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Abstract—Early classification of time series assigns each
time series to one of a set of pre-defined classes using as few
measurements as possible while preserving a high accuracy.
This implies solving online the trade-off between the earli-
ness and the prediction accuracy. This has been formalized
in previous work where a cost-based framework taking into
account both the cost of misclassification and the cost of
delaying the decision has been proposed. The best resulting
method, called ECONOMY-γ, is unfortunately so far limited
to binary classification problems. This paper presents a set
of six new methods that extend the ECONOMY-γ method in
order to solve multiclass classification problems. Extensive
experiments on 33 datasets allowed us to compare the
performance of the six proposed approaches to the state-of-
the-art one. The results show that: (i) all proposed methods
perform significantly better than the state of the art one; (ii)
the best way to extend ECONOMY-γ to multiclass problems
is to use a confidence score, either the Gini index or the
maximum probability.

Index Terms—time series, online decision making

I. INTRODUCTION

The problem of early classification of time series is
important in many application areas where the data about
events is available over time and one must decide its
class as early as possible but still with high accuracy if
possible. This could for instance apply in a hospital’s
emergency room where a patient is monitored and it
must be decided what must be done. Each passing
minute without taking decision might be dangerous for
the patient, but it also brings new information that can
help the diagnosis, hence a difficult trade-off that must
be solved in real-time.

While early classification of time series has been
introduced to the machine learning field in 2004 [1], it is

only recently that new approaches have been proposed
that explicitly take into account both the misclassification
cost and the delay cost in a single criterion in order
to decide when is the apparent best time to make a
prediction about the incoming time series [2]. These
approaches, furthermore, are able to look ahead of time
to estimate at one point in the future should be the
optimal time to make a decision. This might be very
useful in order to make preparations for the decisions
that may have to be taken.

However, within the techniques presented to imple-
ment this approach, the most successful ones are limited
to binary classification tasks while the ones that could
tackle multiclassification have lower performances. The
purpose of this paper is therefore to propose new tech-
niques based on the well-grounded optimization criterion
for early classification of time series presented in [2], [3],
but which allow for multiclassification and have better
performances than the existing ones.

Formally, we suppose that we are given a set S
of “complete” time series together with their labels
S = {(xiT , yi)}1≤i≤m where T is the length of the time
series, xiT = 〈xi1, . . . , xit, . . . , xiT 〉 is the ith time series
with xit the multi-valued measurement made at time t and
yi ∈ Y the label of xiT . The task is to make a prediction
about the class of an incoming time series as early as
possible because a cost is incurred at the time of the
decision, where the cost function increases with time.

The paper is organized as follows. Section II out-
lines some important contributions in the field of early
classification of time series that pave the way for our



work. In section III, we present the approach proposed in
[2], [3] that we extend to the multi classification setting
by proposing two families of algorithms in section IV.
In Section V, their characteristics and performances are
tested using a wide set of 33 datasets. Finally, Section
VI presents lessons from the study and perspectives.

II. RELATED WORK

Supervised classification of time series is a very active
field of research, as it is a useful and challenging learning
task. Recent advances in this field have shown: i) that
ensemble methods are the most efficient [4]; ii) that the
choice of time series representation has an important
impact on the quality of the classifiers [5]; iii) that the
extraction of informative features is a key point to obtain
good performance [6].

In the classification of time series, the successive
measurements are not supposed to be i.i.d. In the absence
of an assumption about the generative process of the
times series, it is supposed that there exists a labeled
training set S, as underlined in Section I, which allows
the discovery of the underlying regularities. In the test
phase, the scenario goes as follows. At each time step
t < T , a new measurement xt is collected and a
decision has to be made as whether to make a prediction
now or to defer the decision to some future time step.
When t = T , a decision is forced. To the best of
our knowledge, [1] was the earliest paper explicitly
mentioning “classification when only part of the series
are presented to the classifier”.

For many researchers, the question to solve is can we
classify an incomplete times series while ensuring some
minimum probability threshold that the same decision
would be made on the complete input?

One approach is to assume that the time series are
generated i.i.d. according to some probability distri-
bution, and to estimate the parameters of the class
distributions from the training set. Once p(xT |xt) the
conditional probability of the entire time series xT given
an incomplete realization xt is estimated, it becomes
possible to derive guarantees of the form:

p
(
hT (XT ) = y|xt

)
=
∫
xT s.t. hT (xT )=y

p(xT |xt) dxT ≥ ε

where XT is a random variable associated with the
complete times series, ε is a confidence threshold, and
hT (·) is a classifier learnt over the training set S of
complete times series. At each time step t, p(hT (XT ) =
y|xt) is evaluated and the prediction is triggered if this
term becomes greater than some predefined threshold.
[7], [8] present this method and propose ways to make

the required estimations, in particular the mean and the
covariance of the complete training data, when the time
series are generated by Gaussian processes. It so far
applies only with linear and quadratic classifiers.

In [9], a system, called TEASER, is presented that
combines three components: (i) a set of slave classifiers
that estimate the class probabilities of the incoming
series, (ii) a master classifier which assesses the con-
fidence that one can have in the class that has the
higher probability according to the slave classifier at
the current time step t, and finally (iii), the TEASER
system which outputs a class if the master classifier has
vetted this class for at least v time steps consecutively.
The cost of delaying decision is not explicitly taken into
account in this work. The authors heuristically propose
to optimize the harmonic mean between accuracy and
earliness which indirectly corresponds to a particular
tradeoff and a particular cost of delaying the decision.

In [10], by contrast, the authors do not make assump-
tions about the form of the underlying distributions on
the time series. They propose to use a 1NN classifier that
chooses the nearest training time series xit ∈ S to the
incoming one xt = 〈x1, . . . , xt〉 to make its prediction.
To determine for which time step t it is appropriate to
make the prediction, the method is based on the idea of
the minimum prediction length (MPL) of a time series.
For a time series xit, one finds the set of every training
time series xjt that have xit as their one nearest neighbor
(1-NN). The MPL of xit is then defined as the smallest
time index for which this set does not change when
the rest of the time series xit is revealed. In the test
phase, at time step t, it is deemed that xt can be safely
labeled if its 1-NN = xit for which the MPL is t. The
idea is that from this point on, the prediction about xt
should not change. The authors found experimentally
that this procedure, called ECTS (Early Classification
of Times Series), leads to too conservative estimations of
the earliest safe time step for prediction. They therefore
proposed heuristic means to lower the estimated values.
The stability criterion acts in a way as a proxy for a
measure of confidence in the prediction. Similarly, [11]
proposes a method where the evolution of the accuracy
of a set of probabilistic classifiers is monitored over
time, which allows the identification of timestamps from
whence it seems safe to make predictions.

Another line of research is concerned with finding
good descriptors of the time series, especially on their
starting subsequences, so that early predictions can be re-
liable because they would be based on relevant similari-
ties on the time series. For instance, in the works of [12]–
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[14], the principle is to look for shapelets, subsequences
of time series which can be used to distinguish time
series of one class from another, so that it is possible to
perform classification of time series as soon as possible.

The methods described above make use of the com-
plete knowledge available in the training set. There are
methods however that do not use this information during
training. For instance, in [8], [15], [16], a model ht(·)
is learnt for each early timestamp and various stopping
rules are defined in order to decide whether, at time t,
a prediction should be made or not. The price to pay
for not taking into account information about the likely
future of the time series is that decisions are made in
a myopic fashion which may prevent one from seeing
that a better trade-off between earliness and accuracy is
achievable in the future.

This is also the case for the work presented in [17]. In
the paper, the authors recognize the conflict between ear-
liness and accuracy. But instead of setting a tradeoff in a
single objective optimization criterion [18], they propose
to keep it as a multi-objective criterion and to explore the
Pareto front of the multiple dominating tradeoffs. They
then suggest a family of triggering functions involving
hyper parameters to be optimized for each tradeoff. This
contrasts with approaches whereby the decision is made
solely on the basis of a given confidence threshold which
should be attained. However, the optimization criterion
put forward is heuristic, supposes that the cost of delay-
ing a decision is linear in time, and involves a complex
setup. Most importantly, again, it is a myopic procedure
which does not consider the foreseeable future. For all
these apparent shortcomings, this method has been found
to be quite effective, beating most competing methods in
extensive experiments.

In [2], for the first time, the problem of early clas-
sification of time series is cast as the optimization of
a loss function which combines the expected cost of
misclassification at the time of decision plus the cost
of having delayed the decision thus far. Besides the fact
that this optimization criterion is well-founded, it permits
also to apply the LUPI framework1 because the expected
costs for an incoming subsequence xt can be estimated
for future time steps and thus a non-myopic decision
procedure can be used. These expectations can indeed
be learned from the training set of m complete time
series S = {(xiT , yi)}1≤i≤m.

1Early classification of time series can be seen as an instance of the
LUPI (Learning Under Privileged Information) framework [19]: during
the learning phase, the learner has access to the full knowledge about
the training time series S = {(xiT , yi)}1≤i≤m, while at testing time,
only a subsequence xt (t < T ) is known.

The idea presented in [2] has been extended in [3]
both formally and in the presentation of new algorithms
and of a wider set of experiments where it was shown
that the performances obtained topped the performances
obtained so far with previous methods. We therefore base
our investigation on this work.

In the following section, we present the approach pro-
posed in [2], [3] that we extend to the multi classification
setting in section IV.

III. A COST-BASED NON-MYOPIC FRAMEWORK

This section provides an overview of the cost-based
non-myopic framework presented in [3] to tackle the
Early Classification problem.

In [3] the learning phase is carried out offline (I), and
the deployment phase, is performed online (II):

I- For each time step, t ∈ {1, . . . , T}, a classifier2

ht can be learned from S, such that ht : X t → Y .
In addition, some knowledge is extracted from S to
estimate the probable future of an incoming time series
xt, namely, the probabilistic terms in equation 1.

II- Using these classifiers and the extracted knowledge,
it is possible to estimate the optimal instant for making
a decision, i.e. triggering a prediction about its class.
More precisely, given the misclassification cost function
Cm(ŷ|y) : Y × Y → R that expresses the cost of
predicting ŷ when the true class is y and the delay cost
function Cd(t) : R → R which is assumed to be an
increasing function of time, the expectancy of the cost
of taking a decision at time t given the incoming time
series xt is:

f(xt) = E t
(ŷ,y)∈Y2 [Cm(ŷ|y)|xt] + Cd(t)

=
∑

y∈Y
Pt(y|xt)

∑

ŷ∈Y
Pt(ŷ|y,xt) Cm(ŷ|y) + Cd(t)

(1)
where E t

(ŷ,y)∈Y2 [.] is the expectancy at time t, over
the variables y and ŷ. Pt(y|xt) is the probability of
the class y given a time series that starts as xt, and
Pt(ŷ|y,xt) is the probability that the classifier ht makes
the prediction ŷ given xt while y would be its true label.
In this non-myopic setting, the idea is that the decision
of making a prediction is made at the current time t
only insofar as it is not expected that a lower cost could
be achieved at a later time. This could happen if the
expected misclassification cost would drop sufficiently
to offset the increase of Cd(t).

2Note that these classifiers are learned off-line and that the concepts
to be learned are considered stationary.
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For any time t+ τ in the future (1 ≤ τ ≤ T − t), the
expected cost of making a prediction can be estimated
as:

fτ (xt) = E t+τ
(ŷ,y)∈Y2 [Cm(ŷ|y)|xt] + Cd(t+ τ)

=
∑

y∈Y
Pt+τ (y|xt)

∑

ŷ∈Y
Pt+τ (ŷ|y,xt) Cm(ŷ|y)

+ Cd(t+ τ)
(2)

where Pt+τ (ŷ|y,xt) is one term of the confusion matrix
expected at time t + τ given that the time series starts
as xt. In [3], the authors propose different ways for
estimating this term as will be seen below. When τ = 0,
we have f0(xt) = E t

y∈Y [Cm(ŷt|y)|xt] + Cd(t) since
we have access to predictions at current time.

Then, the optimal decision time, at time t, is expected
to be:

τ∗ = ArgMin
τ∈{0,...,T−t}

fτ (xt) (3)

The idea is to estimate the cost of a decision at
all future time steps, up until t = T , based on the
current knowledge about the incoming time series, and
to postpone the decision to the time step that appears to
be the best.

If τ∗ = 0, then it seems that there is no better time
for making a prediction than now. Therefore, the predic-
tion ht(xt) is returned and the classification process is
terminated. Otherwise the decision is postponed to the
next time step, and Eq. 3 is computed again, this time
with xt+1. The process goes on until a decision is made
or t = T at which point a prediction is forced.

Equation 2 has been proposed and has given way to
several different algorithmic versions generically called
ECONOMY as described in [3]. They differ in the way
they make groups gk ∈ G of time series, in order to
estimate the future expected cost fτ (xt):

fτ (xt) = E t+τ
(ŷ,y)∈Y2 [Cm(ŷ|y)]

=
∑
gk∈G

Pt(gk|xt)
∑
y∈Y

Pt(y|gk)
∑
ŷ∈Y

Pt+τ (ŷ|y, gk)Cm(ŷ|y)

+ Cd(t+ τ)
(4)

Of all these methods, ECONOMY-γ is the one that
stands out, both thanks to its refined way of predicting
the likely future of an incoming time series and because
of its significantly better performances demonstrated in
extensive experiments over the other ECONOMY versions
as well as with the method of [18]. However, the

ECONOMY-γ approach is limited to binary classifica-
tion problems, therefore this paper aims to extend this
approach to multiclass classification problems.

t t + 1 t + 2 t + ⌧ � 1 t + ⌧

p(ht(xt) = 1)

xt
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0
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0
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Fig. 1: Figure from [3]. ECONOMY-γ, computing the probability
distribution p(γt+τ |γt). Here ht(xt) falls in the second confidence
level interval. Given the supposed learned transition matrix Mt+1

t , the
next vector of confidence levels will be (0.15, 0.3, 0.3, 0.2, 0.05)>.

More precisely, in ECONOMY-γ, the groups G are
obtained by pooling the time series by confidence levels
relative to the class 1 (opposite to class 0) p(y = 1|xt)3

of ht. For each time series xt observed up to time t,
the confidence level p(ht(xt) = 1) can take a value in
[0, 1]. Examining the confidence levels thus obtained for
all time series in the validation set S ′t truncated to the
first t observations, we can discretize the interval [0, 1]
into K equal frequency intervals, denoted {I1t , . . . , IKt }.
For instance, if K = 5, and |S ′t| = 1000, the intervals
I1t = [0, 0.30[, I2t = [0.30, 0.45[, I3t = [0.45, 0.58[,
I4t = [0.58, 0.83[, I5t = [0.83, 1] could each correspond
to 200 training time series. The discretization of confi-
dence levels into equal frequency intervals corrects any
bias in the calibration of ht, in a similar way to isotonic
calibration [20].

For a new incoming time series known up to time
t: xt, and knowing the corresponding sequence of
confidence intervals 〈I1, . . . , Iu, . . . , It〉 where we have
Iu = k ∈ K|p(hu(xu) = 1) ∈ Iku , it is possible to
evaluate γit+τ = p(ht+τ (xt+τ ) = 1) ∈ Iit+τ , and then:

fτ (xτ ) =



K∑

j=1

γjt+τ
∑

y∈Y
P (y|Ijt+τ )

∑

ŷ∈Y
Pt+τ (ŷ|y, Ijt+τ ) Cm(ŷ|y)


 + Cd(t+ τ)

(5)

In ECONOMY-γ, a Markov-chain model is used for
estimating the terms γjt+τ (see Figure 1). A fully de-
tailed description of the ECONOMY-γ is provided in [3].

3 This restricts these methods to binary classification problems.

4



Algorithm 1 summarizes the main steps of the learning
phase.

Algorithm 1: ECONOMY-γ - learning stage

1 forall t ∈ {1, ..., T} do
2 learn a classifier ht() from a set of truncated

labelled time series St;
3 discretize the confidence p(ht(xt) = 1) of

the learned classifier into K equal frequency
intervals {I1t , . . . , IKt }. ;

4 learn a part of the Markov-chain model by
estimating the transition matrix formed by
the terms:

5 p(ht(xt) = 1) ∈ Ijt | p(ht−1(xt−1) = 1) ∈ Iit−1

6 end

IV. THE PROPOSED APPROACHES

While the original ECONOMY−γ algorithm summa-
rized an incoming time series xt as a sequence of
scalars 〈p(h1(x1) = 1, . . . , p(ht(xt) = 1〉 in order to
estimate the likely future of xt as used in Equation 5,
the extension to the multi class problem requires using
a more complex summary. Now, instead of having one
scalar by time stamp, we must do with a vector of |Y|
real values: < p(ht(xt) = 1), ..., p(ht(xt) = |Y|) > for
each time stamp, where Y is the set of classes.

In this section, we propose two leads to adapt ECON-
OMY-γ to multiclass problems: i) by using a confidence
score that aggregates the |Y| probabilities estimated
by the classifier into a scalar value; ii) by using a
clustering algorithm in the vector space formed by the
|Y| probabilities as in [21]–[23]. The complexity of the
proposed approaches is studied in the supplementary
material available in our Git repository.

A. Confidence scores aggregating probabilities

A first way to adapt ECONOMY-γ is to use a con-
fidence score which aggregates the output vector of
probabilities of the classifiers into a single scalar value:
Confidence() : RK → R. The algorithm 1 is then
slightly modified, replacing only line 3 by a new step, i.e.
discretizing the output range of the Confidence() function
into K equal frequency intervals. To do this, this function
is applied to the time series of the validation set S ′t. The
obtained intervals are used as the states of the Markov
Chain, and the rest of Algorithm 1 remains unchanged.
This section presents the four approaches we propose,
which use different confidence scores.

i) The ECO-γ-entropy approach uses the Shannon’s
entropy function to compute a confidence score with
Confidence(p1, ..., p|Y|) = −∑|Y|i=1 pi log(pi), where
pi = p(ht(xt) = i). For each validation example,
the entropy value is estimated based on the conditional
probabilities of the classes. A high entropy indicates
scattered probability values, which corresponds to an
uncertain prediction. By contrast, low probabilities on
all classes except one which is dominant lead to a low
entropy value which corresponds to a highly confident
prediction.

ii) The ECO-γ-gini approach exploits the gini impurity
index in a very similar way as the entropy approach.
Gini index is defined as Confidence(p1, ..., p|Y|) = 1 −∑K−1
i=0 p2i . This score behaves the same way as the

entropy function for the different case scenarios, and it
is computationally less expensive than the entropy score.

iii) The ECO-γ-margins approach uses the function
Confidence(p1, ..., p|Y|) = pi − pj where pi is the
maximum conditional probability and pj the second
largest, with pi ≥ pj . This margin score is commonly
used as a confidence score in active learning strategies
[24], [25]. A large margin corresponds to a high con-
fidence level in the prediction. Conversely, if the two
highest probabilities are close, the margin is low and
this corresponds to an uncertain prediction.

iv) The ECO-γ-max approach focuses only on the
maximum probability estimated by the classifier by
taking Confidence(p1, ..., p|Y|) = max1≤i≤|Y| pi. Since∑|Y|
i=1 pi = 1, a high maximum probability value implies

low values for the other probabilities. Conversely, an
important value of the maximum probability correspond
to a confident prediction. This confidence score is less
sophisticated than the margin one, since it cannot differ-
entiate the cases where the two largest probabilities are
close or not. It is thus interesting to see how it behaves
nonetheless.

These four approaches differ only in the confidence
scores they use. One objective of the experiments (Sec-
tion V) is to compare them and to identify the confidence
score that leads to the best performances.

B. Clustering

Another way to extend the ECONOMY-γ approach to
multiclass problems is to use clustering methods on the
outputs of the classifiers such as to form a set G of
groups. At time t, for the classifier ht, the output vector
< p(ht(xt) = 1), . . . , p(ht(xt) = |Y|) > belongs to the
vector space R|Y|, and each validation example of S ′
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can be represented by a point in this vector space whose
coordinates correspond to the conditional probabilities
estimated by the classifier at time t. Moreover, these
points belong to a sub-variety of R|Y| which is a hyper-
plane defined by the equation

∑|Y|
i=1 p(ht(xt) = i) = 1,

i.e. the estimated probabilities over all class values must
sum to 1. The use of a clustering algorithm can identify
dense groups belonging to this hyperplane, and which
differ by their confidence level on (all or part of) the
classes. This section presents two approaches using a
clustering algorithm.

i) The ECO-γ-Kmeans approach directly applies the
K-means algorithm4 on the validation examples which
are defined as probability vectors in R|Y|. Line 3 of
Algorithm 1 is replaced by: cluster the time series of
S ′ into K clusters (which correspond to the groups G).

ii) The ECO-γ-Kmeans-cal approach is a variant that
includes a pre-processing step consisting in calibrating
the probabilities provided by the classifiers before using
the K-means algorithm. In this approach, the proba-
bilities p(ht(xt) = i) estimated by the classifier are
replaced by their normalized rank, in a similar way
to isotonic calibration [20]. Intuitively, this calibration
seems to be required to prevent the K-means algorithm
from misidentifying dense groups due to biases in the
calibration of the classifiers ht (1 ≤ t ≤ T ).

C. ECONOMY-K

The ECO-K approach was first introduced in [2] and
it was shown to be significantly outperformed by ECON-
OMY-γ for binary classification problems [3]. In this
article, ECO-K is considered as a competing approach
since it is able to deal with multiclass problems.

Basically, ECO-K relies on clustering the full length
time series xT to form a single partition G using the
K-means algorithm provided with the L2 norm. Then,
given an incoming time series xt, the memberships
P (gk|xt) are estimated using a logistic function of a
distance between xt and the centers of the clusters gk.
The continuation of the time series that belong to the
groups is exploited to estimate the future expected costs.
Namely, for each time step t = 1, . . . , T , the confusion
matrix of the classifier ht is used to estimate Pt(ŷ|y, gk)
within previously formed groups.

ECO-K is natively able to tackle multiclass problems.
Indeed, the groups of G only rely on the time series

4 We used the K-means algorithm provided with the L2 norm, and
with 10 random initializations using Kmeans++ [26].

themselves, and not on the classifiers output. In addition,
the confusion matrices computed at each time step are
not restricted to binary classification problems.

V. EXPERIMENTS

All the methods presented extend the ECONOMY-γ
technique to multiclass problems, except ECO-K which
is natively adapted to multiclass problems.

The first question that our experiments aim at answer-
ing is whether the proposed multiclass approaches bring
significant performance gains compared to the state of
the art approaches especially in case of multi classes
multiclass classification problems5.

The second question concerns the different ways to
extend ECONOMY-γ to multiclass problems:

1) Is it a good idea to aggregate the probabilities
estimated by the classifier into a scalar value? Or
is it better to form the groups without aggregating
these probabilities and using a clustering algorithm
over the outputs of the classifier?

2) For the approaches which aggregate the estimated
probabilities, which univariate confidence score
leads to the best performances ?

Section V-D presents the obtained results.

A. Evaluation criterion

In order to compare the methods, we use the eval-
uation criterion introduced in [3] which expresses the
average cost that is incurred using a particular early
classification method. For a given dataset S, it is defined
as follows:

AvgCost(S) = 1
|S|
∑

(xT ,y)∈S
(
Cm (ht̂∗(xt̂∗)|y) + Cd(t̂∗)

)

(6)
where t̂∗ is the decision time chosen by the method to
optimize the trade-off between earliness and accuracy.
The criterion AvgCost is used in our experiments both
to optimize K on a validation set and to evaluate each
early classification approach on each dataset (i.e. on
test sets). Significant differences in performances are
detected using statistical tests.

B. Datasets

In order to be able to make direct comparisons with
[18] we use the same datasets as they did. This bench-
mark consists of 45 datasets of variable sizes that come
from a variety of application areas. This collection of

5 Note: This was already demonstrated in the case of binary
classification [3] by comparing the ECONOMY family of algorithms
with [18] which is currently the best performing myopic approach, as
confirmed by a recent paper [27]
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datasets has also been used in [9] and [17], making our
experiences easily comparable to previous works. We
keep the 33 datasets for which the number of classes
is greater than two, which is appropriate for multiclass
problems. Additional results using all the 45 datasets
are provided in the supplementary material, leading
substantially to the same conclusions. In order to reduce
the computation time of the experiments and to compare
datasets with time series of different lengths, we trained
a classifier every 5% of the total length of the time
series, instead of one classifier per time step, as done in
[18]. Furthermore, for each dataset and for each possible
length (i.e 5%, 10%, ... of the total length), we extracted
60 features6 from the corresponding truncated time series
in order to train the associated classifiers. To do this, we
used the Time Series Feature Extraction Library [28],
which automatically extracts features on the statistical,
temporal and spectral domains.

C. Experimental protocol

The same experimental7 protocol as in [3] is used. The
datasets were divided by uniformly selecting 70% of the
examples for the training set and using the remaining
30% for the test set. Then, the training sets were divided
into three disjoint subsets as follows:
• 40% for training the collection of classifiers
{ht}t∈{1,...,T} using the Python XGboost library8

with the default values of the hyper-parameters;
• 40% for learning the meta-parameters of the pro-

posed approaches, which consists of: (i) the dis-
cretization of the confidence score into K intervals
for each classifier, and (ii) the transition matrices
between a time step to the next one (i.e. every 5%
of the time series length);

• 20% to optimize the number of groups K: all
the approaches were trained by varying the num-
ber of groups between 1 to 10, and evaluated by
AvgCost(.) (see Equation 6). In order to manage
datasets with a large number of classes, the values
K ∈ {|Y|, 2|Y|} are also evaluated. The value
which minimizes the AvgCost(.) criterion has been
kept.

Costs setting: the misclassification cost was set in the
same way for all datasets: Cm(ŷ|y) = 1 if ŷ 6= y, and
= 0 otherwise. The delay cost Cd(t) is provided by the

6 More details are available in: https://cutt.ly/jvaKejI
7 For full reproducibility of these experiments, a code is available

at https://github.com/YoussefAch/Eco-gamma-multiclass.
8 XGBoost is available in: https://xgboost.readthedocs.io

domain experts in actual use cases. In the absence of
this knowledge, we define it as a linear function of time,
with coefficient, or slope, α:

Cd(t) = α× t

T
(7)

The range of values used for α is
{0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

D. Results

First, our experiments compare the performance of the
proposed approaches with the state of the art.

The SR approach is a very strong competitor. It was
demonstrated in [18] to dominate all other algorithms in
the literature over a benchmark with numerous datasets.
In this algorithm, a trigger function is used to decide
if the current prediction is reliable (output 1) or if it is
better to wait for other measures (output 0):

Trigger (ht(xt)) =
{

0 if γ1p1 + γ2p2 + γ3
t
T ≤ 0

1 otherwise
(8)

where p1 is the largest conditional probability estimated
by the classifier ht, p2 is the difference between the two
largest probabilities and t

T represents the proportion of
the incoming time series that is visible at time t.

The parameters γ1, γ2, γ3 are real values in [−1, 1] to
be optimized. In our experiments, these parameters were
tuned for each value of α ∈ [10−3, 1] by minimizing the
value of AvgCost thanks to a grid-search on the values
[−1,−0.90, ..., 0, 0.1, ..., 0.90, 1].

After training, the AvgCost criterion was evaluated
on the 33 test sets for all values of α, both for the
SR algorithm and for the proposed approaches. Then,
Wilcoxon signed-rank tests were carried out to compare
the SR approach with the six proposed variants of the
ECONOMY approach, for each value of α ∈ [10−3, 1].
The results are presented in Figure 2, which shows
that all the ECONOMY approaches perform significantly
better than the SR approach, whatever the value of α.

A similar result was obtained in [3] in the case of
binary classification problems. Figure 1 shows that the
dominance of the Economy approaches is still verified
for multiclass problems and confirms that the design
choices of the proposed approaches are reasonable.

At this point, it remains to identify the best approach
among those proposed, i.e., identify the best way to
extend ECONOMY-γ to multiclass problems.
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Fig. 2: SR vs. ECONOMY approaches: the evaluation is based on
AvgCost using the Wilcoxon signed-rank test, for different values
of α. The symbol “+” indicates that all ECONOMY approaches win
over the SR method. It is remarkable that the table only contains “‘+”.

For this purpose, we compare each ECONOMY ap-
proach to all others and for all values of α, using the
Wilcoxon signed-rank test (as in Figure 2). This com-
parison is reported in Table I, where the second column
counts the number of significant wins of each approach
against all others; the third column counts the number
of significant defeats;the fourth column reports the num-
ber of non-significant differences in performance; and,
finally, the fifth column corresponds to the difference
between the number of wins and the number of defeats.

TABLE I: ECONOMY approaches comparison using Wilcoxon signed-
rank test: significant wins / defeats of each approach (against all the
other) counted for all α, based onthe AvgCost criterion.

Algorithm wins defeats ties balance
ECO-γ-max 16 0 56 +16
ECO-γ-gini 16 0 56 +16
ECO-γ-entropy 9 6 57 +3
ECO-K 8 4 60 4
ECO-γ-margins 1 9 62 -8
ECO-γ-Kmeans-cal 0 15 57 -15
ECO-γ-Kmeans 0 16 56 -16

Table I shows that the best performances are achieved
by the ECO-γ-max and ECO-γ-gini approaches, when
considering all the values of α. Actually, these two
approaches have no significant defeats and have a large
number of wins.

Surprisingly, the performance gap between the ECO-
γ-gini and ECO-γ-entropy approaches is important. Even
if these two confidence scores are mathematically very
close, they do not produce exactly the same ranking of
the examples and therefore the groups resulting from the
discretization of these confidence scores are different.

At the other end of the spectrum, the ECO-γ-Kmeans
and ECO-γ-Kmeans-cal approaches are the worst per-
forming ones, which shows that the most promising lead
to adapt ECONOMY-γ to the multiclass problems is to
aggregate the classifier outputs into a confidence score.

Table I provides the ranking of the different ap-
proaches by their performance level, but this result is
aggregated for all α values. The rest of the results
presented in this section study the impact of the delay
cost Cd(t) on the ranking of these approaches.

In our experiments, the proposed ECONOMY ap-
proaches are not distinguishable for the large majority
of the cases where α > 0.4 (see the supplementary
material). Thus, we choose here to show detailed re-
sults for three representative cases, which correspond to
α ∈ {0.01, 0.1, 0.3}. The same results are available in
the supplementary material for the other α values.

(a) (b)

Fig. 3: Comparison of ECONOMY approaches for α = 0.01 using (a)
Nemenyi and (b) Wilcoxon signed-rank tests.

Figure 3 (a) shows the Nemenyi test [29] applied
for α = 0.01. This test consists of two successive
steps. First, the Friedman test is applied to the AvgCost
obtained by the competing approaches to determine
whether their overall performance is similar. If not,
the post-hoc test is applied to determine groups of
approaches whose overall performance is significantly
different from that of the other groups. In this case, the
Nemenyi test is not able to show a significant difference,
since all approaches belong to the same group.

Figure 3 (b) shows pairwise comparison using the
Wilcoxon signed-rank test between the approaches. The
small black squares identify pairs of approaches that
do not differ significantly in performance. It appears
that: (i) ECO-γ-Kmeans is dominated by ECO-K, ECO-
γ-entropy, ECO-γ-gini and ECO-γ-max; (ii) the ECO-γ-
Kmeans-cal is dominated only by ECO-K. These results
confirm the bad ranking of clustering based approaches
observed in Table I.

Figure 4 (a) plots the Nemenyi test for α = 0.1, and
shows that: (i) ECO-γ-max is significantly better than
ECO-K, ECO-γ-Kmeans and ECO-γ-margins; (ii) ECO-
γ-gini and ECO-γ-entropy are significantly better than
ECO-γ-Kmeans and ECO-γ-margins. The Wilcoxon tests
in Figure 4 (b) confirm these results, except for ECO-γ-
max that is not significantly better than ECO-K.
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(a) (b)

Fig. 4: Comparison of ECONOMY approaches for α = 0.1 using (a)
Nemenyi and (b) Wilcoxon signed-rank tests

(a) (b)

Fig. 5: Comparison of ECONOMY approaches for α = 0.3 using (a)
Nemenyi and (b) Wilcoxon signed-rank tests

Figure 5 shows the same plots for a higher delay cost
set by α = 0.3. In this case, the approaches ECO-γ-gini
and ECO-γ-max remain at the top of the ranking, and
these two methods are significantly better than all the
other except ECO-K, considering the Wilcoxon signed-
rank tests.

Finally, these results based on statistical tests are in
line with the results of Table I, and show that the two ap-
proaches ECO-γ-max and ECO-γ-gini are consistently in
the top group. Henceforth, the following results compare
the competing approaches by varying α in a more fine-
grained way, and by evaluating both their: (i) earliness;
and (ii) predictive performance.

For a given dataset and a given value of α ∈ [10−3, 1],
the earliness is evaluated using the median of the trigger
times t̂∗ normalized by the length of the series, defined
as: Earliness = med{t̂∗}/T . On the other hand, the
predictive performance is evaluated using the Cohen’s
Kappa score [30] computed at the time of decision
t̂∗, since this criterion properly manages unbalanced
datasets.

In Figure 6, the coordinates of each point are given
by the average Earliness and the average Kappa score
obtained over the 33 used datasets when the delay cost
α is chosen in the range [10−3, 1]. The Pareto curve
is then drawn for each of the competing approaches.
Two distinct groups of approaches can be identified in
this figure: (i) the top group consists of the ECO-γ-

Fig. 6: Average Earliness vs. Average Kappa score obtain over the 33
datasets by varying the slope of the time cost, such as α ∈ [10−3, 1].

max, ECO-γ-entropy, ECO-γ-gini approaches; (ii) the
second group includes the other approaches, ECO-γ-
Kmeans, ECO-γ-Kmeans-cal, ECO-γ-margins and ECO-
K. The top group dominates the second group on both
Earliness and Kappa criteria, i.e. two curves belonging
to the different groups do not intersect. In contrast, the
approaches within each group can not be clearly distin-
guished, since the curves in the same group cross each
other. Furthermore, it can be noticed that for α ≥ 0.4
the curves of the two groups are very close to each
other (see the lower left part of Figure 6), which is
consistent with previous Wilcoxon signed-rank tests that
failed to significantly distinguish the performance of the
competing approaches based on the AvgCost criterion.

VI. CONCLUSION

An increasing number of applications require the
ability to recognize the class of an incoming time series
as early as possible without unduly compromising the
accuracy of the prediction. In response to this problem,
the best performing early classification approaches [3]
takes into account both the cost of misclassification
and the cost of delaying the decision, and are able to
anticipate the expected future gain in information in
balance with the cost of waiting. Especially, ECONOMY-
γ is the state of the art algorithm but it is limited to
binary classification problems.

In this paper, we proposed two leads to extend ECON-
OMY-γ to multiclass problems: (i) by using a confi-
dence score that aggregates the probabilities estimated
by the classifier into a scalar value; (ii) by using a
clustering algorithm in the vector space formed by the
estimated probabilities. The first lead has resulted in
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several competing approaches that used entropy, Gini
index, margins, and maximum probability as confidence
scores. In addition, we proposed two approaches derived
from the second lead which used the K-means algorithm
on the probabilities estimated by the classifier, with an
optional calibration step.

Extensive experiments on 33 datasets of multiclass
classification problems allowed us to compare the per-
formance of the six proposed approaches to the state-
of-the-art method [18]. Our experiments show that: (i)
all proposed methods perform significantly better than
the state of the art method; and (ii) the best way to
extend ECONOMY-γ to multiclass problems is to use a
confidence score, either the Gini index or the maximum
probability.
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