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Abstract: This paper addresses the problem of counting objects from aerial images. Classical approaches either consider
the task as a regression problem or view it as a recognition problem of the objects in a sliding window over the
images, with, in each case, the need of a lot of labeled images and careful adjustments of the parameters of the
learning algorithm. Instead of using a supervised learning approach, the proposed method uses unsupervised
learning and an agent-based technique which relies on prior detection of the relationships among objects. The
method is demonstrated on the problem of counting plants where it achieves state of the art performance when
the objects are well separated and tops the best known performances when the objects overlap. The description
of the method underlines its generic nature as it could also be used to count objects organized in a geometric
pattern, such as spectators in a performance hall.

1 INTRODUCTION

Object counting is an important task in computer vi-
sion motivated by a wide variety of applications such
as crowd counting, traffic monitoring, ecological sur-
veys, inventorying products in stores and cell count-
ing. In agriculture, for instance, Unmanned aerial
vehicles (UAVs) are very alluring (Sankaran et al.,
2015). UAVs allow for cheaper image recording,
enabling flexible and immediate image processing
(Gnädinger and Schmidhalter, 2017). One critical
challenge lies in the automatic counting of plants in
fields, if possible at various stages of development.
Indeed, the number of plants is important informa-
tion to evaluate the physiological characteristics of the
crop, and ultimately, the final yield.

However, many challenges are associated with ob-
ject counting. Objects are often variable in terms of
shape, size, pose and appearance. Also, they may be
partially occluded. Taking again examples from agri-
culture, the performance of automatic plant counting
is affected by the presence of weeds and blurry ef-
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fects, and different estimates can be obtained for dif-
ferent growth stages.

The range of potential applications for the object
counting task has motivated researchers across vari-
ous fields to develop several methods. They can be
categorized mainly into two classes: detection-based
and regression-based.

In the detection-based approach, a classifier is
learned to recognize the presence of the object(s) of
interest in a sub-image or window, and then this win-
dow is scrolled through the image in order to count
the number of recognized objects. There are however
difficulties associated with this approach. First, it re-
quires (very) numerous labeled training examples, of-
ten in the form of manually drawn bounding boxes
or pixel annotations, which are notoriously costly to
acquire. Second, classification of objects is itself a
challenging task because of the variability of the ap-
pearances of objects, presence of noise and possible
partial occlusions. Besides the selection of relevant
descriptors, such as wavelets, shapeless, edgeless, and
so on, it requires also the fine-tuning of the parame-
ters of the classification algorithm. Finally, the choice
of the size of a sliding window and of the scrolling
process can be tricky.

In contrast, regression-based methods do not try



to detect individual objects but, instead, attempt to di-
rectly estimate the number of objects of interest from
an overall characterization of the image. The idea is to
learn a mapping between features extracted from the
images and the counts. This overcomes most of the
difficulties of detection-based methods and, in recent
years, these methods have defined the state-of-the-art
performances, specially through the use of convolu-
tional neural networks. However, these methods still
require lots of training images, and advanced exper-
tise to train deep neural networks. They also often as-
sume fixed object sizes and have to be retrained when
the objects of interest change.

In this paper, we introduce a novel approach, valid
when the objects of interest have regular spatial rela-
tionships, like spectators in a performance hall, goods
on the shelves of a retail store or plants in fields. It
works in two phases. First, the approximate spatial
relationships between objects are estimated. Second,
based on the structure thus found, a multi-agent based
approach is used where the structure determines the
initial positions of the agents as well as a hierarchy of
control agents and therefore a set of communication
channels between the agents. Each agent is a weak
classifier which guesses if it is positioned over an ob-
ject of interest in the image and can confirm or deny
its guess through exchanges with other agents. The
second phase is iterative until the agents are no longer
undergoing any changes. The number of final agents
gives the number of detected objects.

The approach has been experimented on the plant
counting task. We tested its value both on real images
taken from UAVs (on sunflower fields) and on syn-
thetic images that allow one to vary the conditions:
size of the plants, proportion of weeds, mean distance
between rows and between plants, lighting conditions
and size of the shadows.

The advantages of the approach are that:

1. it does not require numerous training images since
the determination of the structure is unsupervised
and the agents themselves are simple detectors.

2. it easily adapts to various conditions on the struc-
ture, nature of the objects, their size and appear-
ance

3. it achieves high performances over the variety of
experimental conditions tested.

These good properties come from the assumption
that a regular structure exists among objects. The ap-
proach should therefore not work on crowd counting,
or on cells counting for instance. But when a regular
structure exists, this knowledge brings a power that
should not be wasted.

The paper is structured as follows. Section 2 de-
scribes the task of plant counting. Then, Section 3
presents the proposed approach. Information about
the generation of synthetic datasets used in the ex-
periments is provided in Section 4 and the results of
the experiments are reported in Section 5. Finally,
Section 6 concludes and gives perspectives on future
works.

2 THE PLANT COUNTING TASK

Automatically counting plants from aerial images
is challenging. Even when a field is planted with only
one type of plant, such as sunflowers, the plants vary
in size and shape. In addition, weeds are also present
and sometimes quite abundantly. Finally, the ground
is not always flat, which can introduce spurious vari-
ations in the lightning and appearance of the plants.

There exists quite a few studies that report the im-
pact of the choice of camera and the UAV’s flying
height on the quality of the images that can be pro-
duced, and we do not delve into these considerations
here (see for instance (Dvořák et al., 2015; Chris-
tiansen et al., 2017)). However, due to the lack of
publicly available datasets for the task of plant count-
ing, we have used a data set provided by the Terres In-
ovia research institute. Figure 1 provides an example
of an aerial image of a sunflower field. One can see
rows of plants, here in a rather late stage with overlap
between plants, shadows of various sizes and patches
of weeds, especially on the left side of the image.

Cependant, cette méthode ne permet pas de différencier les adventices des plants de tournesols car ce sont
deux objets de couleur verte. Nous avons donc cherché une autre méthode de segmentation de manière à éviter
que les adventices soient retenus (c’est à dire affichés en blanc) à l’issue de cette étape.

2.1.2 Deuxième niveau par la méthode d’Otsu

On voit nettement sur les images que les tournesols apparaissent plus clairs que la plupart des adventices
(Figure 4). Nous avons alors exploité cette différence de teinte pour effectuer une deuxième étape de segmen-
tation et essayer de séparer les pixels des tournesols des pixels des adventices.

Figure 4 – Image de la parcelle de Niort. Au centre, les adventices apparaissent plus foncés.

Une méthode de segmentation automatique présentée par Otsu [12] permet de trouver automatiquement
une valeur de seuil optimale qui sépare deux groupes de pixels. Cette méthode est très employée pour l’analyse
d’images de champs et permet d’effectuer une séparation automatique de pixels de deux teintes de vert différentes
(voir article [15] par exemple). Cette séparation est réalisée grâce à un seuil qui se place automatiquement afin
de former deux groupes de valeurs. Ces deux groupes sont trouvés de sorte que la variance intra-groupe soit
minimale, et la variance inter-groupe maximale (minimisation du rapport intra

inter ). Nous avons appliqué cette
méthode de segmentation sur des images ExG (section 2.1.1) afin de séparer les valeurs d’indices ExG propres
aux tournesols de celles propres aux adventices. L’algorithme de séparation d’Otsu ne différencie que deux
groupes. Or dans notre cas nous en avons 3 : le sol, les adventices et les tournesols. C’est pourquoi il faut
au préalable régler un seuil minimal de départ de recherche qui exclut d’office le premier groupe de pixels
correspondant au sol, du reste. La séparation ne se fait alors qu’entre les pixels du groupe adventices et du
groupe tournesol. (Figure 5)

Figure 5 – A gauche, l’image originale. Au milieu l’image en indice ExG. A droite, un profil schématique
de l’histogramme des valeurs d’ExG sur lequel est appliqué l’algorithme de séparation d’Otsu. Encadré en
orange, les valeurs d’ExG non traitées par l’algorithme (borne supérieure fixée par l’utilisateur). La ligne
verticale rouge correspond à une illustration d’un seuil de séparation possiblement trouvé par l’algorithme
d’Otsu

Cet algorithme permet de bien séparer les adventices des tournesols comme le montre la figure 6. En
revanche, la qualité de la séparation adventice-tournesol dépend de la valeur seuil de départ de recherche de
l’algorithme (fixée par l’utilisateur).

4

Figure 1: Example of an aerial image from a sunflower field.

As explained below, in Section 4, we also coded a
generator of synthetic images that closely mimics real
images. This allows us to produce as many images as
needed, and above all to control parameters such as
the lightning conditions, the plants growth stage, and
the distance between plants and between rows.



3 THE METHOD

3.1 Analyzing the Spatial Relationships

Crop fields usually exhibit a geometrical design re-
sulting from the agricultural tool that helped making
them. Whether they are traced with a hand tool or
a machine, the rows of a crop field are indeed usu-
ally parallel to each other and evenly spaced. In addi-
tion, crops are planted on the basis of a target density
which induces an even distance between two consecu-
tive plants. Taking this into account potentially brings
valuable information to help detecting, and therefore
counting, plants on an image captured by an UAV.

One main theme of this paper is to underline the
interest of researching and exploiting information on
the geometry of the objects in the images to be an-
alyzed. For crop fields images, in order to estimate
the inter-rows and inter-plants distances, the method
presented begins with i) isolating the green areas of
the images; then ii) rotating the images enough for
the rows to be collinear with the Y axis; and, finally,
iii) applies a Fourier Transform (FT) analysis on the
signal produced by projecting the coordinates of the
green pixels on the X and Y axis.

3.1.1 Image Segmentation

Before estimating the inter-rows and inter-plants dis-
tances, it is necessary to identify the areas of the im-
ages corresponding to plants. To that end, we used
the vegetation index Excess Green (ExG) in associa-
tion with Otsu’s automatic segmenting method (Otsu,
1979). The ExG vegetation index consists in replac-
ing every pixels of an image by its amplified green
value: ExG = 2g− r− b. The association of ExG
with Otsu’s segmentation method for crop fields im-
age segmentation has been studied and validated in
previous works (Guerrero et al., 2012; Guijarro et al.,
2011; Pérez-Ortiz et al., 2016). At the end of the seg-
mentation process, the RGB crop fields images are
transformed into black and white images where the
white pixels are expected to correspond to a plant
(crop or weed). In the rest of this paper, these black
and white images will be referred as Otsu images.

3.1.2 Vertically Adjusting the Images

To ease the estimation of the inter-rows and inter-
plants distances, the rotation of all the images of the
datasets was computed in order for the crop rows to
be oriented along the Y axis. To do so, each Otsu im-
ages was rotated between 0◦and 180◦yielding an as-
sociated score for every 1◦. This score is the ratio of

columns of the rotated image that are occupied by at
least one white pixel to the total number of columns
(number of pixels along the X axis) of this rotated im-
age. It lies between 0 (for a pitch black image) and 1
(at least one white pixel per column). Since rows of
crop fields are usually defined as lines, the minimum
value of this score for a field indeed corresponds to the
case when the rows are colinear with the Y axis. This
method succeeds as long as two consecutive rows do
not overlap with each other or weed do not cover all
the inter-rows space. Should this happen, one can ap-
ply a filter to the Otsu images in order to only keep
the skeleton of the crop rows in white. This can be
implemented with, for example, the midpoint encod-
ing suggested in (Han et al., 2004).

3.1.3 Estimating the Inter-Rows and
Inter-Plants Distances

Crop fields present regular structures characterized by
a periodical geometry among rows as well as among
plants in each row. The problem is to automatically
identify the rows and the plants from an (Otsu) im-
age where neither are labeled. The approach relies on
having a prior knowledge of the type of structure to
expect, and then to devise a procedure to extract that
type of signal from the input. Here, linear structures,
corresponding to rows, are expected, with an almost
constant inter-rows distance. The procedure depends
therefore on first detecting lines, and then, thanks to
a Fourier analysis, filtering out the lines that are peri-
odically positioned and thus have a high likelihood of
corresponding to rows, and not, say, to weeds.

Items 1 and 3 on Fig. 2 illustrate how a periodic
signals is detected out of a vertically adjusted Otsu
image. Since the rows are assumed to have been re-
aligned with the Y axis, the periodicity of the posi-
tions of the rows appears on the X axis: the peaks
of the density distribution of the white pixels on the
X axis mirror the positions of the rows on the image
(item 1). The inter-rows distance is computed using a
Fourier analysis on the density distribution and keep-
ing the maximal frequency thus found. Once the pe-
riod is identified, a search for the positions of the lo-
cal maxima of the density distribution is undertaken
yielding the estimated position of the rows along the
X axis.

A second steps aims at estimating the inter-plants
distance. This estimation is conducted as before, ex-
cept this is now the projections on the Y axis of the
white pixels attributed to each row that are considered
(items 3 and 4).



Figure 2: Fourier Analysis on the X and Y axis. The signal processed by the Fourier Transform is made from the projection
of the white pixels of the Otsu images on the X and Y axis.

3.2 A Multi-Agent Approach

We advocate the use of a multi-agent system which
takes advantage of the knowledge gathered on the ge-
ometry in the image. In the context of the plant count-
ing task, we identified four types of agents that follow
the organization policy of a corporate hierarchy, as
shown in Fig. 3. The agent at the top of the system
is called the Director Agent (DA), then come the Row
Agents (RAs), the Plant Agents (PAs) and finally the
Pixel Agents (PXAs). Following the corporate hier-
archy scheme, each agent of one layer either acts on
its own or receive orders from an agent of the upper
layer: there is no communication between agents of
the same layer. The environments in which the agents
act are the vertically adjusted Otsu images.

3.2.1 The Director Agent

The DA can initialize or destroy RAs, and decides
when to stop the simulation. Typically, the DA ini-
tializes or destroys RAs at the beginning of the sim-
ulation according to the predictions made using the
Fourier analysis performed on the Otsu images (see

3.1.3). Since the DA has access to all the informa-
tion provided by the agents of the lower levels, it is
also the one that computes the inter-plants critical
distance (IPCD) (see below).

Managing the Row Agents At the beginning of the
simulation, the DA analyses the rows detected us-
ing the Fourier analysis in an attempt to exclude the
false positives: rows that are only made out of weeds.
These will be positioned in between real RAs (rows
consisting in plants). Therefore, everywhere a false
RA exists, the inter-rows distance will be decreased.
Thus, the DA clusters the candidate RAs resulting
from the Fourier analysis into two groups according
to the distance separating the i-th and the (i+ 1)-th
RA. The k-means clustering method is used on the
1-D array built with all the observable inter-rows dis-
tance. Once the two groups are formed, a two-sample
t-Test is applied under the classic null hypothesis that
the groups’ means are equal. If the hypothesis is re-
jected for a p-value threshold π, the DA eliminates
the RAs involved in the cluster that has the minimal
mean.



Figure 3: Hierarchical architecture of the multi-agent system.

Computing the Inter-Plants Critical Distance
(IPCD). Most of the decision functions used by the
agents depend on the IPCD. It is set equal to the max-
imum of the density distribution of the inter-plant dis-
tances.

3.2.2 The Pixel Agents

The PXAs, at the lowest level of the hierarchy, and
sensing the Otsu image. They are instantiated by a
PA. They become activated if they are positioned on
a white pixel and their position is determined by the
PA they are dependent upon.

3.2.3 The Plant Agents

The PAs are ultimately the most important agents for
the plant counting task. The number of PAs at the
end of the simulation determines the number of plants
detected in the frame of the image. Each PA has under
its supervision a group of PXAs that is centered on the
position of the PA. The role of the group of PXAs is to
guide the PA toward the most white parts of an Otsu
image (i.e. guiding them toward plants). Therefore, at
step i+1 of the simulation, a PA moves on the mean
point of all its activated PXAs at step i:

(PAi+1
x ,PAi+1

y ) = (
1
n ∑

PXA∈A
PXAi

x,
1
n ∑

PXA∈A
PXAi

y)

(1)
with A the set of activated PXAs. The x and y are
the positions of the agents. Finally, a PA can decide
to decrease or increase its sensing area by eliminating
PXAs or by initializing new PXAs. In our simula-
tions, we set the goal of the PA to have between 20%

and 80% of its PXAs activated. The hope is that the
PA will frame the area covered by a plant on the Otsu
image.

3.2.4 The Row Agents

RAs are instantiated by the DA according to the rows
detected by the Fourier Analysis (Fig. 2, item 2). In
turn, each RA first initializes as many PAs as were de-
tected using the Fourier analysis (Fig. 2, item 4). In a
second step, it instantiates additional PAs at its edges
in order to cover the whole length of the image. The
Fourier analysis may indeed miss plants at the edges
of the rows detected. The additional instantiated PAs
are evenly spaced at 1.1ν times the IPCD, ν being the
PAs fusing factor (see next paragraph). At every step
of the simulation, RAs will eliminate the PAs that are
located in black areas of the Otsu image: PAs with
less than a proportion δ of activated PXAs .

Filling and Fusing PAs
During the simulation, one RA may consider that the
distance between two consecutive PAs is either too
large or too small. It then decides to either fill in the
gaps with new PAs of fuse the two involved PAs ac-
cording to the following decision function:

Decision =

{
Fill if |PAi+1

y −PAi
y| > µ IPCD

Fuse if |PAi+1
y −PAi

y| < ν IPCD
(2)

with µ and ν the filling and fusing factor respectively.
The PAs instantiated during a Fill action are evenly
spaced at 1.1ν times the IPCD from the i-th PA and
as long as they do not overcome the (i+1)-th PA.



Constraining PAs Movements
In a crop field, the rows usually exhibit a linear shape,
aligned with the Y axis when adjusting the images
(Section 3.1.2). The plants that are part of the same
row are thus expected to be aligned. As a conse-
quence, a RA can constrain the moves of the PAs that
it supervises in order to keep them as aligned as pos-
sible. At each step of the simulation, the PAs are first
free to move in the direction that their PXAs are guid-
ing them. Then, the RA analyses the moves of its PAs
to compute whether most of them moved to the right
or to the left of the detected alignment. All the PAs
that moved in the opposite direction of the majority
are re-positioned on the mean X coordinate of the PAs
that are part of the majority. That way, the PAs move
as a group in the same direction with regards to the X
axis.

3.2.5 Running the Simulation

The simulation consists in a sequence of actions that
the agents carry out in a deterministic order (Algo.
1). The final count of the plants could be deter-
mined when the number of PAs remain constant, with
no destruction nor initialization between the i-th and
(i+1)-th steps.

4 SYNTHETIC DATASETS

Counting objects in an image is a difficult task,
and solving it by automatic means requires using large
data sets with at the very least hundreds of images,
with thousands of objects, each of them to be labeled.
In the case of plant counting, there are no publicly
available data sets. This entails a lack of labeled train-
ing data and a problem of reproducibility of experi-
ments.

The solution we adopted is to use a virtual en-
vironment engine to generate artificial crop fields.
Game engines are indeed nowadays able to generate
very realistic images, with the advantage to have an
automatic labeling of the objects of interest. Here
we chose to use the game engine Unity (Technolo-
gies, 2020) in which we simulated an UAV captur-
ing pictures. In the following sections, we provide an
overview of the implementation of the generator.

4.1 The Field Generator

Unity is a game engine based on the notion of game
objects (GO) to which are attached components (CP).
Different GOs exhibit different behaviours based on
the nature of the CPs attached to them. There is a

Algorithm 1: Simulation
Input: max nb steps, µ, ν, δ, π

1 initialize DA, RAs, PAs, PXAs

/* Sec. 3.2.1 */
2 AnalyseRows(π)
3 ComputeIPCD()
4 AnalyseRowsEdges(ν, IPCD)

5 StopSimu←− False
6 RE Eval←− False
7 i←− 1
8 while

i≤ max nb steps & StopSimu = False do
/* Sec. 3.2.3 */

9 MoveToMeanPoint()

/* Sec. 3.2.4 */
10 ConstrainPAsXMovement()
11 FillOrFusePAs(µ, ν, IPCD)

/* Sec. 3.2.3 */
12 AdaptSize()

/* Sec. 3.2.4 */
13 DestroyLowActivityPAs(δ)

14 if Nb PAsi−Nb PAsi−1 = 0 then
15 if RE Eval = False then
16 DA ComputeIPCD()
17 RE Eval←− True
18 else
19 StopSimu←− True
20 end
21 else
22 RE Eval←− False
23 end
24 i←− i+1
25 end

wide variety of built-in CPs in Unity which help set-
ting up the physics (e.g. gravity), the lights, 3D mod-
els, artificial intelligence, etc. At a high level, a vir-
tual environment in Unity is only a set of GOs that
behave as the designer of the environment had de-
cided. It is also possible to attach C# scripts to GOs
that govern CPs when one wishes for something more
specific than the built-in CPs. In our case, the crop
field generator (CFG) is a C# script that we attached
to a single GO in the virtual environment. The script
takes as input a set of parameters which we can mod-
ify at will to quickly generate a wide range of crop
fields. The parameters mainly manage the surface of
the field, the virtual crop, the weed, the sun and the
simulated drone.



Figure 4: Parameters involved in the placement of crops
along rows. The red labels are parameters undergoing ran-
domization.

(a) Perlin Noise Texture (b) Thresholded Perlin
Noise Texture

Figure 5: Example of a Perlin Noise Texture used to place
weeds.

4.1.1 Placing the Crops

Crops position in the field are based on several param-
eters shown in red on Figure 4. All parameters except
the growth probability are drawn randomly over an
interval centered on a value specified as part of the
CFG options. For example, the inter-row distance be-
tween a pair (i, i+1) of rows is decided as a random
draw when it is time to instantiate the (i+ 1)-th row.
Similarly, the inter-plant distance as well as the inter-
plant angle between a pair ( j, j+1) of crops are cho-
sen randomly when instantiating the ( j+ 1)-th crop.
During instantiation, we test whether the crop actu-
ally grows according to the growth probability. If the
test is successful, the rotation as well as the size of
the 3D model are also decided by a random draw on
centered intervals. The field is filled with rows and
plants as long as the calculated coordinates of the 3D
models are within the boundaries of the plane making
up the virtual field.

4.1.2 Placing the Weeds

Weeds cannot be expected to follow any geometry at
the scale of the field but they can regularly be found

clustered together. This is why we used the Perlin
Noise (Perlin, 1985) to generate spaces on the crop
field where the weeds would be present. Perlin Noise
was originally implemented to create 3D textures that
would feel real (Perlin, 1985) and has since been
widely used in visual effects. Perlin Noise is a type
of gradient Noise that can be adapted to any dimen-
sion. For this work, we used the 2D perlin noise and
generated textures such as those shown in Fig. 5a. In
this texture, the gray colors are scaled along the noise
values between 0 and 1. Once the texture is obtained,
a threshold (a parameter of the field generator) deter-
mines the spaces containing weeds. Figure 5b shows
the thresholded version of the texture of Figure 5a,
each white pixel being a potential weed. The actual
presence of the weed at this location is decided on the
basis of a weed growth probability.

4.1.3 Placing the Sun

In Unity, the sun is a type of light source among oth-
ers and its elevation and azimuth can be simulated
using the rotation parameters available through the
Transform CP. Therefore, in order to generate a va-
riety of differently shaded crop fields in our synthetic
datasets, we added a couple of parameters to control
both the elevation and the azimuth.

4.1.4 Simulating the UAV

The altitude of the UAV is the height at which the
camera takes pictures. The focal length of the cam-
era and the size of the sensor can also be configured
using two parameters. In addition, the flight plan of a
UAV generally takes into account the proportions of
overlap on the Y and X axes between the images it
captures to avoid having crops cut in half at the edge
of the images. Two more parameters control this over-
lap. Figure 6 describes the UAV flight plan.

4.2 Content of the Datasets

Plants may overlap as the plants grow. Plants at an
early stage of development are supposed to be well
separated from each other. However, during growth,
the foliage of one plant may reach and then overlap
that of its neighbours. It is assumed that the over-
lap interferes with the signal used by the counting
method, and previous studies on automatic counting
of plants from UAV images have raised that the diffi-
culty of the task increases with the proportion of crop
overlap (Garcı́a-Martı́nez et al., 2020). In order to
assess this effect on our method, we generated three
datasets with three different levels of overlap between
crops.



Figure 6: Scheme of a UAV flight plan above the virtual
crop field. The start position is calibrated to capture the
bottom left corner of the field. The other capture points
are calculated depending on the image overlap configured
on the X and Y axis (here, 50% on both). As a result, the
images of the upper and right limit of the field may go over
these. The area named Z4 is subsequently captured four
times, one by each of the four captured points numbered in
blue.

The plants are separated (S) from each other in the
first dataset; they overlap for some leaves and do not
overlap for others (B) in the second datase; and fi-
nally, the third dataset exhibits overlap (O) between
neighbouring plants. The dataset (S) is considered
easy, (B) is intermediate and (O) is difficult. Aside
from varying the scale of the plant 3D model to sim-
ulate its growth, the parameters used to generate the
fields are similar for all three datasets. Each crop field
was generated with an inter-rows distance of 70 cm
and an inter-plants distance of 20 cm with 5% vari-
ability. This yields a target average of 7 plants/m2

which matches typical sunflower crop fields. The
plant growth probability was set to 0.8. The Perlin
noise threshold used to generate the surfaces where
weed grows was set to 0.75 while the weed growth
probability was set to 0.6. In each of these datasets,
100 crop fields were generated, and from each of them
four images were taken. So, each dataset contains
400 images which amounts to 1200 images in total.
To take pictures of the virtual fields, we simulated a
short drone flight plan that covers the lower left cor-
ner of the field as it moves once along the height and
width of the field (see the blue numbers on Fig. 6).
We have configured the motion of the simulated drone
to overlap the image by 50% along both their height
and width, as is usual with images from UAVs.

Fig. 7 gives an example of an image of a virtual
crop field. Fig. 7b is the same image after an Otsu

filter has been applied and the image has been reori-
ented so that the rows are aligned with the Y axis. (see
sections 3.1.1 and 3.1.2).

5 EXPERIMENTS AND RESULTS

The method we propose aims at counting objects
that are linked by spatial relationships in an image.
It is a two steps method with the first phase that de-
tects and estimates the spatial structure, and the sec-
ond phase which, starting from this structure identi-
fies the objects.

The goal of the experiments carried out is three-
fold. First, to assess the performance of the first
phase alone in counting plants, second, to measure
the added value of the second phase based on a multi-
agent approach, and, third, to look at the gain of per-
formance, if any, when parts of a field are covered
by multiple passes of the UAV and a redundancy of
information follows (see area Z4 in Figure 6 for an
example).

But first, we briefly present the rules under which
we considered that the method had successfully de-
tected a plant and how the counting performance was
measured.

5.1 Plant Detection Rules and
Performance Scores

In order to measure the performance of the Fourier
analysis alone, the rule is that if the plant position,
which is known in synthetic data sets, falls within a
40 square pixel area of a predicted position, then this
is counted as a true positive (TP).

For the multi-agent system, we considered that a
PA detected a plant if that plant was located within the
sensing area defined by the PXAs of the PA. If two
PA happen to detect the same plant, then only one PA
is counted as TP and the other is counted as a false
positive (FP). Additionally, a PA or a prediction from
the Fourier analysis that does not contain a plant in
their sensing area are also considered as FP. Finally, a
plant that has not been detected is counted as a false
negative (FN). In addition to these three indicators,
three scores are computed:

Detection Accuracy =
T P

Total number of PAs
(3)

Detection Recall =
T P

Total number of Plants
(4)



(a) An image of a virtual field (b) Otsu image vertically adjusted
Figure 7: Example of a an synthetic image and its vertically adjusted Otsu image.

Counting Accuracy =
Total number of PAs

Total number of Plants
(5)

These scores are later referenced as DAc, DR and CA
respectively.

The performance of the proposed algorithms is
measured on areas of the field that are covered four
times due to the 50% overlap between images on the
X and Y axis. For instance, in the example of Figure
6, the area Z4 is a candidate image satisfying these
constraints.

In the following, we compare the performances of
the Fourier analysis alone (Section 5.2), of the multi-
agent approach from a single image of the area (Sec-
tion 5.3), and of a technique that takes into account
that several images (up to four) can cover a given area
(Section 5.4).

5.2 Detecting the Spatial Structure and
Counting

As explained in Section 3.1.3, we use Fourier analysis
to approximate the spatial structure in an image. We
first try to discover the rows and then to locate plants
within the presumed rows. This relies on the analy-
sis of the density distribution of the projection of the
white pixels from an Otsu image on the X or Y axis
(Fig. 8 shows such a density distribution (in yellow)
as well as the detected peaks (in blue)). Notice that
the largest peaks indeed correspond to rows, but that
weeds can also produce peaks, albeit smaller ones.

Figure 8: Example of row detection thanks to Fourier anal-
ysis. The histogram in yellow results from the projection of
the white pixels of an Otsu Image on the X axis. The blue
parts of the histogram are the detected rows.

The results obtained for the three scores are sum-
marized in Table 1 in the line Fourier while Fig. 9
provides details on the distribution of the counting ac-
curacies (CAs) (violet boxes indicate the results of the
Fourier analysis).

It is apparent that the Fourier analysis alone tends
to underestimate the number of plants on dataset (S),
(the well separated plants) (12% on average) while
over estimating this number on datasets (B) (between
separated and overlapping) (by 3%) and (O) (overlap-
ping plants) (by 7% on average). Why is it so?

For dataset (S), the plants are well separated, but
this also entails that the peaks of the histogram used
by the Fourier analysis are rather narrow, and one con-
sequence is that if a peak is slightly off a predicted
position by the analysis, it may be entirely missed by
it. This may result in ignoring existing rows or plants
within a row.



Figure 9: Results on Counting Accuracy (CA). The colors of the whisker boxes indicate the method used to count the number
of plants. With Fourier Img. 1 we counted the plants with the Fourier analysis on one imagefor each of the 100 fields of the
dataset. The same images were used with MAS Img. 1 that counts the plants using the multi-agent system. MAS Img. All
and MAS Img. All Aligned are methods that exploit the redundancy when several images cover the same area in a field. The
black dots represent outliers. The boxes’ lower and upper limits indicate the 0.25-th and 0.75-th percentile respectively. The
median is represented on each box by a white line mark while the mean is represented as a black line mark. The grey diamond
represents the interval of confidence. Non-overlapping diamond between pairs of boxes are equivalent to rejecting the null
hypothesis of equal means of a two-sample t-Test.

For datasets (B) and (O), the overlapping leaves
between plants induces noise that leads the Fourier
analysis dedicated to the plants identification to find a
slightly higher frequency than the actual target. This
results in overestimating the number of plants.

Overall, still, taking into account that the Fourier
analysis is in fact used only to estimate the spatial re-
lationships between plants on crop fields, the counting
results are surprisingly good.

5.3 Effect of the Multi-Agents Analysis

The multi-agent stage initializes the PAs using the
predictions made by the detector of spatial relation-
ships, and then let the PAs evolve and converge to-
wards presumed plants. The question is: how much
this can improve the counting performance? In which
way can it correct false positives and false negatives?

In our experiments on plant counting, we ran
the simulations with the following parameters values:
max nb steps = 50, µ = 1.5, ν = 0.5, δ = 0.01 and
π = 0.0001. max nb steps has been set as an upper
limit of the number of steps of the simulation which
has never been reached in our experiments. The val-
ues µ and ν were chosen for geometric reasons. ν

is the PAs’ fusion factor; a value of 0.5 means that
two PAs perfectly positioned on consecutive plants
will absorb a wrongly positioned PA in-between them
which is desirable. µ is the PAs’ filling factor; if
two PAs are perfectly positioned on plants but another
plant has been missed in-between them, then a value
of 2 should allow its detection. However a value of

1.5 proved to be better during tests. Lowering the
values of δ and π will lead the simulation to over-
estimate the number of plants while raising them will
lead to underestimation. These values were optimized
by repeatedly testing the system on training synthetic
datasets. The reported results have been obtained on
test datasets, different from the training ones.

As can be seen in Fig. 9 and in Table 1, the re-
sults show that the multi-agent phase significantly im-
proves the counting performance. For the (S) and (B)
datasets, the mean value is closer to the value 1 (ap-
proximately 0.98 instead of 0.87 for the Fourrier anal-
ysis alone), which means that the estimated number
of plants is close to the correct one, and the confi-
dence interval is much narrowed (standard deviation
of 0.04 instead of 0.11). The gain is less pronounced
on the (O) dataset. Even if the distribution of the re-
sults are very similar between the Fourier analysis and
the multi-agent one (violet and orange boxes on Fig.
9), the average for the multi-agent analysis is signif-
icantly lower than the average of the Fourier analy-
sis as indicated by the fact that the grey diamonds on
the boxes do not overlap (non-overlapping diamonds
mean that the null hypothesis of equal means can be
rejected using a 2-sample t-Test).

It is thus apparent that the proposed two step
method: first detecting a structure, then using a
multi-agent system to refine the counting, gives very
promising results. But, most of the areas of a crop
field are covered by several different images from
UAVs (up to four times in the example of Figure 6).
Is it possible then that even these good results can be



improved by resorting to the redundancy thus offered?

5.4 Exploiting Image Overlapping

A common practice when acquiring images of crop
fields is to let consecutive images overlap each other.
One of the main motivation for this is to avoid that
plants located at the edges of an image are only par-
tially visible, and thus ignored. Another motivation is
the hope that the mistakes made on an image can be
compensated on another image that partially covers
the same area. In our case, the synthetic datasets were
built with 50% overlap on the height and width of the
images. As an illustration, in our example, it exists
an area (e.g. Z4) that is covered by all four images.
In order to combine the information coming from N
(e.g. N = 4) analyses for a given area, we used an it-
erative method to form clusters of PAs that can be of
size n ∈ [1,N]. These clusters can contain at most one
PA from each analyses.

The results are presented under the name MAS
Img. All in Table 1 and Fig. 9.

Another variant of this algorithm (called MAS
Img. All Aligned) was introduced with the motiva-
tion that aligning the N images covering a given area
could help the clustering procedure to gather relevant
PAs. One analysis from the multi-agent approach is
chosen as a reference and then the algorithm attempts
to align the PAs of the N − 1 remaining analyses to
that reference.

The results reported in Table 1 and in Figure 9
show that combining information from the analysis
of several images brings improvement in the count-
ing accuracy for the (S) and (B) datasets. For the (O)
dataset, the variant MAS Img. All Aligned is to be pre-
ferred to the MAS Img. All method, while MAS Img.
All is better than MAS Img. All Aligned on the (S)
and (B) datasets. If the counting accuracy of the com-
bined method is slightly lower than for the method
analyzing only one image for the (O) datasets (1.05
instead of 1.03), on the other hand the detection accu-
racy (DA) is significantly improved from 0.83 to 0.90
which means that the plants are better recognized.

Overall then, combining information from several
images seems to be a good strategy.

5.5 Application to Real Images

We also applied the method to a subset of the dataset
of real crop fields provided by Terres Inovia. The im-
ages were taken in two regions in France, one near
Toulouse in the south-west, and one near Niort, a city
in the west of France. The dataset used in our ex-

periments contains a mosaic of images of a field near
Toulouse which all together make one composite im-
age of an entire sunflower field. These images are
therefore non-overlapping.

In total, the dataset contains 2111 non-labelled
images from which we randomly extracted 50 that
were manually labeled and used to test our method.
Not all the sunflowers in an image have grown at the
same rate, so the images mix areas where the plants
are well separated and areas where the leaves of one
plant overlap with those of its neighbors in the same
row. In addition, the drone captured the original im-
ages at an altitude of 30m (compared to 10m for the
synthetic data) and the sunflowers overlap with many
weeds in some images, making it sometimes difficult,
even for a human, to visually identify the sunflow-
ers. It is thus fair to say that the chosen subset of data
contains images comparable to the ones of the (S), (B)
and (O) synthetic datasets.

Our counting method yielded an average counting
accuracy of 1.03 for a standard deviation of 0.12 on
the 50 images subset. The detection accuracy and de-
tection Recall fared at 0.87 and 0.90 respectively for
a standard deviation of 0.14 for both. These scores
are at least as good as the ones reported in the state of
the art (see Section 5.6). Furthermore, they are quite
close to the results obtained on the synthetic dataset
even if the standard deviation is larger.

This confirms that using synthetic datasets for tun-
ing the method we propose is a promising procedure,
effectively leading to good results on real data.

5.6 Comparison with the State of the
Art

There are strong economic incentives for being able to
automatically count plants in fields at various stages
of growth. Aerial images from UAVs offer new possi-
bilities to do so and the scientific literature reflects this
interest with a increasing number of publications in
recent years. This is in line with similar concerns for
automatic object counting in other contexts, in partic-
ular counting people or vehicles.

Counting objects can be done through the detec-
tion of the objects, or it can be done from a density
estimate, usually directly from an analysis at the pixel
level of the image.

In the first case, object detection relies either on
some prior knowledge of the shape of the objects to be
counted or on machine learning to recognize objects.
Deciding which templates are useful is generally dif-
ficult, while using supervised learning requires (very)
many labeled images and large computing resources,
for example using deep neural networks.



Datasets Separate (S) Border (B) Overlap (O)
Scores DAc DR CA DAc DR CA DAc DR CA
Fourier
Img. 1

0.93
(0.04)

0.82
(0.11)

0.88
(0.12)

0.87
(0.06)

0.89
(0.05)

1.03
(0.04)

0.81
(0.05)

0.86
(0.05)

1.07
(0.05)

MAS Img.
1

0.99
(0.01)

0.97
(0.07)

0.97
(0.07)

0.98
(0.02)

0.98
(0.04)

1.00
(0.04)

0.83
(0.05)

0.86
(0.06)

1.03
(0.07)

MAS Img.
All

0.99
(0.01)

0.99
(0.01)

1.00
(0.01)

0.99
(0.02)

1.00
(0.01)

1.01
(0.02)

0.88
(0.04)

0.96
(0.02)

1.10
(0.05)

MAS Img.
All Aligned

0.99
(0.01)

0.98
(0.01)

0.99
(0.02)

0.99
(0.02)

0.98
(0.02)

1.00
(0.02)

0.90
(0.04)

0.94
(0.03)

1.05
(0.05)

Table 1: Average scores results on the three datasets. Standard deviation is in parenthesis. Values were rounded to the second
digit.

On the other hand, density estimation seems sim-
pler but it still requires large training sets and yields
coarser estimates of the number of objects in an im-
age. Both approaches, object-based and density-
based, are subject to large errors when objects are oc-
cluded or overlapping.

For plant counting, (Garcı́a-Martı́nez et al., 2020)
is an example of the template approach. In their maize
plant counting experiments, they selected 4 to 12 tem-
plates and used a Normalized Cross-Correlation tech-
nique to estimate the number of plants. The method
requires that representative plants in the images be
chosen, and no recipe is given for this. They obtain a
percentage or error of 2.2% when using 12 templates,
but acknowledge that the performance drops to 25.7%
when the plants overlap.

In their paper, (Ribera et al., 2017) use deep neural
networks to learn how to recognize sorghum plants.
They describe the rather involved preprocessing and
formatting steps that are necessary before learning
can take place. They also had to develop a technique
to increase the number of labelled training images.
Learning itself took between 50,000 and 500,000 it-
erations which entails a very heavy computing load.
They obtained a Mean Absolute Percentage Error of
6,7%. It is not possible to know if the data sets used
included overlapping plants or not.

The density-based approach is illustrated in
(Gnädinger and Schmidhalter, 2017). They first elim-
inate what can be presumed to be weeds and para-
sitic signals using a clustering method. Then they set
thresholds on different wavelengths in order to clas-
sify pixels as belonging to plants or not. This requires
some fine tuning. They obtain error rates around 5%
with fairly large standard deviations. Here too, plant
overlapping lead to a deterioration in performance.

It must be noticed that it is difficult to make fair
comparisons between the approaches proposed by
various authors due to the lack of publicly available
data sets and thus of a common basis for performance
evaluation.

6 CONCLUSIONS

With the arrival of new devices for taking pictures,
it is increasingly important to be able to automatically
count objects of interest in these images. This paper
has introduced a new method to achieve this. It is ap-
plicable when objects are spatially organized accord-
ing to a regular pattern. The method first detects the
pattern and then uses it to seed agents in a multi-agent
system. The method is simple, requiring no complex
fine tuning of parameters, the tricky definition of tem-
plates or costly learning. In fact, it requires very mod-
est computing resources.

In a series of extensive experiments on controlled
data sets and real aerial images of crop fields, the
method yielded state of the art or better performance
when the objects are well-separated while exceeding
the best known performances when the objects over-
lap.

Future work will include the incorporation of
plant growth models into the synthetic data gener-
ator so that more in-depth experiments can be con-
ducted on counting plants from sowing to harvest. On
the one hand, we expect that the method presented in
this paper will naturally lend itself to successive plant
growth counts in the same field. Indeed, the agents
existing at the end of a counting process at a given
time can be used as seeds for the counting process at
the next stage (for example in images of the same field
taken one month later). On the other hand, this would
contribute to set up a repository of realistic images
of crop fields thus allowing systematic comparisons
to be made between different plant counting methods.
In addition, we plan to test the method on other other
object counting problems such as counting people in
stadiums or performance halls or vehicles in parking
lots.
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