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Abstract. Using transfer learning to help in solving a new classification
task where labeled data is scarce is becoming popular. Numerous exper-
iments with deep neural networks, where the representation learned on
a source task is transferred to learn a target neural network, have shown
the benefits of the approach. This paper, similarly, deals with hypothesis
transfer learning. However, it presents a new approach where, instead of
transferring a representation, the source hypothesis is kept and this is a
translation from the target domain to the source domain that is learned.
In a way, a change of representation is learned. We show how this method
performs very well on a classification of time series task where the space
of time series is changed between source and target.

Keywords: Transfer learning · Boosting

1 Introduction

While transfer learning has a long history, dating back at least to the study of
analogy reasoning, it has enjoyed a spectacular rise of interest in recent years,
thanks largely to its use and effectiveness in learning new tasks with deep neural
networks using an architecture learned on a source task. This approach is called
Hypothesis Transfer Learning [6]. The justification for this strategy is that, in the
absence of enough data in the target domain to learn anew a good hypothesis,
it might be effective to transfer the intermediate representations learned on the
source task. This is indeed the case, for instance, in face analysis when the
source task is to guess the age of the person, and the target task is to recognize
the gender. Technically, with neural networks, this amounts to keeping the first
layers of the source neural network in the target network and learning only the
last layers, the ones that combine intermediate representations of the examples
in order to make a prediction.

Let X , Y and Z be the input, output and feature spaces respectively. Let F
be a class of representation functions, where f ∈ F : X → Z. Let G be a class
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of decision functions that use descriptions of the examples in the feature space:
g ∈ G : Z → Y. Then, in the context of deep neural networks, the hypothesis
class is H := {h : ∃f ∈ F, g ∈ G st. h = g ◦ f} and while f is kept (at least
approximately) from the source problem to the target one, only g remains to be
learned to solve the target problem.

In this paper, we adopt a dual perspective: we propose to keep the decision
function g fixed, and learn translation functions from the target input space to
the source input space, π : XT → XS , such that the target hypothesis space
becomes HT := {hT : ∃π ∈ Π, f ∈ F, g ∈ G st. hT = g◦f ◦π}, which, given that
hS = g ◦ f might be considered as the source hypothesis, may be re-expressed
as: HT := {hT : ∃π ∈ Π, f ∈ F, g ∈ G st. hT = hS ◦ π}.

Indeed, for some problems, it might be much more easy to learn a translation
(also called projections in this paper) from the target input space XT to the
source input space XS than to learn a new target decision function. Furthermore,
this allows one to tackle problems with different input spaces XS and XT .

In the following, Sect. 2 presents TransBoost a new algorithm for trans-
fer learning. The theoretical analysis of Sect. 3 provides a PAC-learning bound
on the generalization error on the target domain. Controlled experiments are
described in Sect. 4 together with an analysis of the results. The new approach
is put in perspective in Sect. 5 before we conclude in Sect. 6.

2 A New Algorithm for Transfer Learning

Suppose that we have a system that is able to recognize poppy fields in satellite
images. We might imagine that knowing how to translate a biopsy image into
a satellite image, we could, using the recognition function defined on satellite
image, decide if there is cancerous cells in the biopsy.

Ideally then, one could translate a target query: “what is the label of xT ∈
XT ” into a source query “what is the label of π(xT ) ∈ XS” where hS is the
source hypothesis which, applied to π(xT ) ∈ XS , provides the answer we are
looking for. Notice here that we suppose that YS = YT , but not XS = XT .

The goal is then to learn a good translation π : XT → XS . However, defining
a proper space of candidate projections Π might be problematic, not to mention
the risk of overfitting if the space of functions hS ◦ Π has too high a capacity.
It might be more easy and manageable to discover “weak projections” from XT
to XS using a boosting learning scheme.

Definition 1. A weak projection w.r.t. source decision function hS is a func-
tion π : XT → XS such that the decision function hS

(
π(xT )

)
has better than

random classification performance on the target training set ST .

In this setting, the training set ST = {(xT
i , yT

i )}1≤i≤m is used to learn weak
projections (Fig. 1).

Once the concept of weak projection is assumed, it is natural to use a boost-
ing algorithm in order to learn a set of such weak projections and to combine
them to get a final good classification on elements of T . This is what does the
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Fig. 1. The principle of prediction using TransBoost. A given target example xT
i is

projected in the source domain using a set of identified weak projections πj and the

prediction for xT
i is computed as: HT (xT

i ) = sign

{∑N
j=1 αjhS

(
πj(x

T
i )

)}
.

TransBoost algorithm (see Algorithm 1). It does rely on the property of the
boosting algorithm to find and combine weak rules to get a strong(er) rule.

3 Theoretical Analysis

Here, we study the question: can we get guarantees about the performance of
the learned decision function HT in the target space using TransBoost?

We tackle this question in two steps. First, we suppose that we learn a single
projection function π ∈ Π : XT → XS so that hT = hS ◦ π, and we find bounds
on the generalization error on the target domain given the generalization error
on the source domain. Second, we turn to the TransBoost algorithm in order to
justify the use of a boosting approach.

3.1 Generalization Error Bounds When Using a Single Projection

For this analysis, we suppose the existence of a source input distribution PXS in
addition to the target input distribution PXT . We consider the binary classifica-
tion setting Y = {−1,+1}, and we note h̄S and h̄T respectively the source and
the target labelling functions. We note RS(h) (resp. RT (h)) the risk of a hypoth-
esis h on the source (resp. target) domain: RS(h) = ExS∼PXS

[hS(xS) �= h̄S(xS)]
(resp. RT (h) = ExT ∼PXT

[hT (xT ) �= h̄T (xT )]). Let R̂S(h) and R̂T (h) be the
corresponding empirical risks, with mS training points for S and mT training
points for T . Let dH be the VC dimension of the hypothesis space H.

In the following, what is learned is a projection π ∈ Π : XT → XS in order to
get a target hypothesis of the form hT = ĥS ◦π, where ĥS = ArgMinh∈HS R̂S(h)
is the source hypothesis. Our aim is to upper-bound RT (ĥT ), the risk of the
learned hypothesis on the target domain in terms of:
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Algorithm 1. Transfer learning by boosting

Input: hS : XS → YS the source hypothesis
ST = {(xT

i , yT
i }1≤i≤m: the target training set

Initialization of the distribution on the training set: D1(i) = 1/m for
i = 1, . . . , m ;

for n = 1, . . . , N do
Find a projection πi : XT → XS st. hS(πi(·)) performs better than random
on Dn(ST ) ;
Let εn be the error rate of hS(πi(·)) on Dn(ST ) :
εn

.
= Pi∼Dn [hS(πn(xi)) �= yi] (with εn < 0.5) ;

Computes αi = 1
2

log2

(
1−εi

εi

)
;

Update, for i = 1 . . . , m:

Dn+1(i) =
Dn(i)

Zn
×

{
e−αn if hS

(
πn(xT

i )
)

= yT
i

eαn if hS
(
πn(xT

i )
) �= yT

i

=
Dn(i) exp

(−αn y
(T )
i hS(πn(x

(T )
i ))

)
Zn

where Zn is a normalization factor chosen so that Dn+1 be a distribution on
ST ;

end

Output: the final target hypothesis HT : XT → YT :

HT (xT ) = sign

{ N∑
n=1

αn hS
(
πn(xT )

)}
(1)

– the empirical risk R̂S(ĥS) of the source hypothesis,
– the generalization error of a hypothesis ĥS in HS learned from mS examples,

which depends on dHS ,
– the generalization error of a hypothesis ĥT = hS ◦ π in HT learned from mT

examples, which depends on dHT = dhS◦π,
– a term that expresses the “proximity” between the source and the target

problems.

For the latter term, we adapt the theoretical study of McNamara and Balcan
[9] on the transfer of representation in deep neural networks. We suppose that
PS , PT , hS , hT = ĥS ◦ π (π ∈ Π), ĥS and Π have the property:

∀ ĥS ∈ HS : Min
π∈Π

RT (ĥS ◦ π) ≤ ω
(
RS(hS)

)
(2)

where ω : IR → IR is a non-decreasing function.
Equation (2) means that the best target hypothesis expressed using the

learned source hypothesis has a true risk bounded by a non-decreasing func-
tion of the true risk on the source domain of the learned source hypothesis.

We are now in position to get the desired theorem.
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Theorem 1. Let ω : IR → IR be a non-decreasing function. Suppose that PS ,
PT , hS , hT = ĥS ◦ π(π ∈ Π), ĥS and Π have the property given by Eq. (2). Let
π̂ := ArgMinπ∈Π R̂T (ĥS ◦ π), be the best apparent projection.

Then, with probability at least 1 − δ (δ ∈ (0, 1)) over pairs of training sets
for tasks S and T :

RT (ĥT ) ≤ ω
(
R̂S(ĥS)

)
+ 2

√
2 dHS log(2emS/dHS ) + 2 log(8/δ)

mS

+ 4

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

(3)

Proof. Let π∗ = ArgMinπ∈Π RT (hS ◦ π). With probability at least 1 − δ:

RT (hS ◦ π̂) ≤ R̂T (hS ◦ π̂) + 2

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

≤ R̂T (hS ◦ π∗) + 2

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

≤ RT (hS ◦ π∗) + 4

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

≤ ω
(
RS(ĥS)

)
+ 4

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

≤ ω
(
R̂S(ĥS)

)
+ 2

√
2 dHS log(2emS/dHS ) + 2 log(8/δ)

mS

+ 4

√
2 dhS◦Π

log(2emT /dhS◦Π
) + 2 log(8/δ)

mT

This follows from the fact that [10] (p. 48) using m training points and
a hypothesis class of VC dimension d, with probability at least 1 − δ, for all
hypotheses h simultaneously, the true risk R(h) and empirical risk R̂(h) satisfy

|(R(h)− R̂(h)| ≤ 2
√

2 d log(2em/d)+2 log(4/δ)
m . For hS ◦Π, this yields the first and

third inequalities with probabilities at least 1− δ/2. For HS , this yields the fifth
inequality with probability at least 1 − δ/2. Applying the union bound archives
the desired results. The second inequality follows from the definition of π̂, and
the fourth inequality is where we inject our assumption about the transferability
(or proximity) between the source and the target problem. �

We can thus control the generalization error on the transfer domain by con-
trolling dhS◦Π

, mS and ω which measures the link between the domain and the
target domain. The number of target training data mT is typically supposed to
be small in transfer learning and thus cannot be employed to control the error.
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3.2 Boosting Projections from Target to Source

The above analysis bounds the generalization error of the learned target hypoth-
esis hS ◦ π̂ in terms, among others, of the VC dimension of the space hS ◦ Π.
The problem of controlling the capacity of such a space of functions in order to
prevent under or over-fitting is the same as in the traditional supervised learning
setting. The difficulty lies in choosing the right space Π of projection functions
from XT to XS .

The space of hypothesis functions considered is:

L
(
hS ◦ΠB

)
:=

{
x 	→ sign

[ N∑

n=1

αn

(
hS ◦πn(xT )

)
]

: ∀n, αn ∈ IR, and πn ∈ ΠB

}

where ΠB is a space of weak projections satisfying definition (1).
Now, from [11] (p. 109), the VC dimension of the space hS ◦ ΠB satisfies:

dL(hS◦ΠB) ≤ N(dhS◦ΠB
+ 1) (3 log(N(dhS◦ΠB

+ 1)) + 2)

If dhS◦ΠB

 dhS◦Π , then dL(hS◦ΠB) can also be much less than dhS◦Π , and

theorem (1) provides tighter bounds.
Using the TransBoost method, we can thus gain both on the theoretical

bounds on the generalization error and on the ease of finding an appropriate
space of projections XT → XS .

4 Design of the Experiments

4.1 The Main Dimensions of Experiments in Transfer Learning

There are two dimensions that can be expected to govern the efficiency of transfer
learning:

1. The level of signal in the target data.
2. The relatedness between the source and the target domains.

Regarding the first dimension, one can expect that if there is no signal in the
target data (i.e. the examples are labelled randomly), then no regularity can be
extracted, directly or using transfer. In fact, only overfitting of the training data
can potentially occur. If, on the contrary, the target learning task is easy, then
there cannot be much advantage in using transfer learning. A question therefore
arises as to whether there might be an optimal level of signal in the target data
so as to maximally benefit from transfer learning.

The second dimension is tricky. Here, we intuitively expect that the closer the
source and target domains (and problems), the more profitable transfer learning
should be. However, how should we measure the “relatedness” of the source and
target problems? In the domain adaptation setting, closeness can be measured
through a measure of the divergence between the source distribution and the
target one, since they are defined on the same input space. In transfer learning,
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the input spaces can be different, so that it is much more difficult to define a
divergence between distributions. This is why we resorted to the function ω in
our theoretical analysis. In our experiments, we control relatedness through the
information shared between source and target (see below).

4.2 Experimental Setup

In our study, we devised an experimental setup that would allow us to control
the two dimensions above.

In the target domain, the learning task is to classify time series of length
tT into two classes: hT : IRtT → {−1,+1}. By controlling the level of noise and
the difference between the distributions governing the two classes, we can control
the signal level, that is the difficulty of extracting information from the target
training data. We control the amount of information by varying the size mT of
the target training set.

Likewise, the source input space is the space of sequences of real measure-
ments of length tS . Therefore, we have hS : IRtS → {−1,+1}.

Varying |tS − tT | is a way of controlling the information potentially shared
in the two domains. With tS = tT , the two input domains are the same.

Note that learning to classify times series is not a trivial task. It has many
applications, some of them involving to classify time series of length different
from the length for which exists a classifier.

4.3 Description of the Experiments

Time series were generated according to the following equation:

xt = t × slope × class
︸ ︷︷ ︸
information gain

+ xmax sin(ωi × t + ϕj)︸ ︷︷ ︸
sub shape within class

+ η(t)
︸︷︷︸

noise factor

(4)

The fact that the noise factor is generated according to a Gaussian distribution
induces a distribution over the data (class ∈ {−1,+1}).

The level of signal in the training data is governed by:

1. the slope factor : the higher the value of the slope factor, the easier the dis-
crimination between the two classes at each additional time step

2. the number of different shapes in each class of sequences, each shape controlled
by ωi and φj , and the importance of this factor in the equation being weighted
by xmax

3. the noise factor η(t)
4. the length of the time series, that is the number of measurements
5. the size of the training set

In our experiments, the noise factor is generated according to a Gaussian distri-
bution of mean = 0 and standard deviation in {0.001, 0.002, 0.02, 0.2, 1}.

Figure 2 illustrates what can be obtained with slope = 0.01 with 3 subclasses
in the +1 class, and 2 subclasses in the −1 class.
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Fig. 2. A synthetic data set S with 5 times series where η is Gaussian (μ = 0, σ = 0.2).

In the experiments reported here, we kept the size of the training set constant.
In each experiment, 900 times series of length 200 were generated according to
the equation described above: 450 times series in each class −1 or +1. We varied
the difficulty of learning by varying the slope from almost non existent: 0.001 to
significant: 0.01. Similarly, we varied the length tT of the target training set in
{20, 50, 70, 100} thus providing increasing levels of signal.

A target training data set of 300 time series was drawn equally balanced
between the two classes. Note that this relatively small number corresponds
to transfer learning scenarios where the training data is limited in the target
domain. The remaining 600 time series were used as a test set. The source
hypothesis was learned using the complete time series generated as explained
above.

In these experiments, the set of projections Π was chosen as a set of “hinge
functions”, defined by three parameters, the slope of the first linear part, the
time t where the hinge takes place, and the slope of the second linear part. The
set is explored randomly by the algorithm and a projection is retained if its
error rate on the current weighted data is lower than 0.45. We explored other,
richer, spaces of projections without gaining superior performances. This simple
set seems to be sufficient for this learning task.

In order to better assess the value of TransBoost, its performance was com-
pared (1) to a classifier (Gaussian SVM as implemented in Scikit Learn) acting
directly on the target training data, (2) to a boosting algorithm operating in
the target domain with base classifiers being Gaussian SVMs, and (3) to a base-
line transfer learning method that consists in finding a regression from the target
input space to the source input space using a SVR regression. In this last method
the regression acts as a translation from XT to XS and the class of an example
xT is given by hS

(
regression(xT )

)
.

Table 1 provides representative examples of the results obtained. Each cell of
the table shows the average performance (and the standard deviations) computed
from 100 experiments repeated under the same conditions. The experimental
conditions are organized according to the level of signal in the training data. In
the experiments corresponding to this table, the source hypotheses were learned
according to the first protocol defined above.

Several lessons can be drawn. First of all, in most situations, TransBoost
brings very significant gains over learning without transfer or using transfer
learning with regression. Figures 3 and 4 that sum up a larger set of experimental



Transfer Learning by Learning Projections from Target to Source 127

Table 1. Comparison of the error rate (lower is better) between: learning directly in
the target domain (columns hT (train) and hT (test)), using TransBoost (columns HT
(train) and HT (test)), learning in the source domain (column hS (test)) and, finally,
mapping the time series with a SVR regression and using hS (näıve transfer, column
H ′

T (test)). Test errors are highlighted in the orange columns. Bold numbers indicate
where TransBoost significantly dominates both learning without transfer and learning
with näıve transfer.

slope, noise, tT hT (train) hT (test) HT (train) HT (test) hS (test) H′
T (test)

0.001, 0.001, 20 0.46 ± 0.02 0.50 ± 0.08 0.08 ± 0.03 0.08 ± 0.02 0.05 0.49 ± 0.01

0.005, 0.001, 20 0.46 ± 0.02 0.49 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 0.45 ± 0.01

0.005, 0.002, 20 0.46 ± 0.02 0.49 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.02 0.43 ± 0.01

0.005, 0.02, 20 0.44 ± 0.02 0.48 ± 0.03 0.09 ± 0.01 0.10 ± 0.01 0.01 0.47 ± 0.01

0.001, 0.2, 20 0.46 ± 0.02 0.50 ± 0.01 0.46 ± 0.02 0.51 ± 0.02 0.11 0.49 ± 0.01

0.01, 0.2, 20 0.42 ± 0.03 0.47 ± 0.03 0.34 ± 0.02 0.35 ± 0.02 0.02 0.35 ± 0.01

0.001, 0.001, 50 0.46 ± 0.02 0.50 ± 0.01 0.08 ± 0.03 0.08 ± 0.02 0.06 0.41 ± 0.01

0.005, 0.001, 50 0.25 ± 0.07 0.28 ± 0.09 0.01 ± 0.01 0.01 ± 0.01 0.01 0.28 ± 0.01

0.005, 0.002, 50 0.27 ± 0.07 0.30 ± 0.08 0.02 ± 0.01 0.02 ± 0.01 0.02 0.28 ± 0.01

0.005, 0.02, 50 0.26 ± 0.07 0.30 ± 0.08 0.04 ± 0.01 0.04 ± 0.01 0.01 0.31 ± 0.01

0.001, 0.2, 50 0.44 ± 0.02 0.50 ± 0.01 0.38 ± 0.03 0.44 ± 0.02 0.15 0.43 ± 0.01

0.01, 0.2, 50 0.10 ± 0.03 0.12 ± 0.04 0.10 ± 0.02 0.11 ± 0.02 0.03 0.15 ± 0.02

0.001, 0.001, 100 0.43 ± 0.03 0.47 ± 0.03 0.07 ± 0.02 0.07 ± 0.02 0.02 0.23 ± 0.01

0.005, 0.001, 100 0.06 ± 0.03 0.07 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.01 0.07 ± 0.02

0.005, 0.002, 100 0.08 ± 0.03 0.10 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.02 0.07 ± 0.01

0.005, 0.02, 100 0.08 ± 0.03 0.09 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 0.01 0.07 ± 0.01

0.001, 0.2, 100 0.04 ± 0.03 0.46 ± 0.02 0.28 ± 0.02 0.31 ± 0.01 0.16 0.31 ± 0.01

0.01, 0.2, 100 0.03 ± 0.01 0.05 ± 0.02 0.04 ± 0.01 0.05 ± 0.01 0.02 0.05 ± 0.01

conditions make this even more striking. In both tables, the x-axis reports the
error rate obtained using TransBoost, while the y-axis reports the error rate of
the competing algorithm: either the hypothesis hT learnt on the target training
data alone (Fig. 3), or the hypothesis H ′

T learned on the target data projected on
the source input space using a SVR regression (Fig. 4). The remarkable efficiency
of TransBoost in a large spectrum of situations is readily apparent.

Secondly, as expected, Transboost is less dominant when either the data is so
noisy that no method can learn from the data (high level of noise or low slope):
this is apparent on the right part of the graphs 3 and 4 (near the diagonal),
or when the task is so easy (large slope and/or low noise) that nothing can be
gained from transfer learning (left part of the two graphs).

We did not report here the results obtained with boosting directly in the
target input space XT since the learning performance was almost the same as
the performance as the one of the SVM classifier. This shows that this is not
boosting in itself that brings a gain.
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Fig. 3. Comparison of error rates. y-
axis: test error of the SVM classifier
(without transfer). x-axis: test error of
the TransBoost classifier with 10 boost-
ing steps. The results of 75 experi-
ments (each one repeated 100 times)
are summed up in this graph.

Fig. 4. Comparison of error rates. y-
axis: test error of the “näıve” transfer
method. x-axis: test error of the Trans-
Boost classifier with 10 boosting steps.
The results of 75 experiments (each one
repeated 100 times) are summed up in
this graph.

4.4 Additional Experiments

We show here, in Figs. 5, 6 and 7 qualitative results obtained on the classical
half-moon problem. It is apparent that Transboost brings satisfying results.

Fig. 5. Experiments on the half-moon problem.

5 Comparison to Previous Works

In the theoretical analysis of Ben-David et al. [1,2], one central idea is that
a common representation space should be found in which the projections of
the source data {(xS

i )}1≤i≤m and of the target data {(xT
i )}1≤i≤m should be as

undistinguishable as possible using discriminative functions from the hypothesis
space H. The intuition is that if the domains become indistinguishable, a classi-
fier constructed for the source domain should work also for the target domain.
It has been at the core of many proposed methods so far [3,5,7,12].

In [8] a scenario in which multiple sources are available for a single target
domain is studied. For each source i ∈ {1, . . . , k}, the input distribution Di is
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Fig. 6. A KNN model trained on the
few target data points (in yellow).
(Color figure online)

Fig. 7. A KNN model transboosted on
the few target data points.

known as well as a hypothesis hi with loss bounded by ε on Di. It is further
assumed that the target input distribution is a mixture of the k source distribu-
tions Di. The adaptation problem is thus seen as finding a combination of the
hypotheses hi. It is shown that guarantees on the loss of the combined target
hypothesis can be given for some forms of combinations. However, the authors do
not show how to learn the parameters of these combinations. In [4], the authors
present a system called TrAdaboost, which uses a boosting scheme to eliminate
data points that seem irrelevant for the new task defined over the same space
X . Despite the use of boosting, the scope is quite different from ours.

Finally, the authors in [6] study a scheme seemingly very close to ours. They
define Hypothesis Transfer Learning algorithms as algorithms taking as input a
training set in the target domain and a source hypothesis in the source domain,
and producing a target hypothesis:

Ahtl : (XT × YT )m × HS → HT ⊆ YX

One goal of the paper is to identify the effect of the source hypothesis on the
generalization properties of Ahtl. However, the scope of the analysis is limited in
several ways. First, it focusses on linear regression with the Regularized Least
Square algorithm. Second, the formal framework necessitates that in fact XT =
XS and YT = YS . It is thus more an analysis of domain adaptation than of
transfer learning. Third, the transfer learning algorithm in effect tries to find a
weight vector wT as close as possible to the source weight vector wS while fitting
the target data set. There is therefore a parameter λ to set. More importantly,
the consequence is that the analysis singles out the performance of the source
hypothesis on the target domain as the most significant factor controlling the
expected error on the target problem. Again, therefore, the target hypothesis
cannot be much different from the source one, which seems to defeat the whole
purpose of transfer learning.

6 Conclusion

This paper has presented a new transfer learning algorithm, TransBoost, that
uses the boosting mechanism in an original way by selecting and combining weak
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projections from the target domain to the source domain. The algorithm inherits
some nice features from boosting. There is only one parameter to set: the number
of boosting steps, and guarantees on the training error an on the test error are
easily derived from the ones obtained in the theory of boosting.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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