpretability. More precisely, B-CUBED [START_REF] Bagga | Algorithms for scoring coreference chains[END_REF], LEA (Moosavi and Strube, 2016), CEAFe and CEAFm [START_REF] Luo | On coreference resolution performance metrics[END_REF], CoNLL-2012 (MELA) [START_REF] Denis | Global joint models for coreference resolution and named entity classification[END_REF], BLANC [START_REF] Recasens | BLANC: Implementing the Rand index for coreference evaluation[END_REF] and MUC [START_REF] Vilain | A modeltheoretic coreference scoring scheme[END_REF] metrics will be analysed.

Related work

Although some properties of coreference resolution quality measures have already been studied in [START_REF] Lion-Bouton | Comment arpenter sans mètre : les scores de résolution de chaînes de coréférences sont-ils des métriques ? (do the standard scores of evaluation of coreference resolution constitute metrics ?)[END_REF], Moosavi (2020), [START_REF] Kummerfeld | Errordriven analysis of challenges in coreference resolution[END_REF] and others, to the best of our knowledge, there are no works dedicated to the comparison between automatic measurements and human evaluation of performance for this task. However, very few similar studies were conducted in other domains. [START_REF] Doshi | Towards a rigorous science of interpretable machine learning[END_REF] study the interpretability of machine learning models, in general, using application-grounded, human-grounded, and functionally-grounded approaches.

Foster ( 2008) describes an experience of evaluating a non-verbal behaviour of an embodied conversational agent. People were asked to choose the most appropriate talking head among the two generated using different strategies. Then β inter-annotator agreement measure [START_REF] Artstein | Inter-coder Agreement for Computational Linguistics[END_REF] was calculated.

In [START_REF] Plank | Do dependency parsing metrics correlate with human judgments[END_REF], the correlation between metrics for the dependency parsing task and human judgments was examined. Several models were tested for different languages. The annotators had to choose the best of the two annotations predicted by two different models without knowing the correct option. The obtained results were normalised using Spearman's ρ and compared with standard metrics. [START_REF] Novikova | Why we need new evaluation metrics for NLG[END_REF] explore Natural Language Generation (NLG) evaluation measures. The annotation process is organised as follows: an annotator should score an example using three Likert scales from 0 to 6 based on informativeness, naturalness and quality criteria. The obtained results were normalised using Spearman and intra-class correlation coefficients and compared with NLG metrics.

Considering these studies, for the present research, we will use an approach similar to [START_REF] Novikova | Why we need new evaluation metrics for NLG[END_REF], where the annotators evaluate a system on a Likert scale. Despite possible difficulties with the Likert scale treatment (too many mid-point answers, a broad spectrum of responses for one question, etc.), this method seems more appropriate for our purposes. Two main reasons make us choose this approach: (1) we do not test particular systems and, therefore, have no alternative annotations and (2) a scaled approach is more accurate and exact while evaluating a system.

Methodology

This section is dedicated to the theoretical description of the methods used in the experiments within the scope of this study.

Errors typology

In order to correctly evaluate the quality of the algorithm, it is necessary to consider all the types of errors it can produce and, therefore, to define those types.

For our purposes, we have chosen the typology of Landragin and Oberle (2018):

1. Border errors occur when limits of referential expressions are marked inaccurately;

2. Type errors occur when a referential expression is assigned to a false chain;

3. Noise errors occur when irrelevant linguistic expressions are marked as a part of a coreference chain;

4. Silence errors occur when a system ignores referential expressions which are included in a relevant coreference chain;

5. Tendency of irrelevant coreference chains construction occurs when a system composes a new chain from several unrelated mentions.

We use this typology because it is more comprehensive than others and reflects the semantic aspect of the problem. However, we need to introduce an additional error type which we call "chain absence". This error may be regarded as a form of the "silence" error, and it occurs when the whole coreference chain (entity) is missing. The necessity of introducing a new error type arose after the experimentation phase of this study as it allowed to explain some patterns in the behaviour of the metrics. You can find the examples for each error type in the appendix section 1.

Corpus creation

Our corpus consists of a series of texts, each with two coreference annotations: one is a manual gold annotation, and the other is a purposefully erroneous annotation, one or more manually introduced errors of one of the types defined in section 3.1. There are also a few examples with errors of different types. Two existing coreference resolution corpora for French were used as a basis for the corpus. 52 texts were taken from the DEMOCRAT corpus [START_REF] Landragin | LIVRABLE L2 "Manuel d'annotation du corpus et organisation de formations sur l'annotation" du projet DEMOCRAT[END_REF] and 4 examples -from the ANCOR corpus [START_REF] Muzerelle | ANCOR_Centre, a large free spoken French coreference corpus: description of the resource and reliability measures[END_REF]. More precisely, we have selected the self-standing passages that are understandable out of context. The corpora are collected in the CoNLL-2012 format [START_REF] Sameer Pradhan | CoNLL-2012 shared task: Modeling multilingual unrestricted coreference in OntoNotes[END_REF] 1 . The final dataset consists of 127 passages of 90-130 words each. 108 examples contain only one error, allowing us to analyse to what extent each error reduces the overall system quality. The rest of the samples are needed to adjust the annotations . Coreference chains lengths vary from 2 to 20 mentions. The mentions to contain an error were chosen at random. The total number of each error in the 108 samples varies between 16 and 28. The total number of each error varies between 44 and 97.

Evaluation scale

As the primary goal of this study is to evaluate the interpretability of the metrics, it is necessary to compare them to humans opinions about the correctness of the system's responses. Even though the metrics' output values are between 0 and 1, we will not use this range as it is more natural for people to evaluate the quality on an integer scale.

For our study, we use a Likert scale [START_REF] Likert | A technique for the measurement of attitudes[END_REF] with an even number of choices in order to avoid too many mid-point answers. Usually, coreference resolution is only a part of a pipeline of a more complex system, and the way of evaluation depends on the resolved task. In this study, an information retrieval task has been chosen as a global framework. These conditions require some changes in the classic scale; namely, we introduce a notion of the "importance" of an element. We distinguish two types of elements: peripheral elements and key elements. Peripheral elements can be removed from a text without severe consequences in its general sense. Key elements constitute the core of a text, so their removal will lead to the total loss of meaning. Thus, the gravity of an error and the importance of an element with an error is taken into account.

This scale also contains two points to allow differentiation between similar examples with little nuances: (0) The presumed system's annotation contains significant errors on key elements; (1-2) The presumed system's annotation contains significant errors on peripheral elements; (3-4) The presumed system's annotation contains insignificant errors on key elements; (5-6) The presumed system's annotation contains insignificant errors on peripheral elements; (7) The presumed system's annotation does not contain any errors.

Annotation

Every annotation sample contains a correct annotation and an annotation with mistakes. In order to detect inconsistent annotators, three samples appear twice. The objective given to the annotators is to evaluate coreference resolution samples as a part of an information retrieval system using the Likert scale described in section 3.3. General instructions given before the annotations explain all the necessary concepts 2 .

As an inter-annotator agreement measure, Krippendorff's alpha [START_REF] Krippendorff | Bivariate agreement coefficients for reliability of data[END_REF] has been chosen and used to identify annotators whose answers differ much from the others using a new algorithm (see algorithm 1 in the appendix). The coefficients obtained by the algorithm (hereinafter the trust coefficients) allow us to detect outliers (an annotator is considered an outlier if their score is less than or equal to 0.5).

In order to interpret the reasoning of each respondent, regressors have been trained to imitate the annotators' and metrics' behaviours. Each model should predict a score having the number of occurrences of each error type as input features. We have trained one model for each annotator and metric. Once the models are trained, the weights assigned to each feature (error type) are extracted and used for further interpretation.

Experiments and results

Human evaluation analysis. Since participation in this study was not rewarded and contained many questions, it involved only 12 participants, 9 of whom were linguists and 8 of whom have already worked with coreference. The analysis of the three duplicated questions showed that no one answered at random among the annotators. Krippendorff's alpha is rather low, so we supposed that some questions in our questionnaire raised more confusion among the respondents than others. Therefore we eliminated the questions that contained more than three different answers from the annotators and computed the results only for the remaining simple questions. The total number of questions used in the main analysis is 97. We also decided to compute the inter-annotator agreement on a reduced scale from 0 to 4 points (0 → 0, 1 and 2 → 1, 3 and 4 → 2, 5 and 6 → 3, 7 → 4) and on the gravity (no errors -insignificant error(s) -significant error(s)) and elements importance (no errors -error(s) on peripheral element -error(s) on key element) scales. These agreements are presented in table 1.

2 You can find the google form with the instructions at https://forms.gle/cgpsfZvKg5zasnqd6. Human-machine correlation analysis. In order to compare the obtained scores with human judgments, we calculated an average and a mode of human evaluations having previously transformed to a scale from 0 to 1. Every metric was compared with the annotators' assessment on the standard scale, on the reduced scale and on the scale with errors gravity evaluation only. According to the data distributions, in general, the difference between a metric and humans is about 0.33. The averages of differences for all the examples are given in table 2.

Scale

Analysis by error type. In order to analyse the influence of a particular error type on a score, we train a linear regression model with the number of errors of each type as the input features and the reversed scores3 as the outputs. All the input features were centered and reduced in order to obtain more stable results. The coefficients that were assigned to each input feature (and which correspond to one of the error types) during the training have been used as a measure of the importance of an error in the process of deciding the example's score (see tables 3 and 4).

Discussion

Human evaluation analysis. Table 1 reports the interannotator agreement on different scales, with several interesting properties about the task. Firstly, we may observe that the reduced scale results are better than those on the standard scale. It can be explained by the fact that even if people agree on the characteristics of the suggested categories, all of them have their own bias about the task, so they pay attention to different annotation nuances. Secondly, the inter-annotator agreement increased when we eliminated the annotators indicated as outliers by the trust coefficient.

Human-machine correlation analysis. One may notice that the average scores of all annotators are relatively high (see table 2). The average difference between all metrics and the annotators is usually above 0 and varies from 0.2 to 0.4 after normalisation, which shows that, generally, metrics tend to overestimate the actual quality of a model significantly.

Analysis by error type. In order to perform the analysis regarding the error types, we modified the table 4 by removing all positive and null coefficients as they mean either the absence of answers considering a particular error type or insufficient training quality of some models. These modifications can be justified by the fact that every coefficient of the model should be negative. Otherwise, it would mean that the presence of an error improves a score.

As our analysis shows, the border, silence and irrelevant chains construction errors are treated correctly. It could be proven by the fact that metrics coefficients are similar to the human ones. The type, noise and chain absence errors are underestimated by the metrics, as their scores are usually higher for the metrics than for the humans coefficients (see correspondent columns of the table 3).

We can analyse each metric separately as well. Firstly, we have noticed that the MUC metric considerably underestimates all types of errors except for the "silence" and the "irrelevant chains" ones. Secondly, the B-CUBED measure put relevant scores only to the examples which contain "border" and "silence" errors. The CEAFe score estimates correctly only the examples with "border" and "irrelevant chains" errors. Similarly, the CEAFm metric also underestimates all examples where any errors except for "border" and "irrelevant chains" ones were made. The BLANC measure treats properly only texts with "silence" errors. We ob-serve that the CoNLL-2012 metric tends to overstate the results of a model when the examples contain any errors except for "border" errors. Likewise, the LEA metric considerably underestimates all error types except for "border", "silence" and "irrelevant chains" errors (see correspondent lines of the table 3).

Conclusion

This study aims to investigate the extent to which we may understand the results produced by the coreference resolution metrics. The preliminary results on the limited corpus show that metrics underestimate errors gravity compared to humans and add approximately 0.33 points to the final score on the scale from 0 to 1. However, these results need to be proven on a more significant number of annotators. This work's contribution consists in creating the corpus with various errors types and its annotation with the human judgments about the gravity of these errors, the proposal of the new automatic outlying annotator identification algorithm and the suggestion of a methodology of comparison of human evaluations with automatic metrics. All the code and corpus are available at https://github.com/ project178/coref-metrics-vs-humans.

Possible future work directions may consist in involving more people in the annotation process of the proposed corpus in order to verify the obtained results and in the development of a new metric that will take into consideration the identified shortcomings of the existing measures. 

A Appendix

Table 1 :

 1 Krippendorff's alphas. An arrow shows that there are outlier annotators on the particular scale and set of examples. A value on the right of an arrow is an alpha after removing outlier annotators.

		All examples Simple examples
	Standard	0.11	0.25 → 0.27
	Reduced	0.16	0.34
	Gravity	0.24	0.48
	Importance	0.16	0.34 → 0.42

Table 2 :

 2 Differences between humans evaluations and metrics on the scale from 0 to 1.

	Scale	Method	MUC	B-CUBED CEAFm CEAFe BLANC	LEA	CoNLL
	Standard	Average Mode	0.289 0.294		0.321 0.326	0.308 0.313	0.269 0.283	0.281 0.285	0.231 0.24	0.291 0.299
	Reduced	Average Mode	0.314 0.312		0.346 0.347	0.333 0.333	0.29 0.292	0.305 0.304	0.253 0.255	0.315 0.316
	Gravity	Average Mode	0.43 0.43			0.463 0.464	0.45 0.451	0.405 0.408	0.422 0.422	0.368 0.369	0.432 0.434
	Name		Border	Type	Noise	Silence Irrelevant chains Chain absence
	MUC		-0.242	-0.249	-0.121	-0.58	-0.345	-0.076
	B-CUBED	-0.662	-0.15	-	-0.889	-	-0.264
	CEAFm	-0.325	-0.34	-0.139	-0.408	-0.353	-0.101
	CEAFe		-0.458	-0.283	-0.322	-0.447	-0.222	-
	CoNLL	-0.382	-0.217	-0.083	-0.556	-0.179	-0.187
	BLANC	-0.174	-0.385	-0.233	-0.973	-0.074	-0.56
	LEA		-0.425	-0.22	-0.207	0.73	-0.432	-
	Humans	-0.343	-0.629	-0.598	-0.513	-0.467	-0.727

Table 3 :

 3 Coefficients of errors importances. "Humans" is the average of all the coefficients of models trained on humans' evaluations. See a more detailed version in the appendix (table4).

  Borders errors. Whales are marine mammals . instead of Whales are marine mammals . 2. Type errors. John likes his brother because he is funny instead of John likes his brother because he is funny. 3. Noise errors. The dog barked. It 's time to go. instead of The dog barked. It's time to go. 4. Silence errors. A phone is on the table. It rings. I pick it up instead of A phone is on the table. It rings. I pick it up. 5. Tendency of irrelevant coreference chains construction. A cat and a dog are playing together instead of A cat and a dog are playing together. 6. Chain absence. A phone is on the table. It rings. I pick it up instead of A phone is on the table. It rings. I pick it up.

					Figure 1: Error types examples.	
	Name	Border Name	Type	Name	Noise Name	Silence Name	Irrelevant chains Name

1.

https://github.com/boberle/coreference_ databases.git

We replaced 7 by 0, 6 by 1, 5 by 2, etc.
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Chain absence REDUCED_A6 -0,033 B-CUBED -0,15 CoNLL-2012 -0,083 GRAVITY_A6 -0,011 GRAVITY_A6 -0,018 MUC -0,076 GRAVITY_A10 -0,057 CoNLL-2012 -0,217 GRAVITY_A7 -0,105 STANDARD_A12 -0,262 BLANC -0,074 STANDARD_A10 -0,099 STANDARD_A7 -0,097 LEA -0,22 MUC -0,121 GRAVITY_A8 -0,265 STANDARD_A11 -0,08 CEAFm -0,101 GRAVITY_A7 -0,118 GRAVITY_A7 -0,239 REDUCED_A1 -0,122 STANDARD_A11 -0,274 REDUCED_MEAN -0,097 GRAVITY_A11 -0,124 GRAVITY_A11 -0,152 GRAVITY_A8 -0,24 CEAFm -0,139 STANDARD_A9 -0,329 GRAVITY_A11 -0,164 STANDARD_A7 -0,17 STANDARD_A10 -0,166 MUC -0,249 STANDARD_A9 -0,146 GRAVITY_A11 -0,391 STANDARD_A4 -0,167 CoNLL-2012 -0,187 BLANC -0,174 CEAFe -0,283 GRAVITY_A11 -0,167 STANDARD_A10 -0,406 CoNLL-2012 -0,179 GRAVITY_A7 -0,247 STANDARD_A6 -0,182 STANDARD_A10 -0,31 LEA -0,207 CEAFm -0,408 CEAFe -0,222 B-CUBED -0,264 STANDARD_A8 -0,212 CEAFm -0,34 BLANC -0,233 CEAFe -0,447 GRAVITY_MEAN -0,319 GRAVITY_A8 -0,265 MUC -0,242 STANDARD_A12 -0,362 STANDARD_A7 -0,316 GRAVITY_A1 -0,49 STANDARD_A8 -0,335 STANDARD_A6 -0,283 CEAFm -0,325 GRAVITY_A3 -0,372 CEAFe -0,322 GRAVITY_A7 -0,547 MUC -0,345 STANDARD_A11 -0,289 CoNLL-2012 -0,382 BLANC -0,385 STANDARD_MEAN -0,356 STANDARD_A6 -0,548 CEAFm -0,353 STANDARD_A12 -0,411 GRAVITY_A3 -0,388 STANDARD_A8 -0,458 STANDARD_A11 -0,364 CoNLL-2012 -0,556 GRAVITY_A7 -0,375 BLANC -0,56 LEA -0,425 GRAVITY_A11 -0,507 STANDARD_A10 -0,532 MUC -0,58 STANDARD_A6 -0,407 STANDARD_A8 -0,634 CEAFe -0,458 STANDARD_A9 -0,563 GRAVITY_A3 -0,566 GRAVITY_A10 -0,586 GRAVITY_A8 -0,409 GRAVITY_A1 -0,737 B-CUBED -0,662 STANDARD_MEAN -0,607 GRAVITY_A1 -0,691 STANDARD_A7 -0,629 LEA -0,432 STANDARD_A9 -0,756 GRAVITY_MEAN -0,848 STANDARD_A11 -0,625 REDUCED_MEAN -0,712 LEA -0,73 GRAVITY_A3 -0,453 STANDARD_A4 -0,919 REDUCED_A1 -1,529 GRAVITY_A1 -0,663 GRAVITY_A4 -0,911 REDUCED_MEAN -0,883 STANDARD_A9 -0,491 GRAVITY_A10 -0,932 STANDARD_A7 -0,686 GRAVITY_A10 -0,954 B-CUBED -0,889 STANDARD_A7 -0,64 REDUCED_MEAN -0,943 STANDARD_A6 -0,741 GRAVITY_MEAN -1,184 BLANC -0,973 REDUCED_A6 -0,819 GRAVITY_A6 -1,149 GRAVITY_A6 -0,741 GRAVITY_A6 -1,197 GRAVITY_MEAN -1,565 STANDARD_A12 -0,859 REDUCED_A1 -1,419 STANDARD_A4 -0,818 STANDARD_A6 -1,238 STANDARD_MEAN -0,904 REDUCED_A6 -1,473 GRAVITY_A4 -0,869 GRAVITY_A4 -0,911