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Abstract
Proof-labeling schemes are known mechanisms providing nodes of networks with certificates that

can be verified locally by distributed algorithms. Given a boolean predicate on network states, such
schemes enable to check whether the predicate is satisfied by the actual state of the network, by
having nodes interacting with their neighbors only. Proof-labeling schemes are typically designed
for enforcing fault-tolerance, by making sure that if the current state of the network is illegal with
respect to some given predicate, then at least one node will detect it. Such a node can raise an
alarm, or launch a recovery procedure enabling the system to return to a legal state.

In this paper, we introduce error-sensitive proof-labeling schemes. These are proof-labeling
schemes which guarantee that the number of nodes detecting illegal states is linearly proportional to
the Hamming distance between the current state and the set of legal states. By using error-sensitive
proof-labeling schemes, states which are far from satisfying the predicate will be detected by many
nodes. We provide a structural characterization of the set of boolean predicates on network states
for which there exist error-sensitive proof-labeling schemes. This characterization allows us to show
that classical predicates such as, e.g., cycle-freeness, and leader admit error-sensitive proof-labeling
schemes, while others like regular subgraphs do not. We also focus on compact error-sensitive proof-
labeling schemes. In particular, we show that the known proof-labeling schemes for spanning tree
and minimum spanning tree, using certificates on O(log n) bits, and on O

(
log2 n

)
bits, respectively,

are error-sensitive, as long as the trees are locally represented by adjacency lists, and not just by
parent pointers.
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1 Introduction

In the context of fault-tolerant distributed computing, it is desirable that the computing
entities in the system be able to detect whether the system is in a legal state (w.r.t. some
boolean predicate, potentially expressed in various forms of logics) or not. In the framework
of distributed network computing, several mechanisms have been proposed to ensure such a
detection (see, e.g., [1, 2, 4, 5, 31]). Among them, proof-labeling schemes [31] are mechanisms
enabling failure detection based on additional information provided to the nodes. More
specifically, a proof-labeling scheme is composed of a prover, and a verifier. A prover is
a non-trustable oracle that assigns a certificate to each node of any given network, and a
verifier is a distributed algorithm that locally checks whether the collection of certificates is
a distributed proof that the network is in a legal state with respect to a given predicate – by
“locally”, we essentially mean: by having each node interacting once with its neighbors.

The prover is actually an abstraction. In practice, the certificates are provided by a
distributed algorithm solving some task (see, e.g., [3, 6, 31]). For instance, let us consider
spanning tree construction, where every node must compute a pointer to a neighboring node
such that the collection of pointers form a tree spanning all nodes in the network. In that
case, the algorithm in charge of constructing a spanning tree is also in charge of constructing
the certificates providing a distributed proof allowing a verifier to check that proof locally.
That is, the verifier must either accept or reject at every node, under the following constraints.
If the constructed set of pointers form a spanning tree, then the constructed certificates must
lead the verifier to accept at every node. Instead, if the constructed set of pointers does not
form a spanning tree, then, for every possible certificate assignment to the nodes, at least
one node must reject. The rejecting node may then raise an alarm, or launch a recovery
procedure. Abstracting the construction of the certificates thanks to a prover enables to
avoid delving into the implementation details relative to the distributed construction of the
certificates, for focusing attention on whether such certificates exist, and on what should
be their forms. The reader is referred to [7] for more details about the connections between
proof-labeling schemes and fault-tolerant computing.

One weakness of proof-labeling schemes is that they may not allow the system running
the verifier to distinguish between a global state which is slightly erroneous, and a global
state which is completely bogus. In both cases, it is only required that at least one node
detects the illegality of the state. In the latter case though, having only one node raising an
alarm, or launching a recovery procedure for bringing the whole system back to a legal state,
might be quite inefficient. Instead, if many nodes would detect the errors, then bringing
back the system into a legal state may be achieved by a collection of local resets running in
parallel, instead of a single reset traversing the whole network sequentially.

In this paper, we aim at designing error-sensitive proof-labeling schemes, which guarantee
that system states that are far from being correct can be detected by many nodes. More
specifically, the distance between two global states of a distributed system is defined as the
Hamming distance between these two states, i.e., the minimum number of individual states
that must be modified in order to move from one global state to the other. A proof-labeling
scheme is error-sensitive if there exists a constant α > 0 such that, for any erroneous system
state S, the number of nodes detecting the error is at least αd(S), where d(S) is the shortest
Hamming distance between S and a correct system state. The choice of a linear dependency
between the number of nodes detecting the error, and the Hamming distance to legal states
is not arbitrary, but motivated by the following two observations.

On the one hand, a linear dependency is somewhat the best that we may hope for
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in general. Indeed, let us consider a k-node network G in some illegal state S with
d(S) = d > 0, for which f(d) nodes are detecting the illegality of S, for some function f .
Think about vertex-coloring, in which one needs to modify the colors of at least d nodes
in order to get a proper coloring. Then, let us make n copies of G and of its state S,
potentially linked by n− 1 additional edges if one insists on connectivity. In the resulting
kn-node network G′, at most O(n ·f(d)) nodes are detecting the non legality of the global
state S′ of G′. However, S′ is typically at distance Ω(n · d) from any legal state (think
again about proper vertex-coloring). It follows that, essentially, f(nd) ≤ n · f(d), that is,
the number of nodes detecting an error cannot grow faster than linearly with the distance
to the legal states.
On the other hand, while a sub-linear dependency may still be useful in some contexts,
this would be insufficient in others. For instance, let us consider the same construction
as above, with f(d) = dα for some α < 1. As n grows to infinity, the ratio between the
number of nodes f(nd) = (nd)α that are asked to detect errors in S′ and the number
of nodes nk in the network G′ goes to zero. This results in significantly decreasing the
impact of having more than one node detecting the illegality of the current system state,
as the number of nodes detecting errors becomes negligible anyway in front of the total
number of nodes, even for scenarios in which the distance to legal states grows linearly
with the total number of nodes.

1.1 Our results
We consider boolean predicates on graphs with labeled nodes, as in, e.g., [35]. Given a
graph G, a labeling of G is a function ` : V (G)→ {0, 1}∗ assigning binary strings to nodes.
A labeled graph is a pair (G, `) where G is a graph, and ` is a labeling of G. Given a boolean
predicate P on labeled graphs, the distributed language associated to P is:

L = {(G, `) satisfying P}.

It is known that every (Turing decidable) distributed language admits a proof-labeling
scheme [25, 31]. We show that the situation is radically different when one is interested in
error-sensitive proof-labeling schemes. In particular, not all distributed languages admit an
error-sensitive proof-labeling scheme. Moreover, the existence of error-sensitive proof-labeling
schemes for the solution of a distributed task is very much impacted by the way the solution
is encoded. For instance, in the case of spanning tree construction, we show that asking
every node to produce a single pointer to its parent in the tree cannot be certified in an
error-sensitive manner, while asking every node to produce the list of its neighbors in the
tree can be certified in an error-sensitive manner.

Our first main result is a structural characterization of the distributed languages for
which there exist error-sensitive proof-labeling schemes. Namely, a distributed language
admits an error-sensitive proof-labeling scheme if and only if it is locally stable. The notion
of local stability is purely structural. Roughly, a distributed language L is locally stable
if a labeling ` resulting from copy-pasting parts of correct labelings to different subsets
S1, . . . , Sk of nodes in a graph G results in a labeled graph (G, `) that is not too far from
being legal. Here “not too far” means that the Hamming distance between (G, `) and L is
proportional to the size of the boundary of the subsets S1, . . . , Sk in G, and not to the size
of these subsets. For the sake of concreteness, let us give an intuition about why a spanning
tree encoded by a list of neighbors is a locally stable language. Consider a graph partitioned
into k connected induced subgraphs such that only a small fraction of the nodes are on the
boundary of a subgraph (i.e., are having a neighboring node in another subgraph). Now, let
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us consider a spanning tree in each of the k subgraphs. The union of these spanning trees is
not a spanning tree, but it is not far from being a spanning tree. Indeed, it is acyclic, and
we can simply add edges to make it connected. To do so, we only modify the adjacency list
of vertices that are on the boundaries, thus the distance between the original instance and
the modified one is smaller than the sum of the sizes of the boundaries. (This example is
actually simplified, as it assumes that the trees in each component are correct, i.e., connected,
and without cycles, which may not be the case.) Our characterization allows us to show
that important distributed languages (e.g., acyclicity, leader, etc.) admit error-sensitive
proof-labeling schemes, while some very basic distributed languages (e.g., regular subgraph,
etc.) do not admit error-sensitive proof-labeling schemes.

Unfortunately, the error-sensitive schemes constructed for locally stable languages in the
proof of our characterization result are not efficient in terms of certificate size. We investigate
the question of whether it is possible to get error-sensitivity with small certificates. For this
purpose, we focus on two essential languages: spanning tree, which is a building block for
many proof-labeling schemes, and minimum spanning tree, which is arguably one of the most
important problems in distributed network computing.

We show that the known space-optimal proof-labeling schemes for spanning tree with
O(logn)-bit certificates, and for minimum spanning tree (MST) with O(log2 n)-bit certificates,
are both error-sensitive, whenever the trees are encoded at each node by an adjacency list
(and not by a single pointer to the parent). Hence, error-sensitivity comes at no cost for
spanning tree and MST. Proving this result requires to establish some kind of matching
between the erroneously labeled nodes and the rejecting nodes. Establishing this matching is
difficult because, for both spanning tree and MST, the rejecting nodes might be located far
away from the erroneous nodes. Indeed, the presence of certificates helps local detection of
errors, but decorrelates the nodes at which the alarms take place from the nodes at which
the errors take place. For example, in an erroneous spanning tree that is disconnected, it
may be the case that only one node is detecting the error, and that this node is far from a
place where disconnection can be fixed by adding an edge. (See Section 6 for a discussion
about proximity-sensitive proof-labeling schemes). In the case of MST, the space-optimal
proof-labeling schemes uses Θ(logn) independent layers of certification, and this a challenge
for error-sensitivity. Indeed, because detection and correction could happen in different
places, the following scenario cannot be ruled out directly. It could be the case that: (1)
every layer of certification is broken, but (2) only one vertex rejects (because all the Θ(logn)
parallel verifications reject on the same vertex), and (3) to fix the instance, we would need to
modify the input of Θ(logn) different vertices. In short, we could have one vertex rejecting
but distance Θ(logn), which would prevent error-sensitivity. Our result demonstrates that
this situation cannot appear.

1.2 Related work
As mentioned before, one important motivation for our work is fault-tolerant distributed
computing, with the help of failure detection mechanisms such as proof-labeling schemes.
Proof-labeling schemes were introduced in [31]. A tight bound of Θ(log2 n) bits on the size
of the certificates for certifying MST was established in [28, 29]. Several variants of proof-
labeling schemes have been investigated in the literature, including verification at distance
greater than one [25], and the design of proofs with identity-oblivious certificates [19].
Connections between proof-labeling schemes and the design of distributed (silent) self-
stabilizing algorithms were studied in [7]. Extensions of proof-labeling schemes for the design
of (non-silent) self-stabilizing algorithms were investigated in [30]. In all these work, the
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number of nodes susceptible to detect an incorrect configuration is not considered, and the
only constraint imposed on the error-detection mechanism is that an erroneous configuration
must be detected by at least one node. Our work requires the number of nodes detecting an
erroneous configuration to grow linearly with the number of errors. As mentioned earlier,
having several nodes detecting an error allows to launch a reset from several nodes at once.
See [8, 11] for references on such collaborative resets. Note that taking into account how far
from a correct configuration the network is, is not a new idea. Indeed there is a literature on
fault-containment or fault-locality (see, e.g., [21, 32]), where the focus is on having correction
algorithms that use little resources if there are just a few faults, or if these fault are grouped
together somehow. In particular, [21] defines a notion of “small-scale” faults, for which the
system can converge to a correct solution without modifying the states of the nodes that
are far from the faulty nodes. Our work has a different objective, that is, making sure that
incorrect global states resulting from many incorrect local states must be detected by many
nodes, while incorrect global states resulting from just a few incorrect local states may be
detected by few nodes only.

A line of work closely related to this paper is property testing. Centralized property testing
for graph properties was investigated in numerous papers (see [22, 23] for an introduction to
the topic). Distributed property testing has been introduced in [9], and formalized in [10]
(see also, e.g., [13, 20]). In both centralized and decentralized property testing, the decision
regarding whether the labeled input graph satisfies a given property (e.g., cycle-freeness) is
typically relaxed: if the graph satisfies the property then all centralized queries, or all nodes
must accept, and if the graph is far from satisfying the property (e.g., it contains many cycles),
then at least one centralized query, or at least one node must reject. The notion of “far”
depends on the context. The one adopted in the distributed setting is defined by the sparse
model, specifying that a graph is ε-far from satisfying a property if any modification up to a
fraction ε of the edges results in a graph that is still not satisfying the property. The goal is
then to distinguish graphs that satisfy the property from graphs that are ε-far from satisfying
the property. In some sense, property testing can be viewed as efficiently approximating
the solution of a hard problem (e.g., NP-hard), while proof-labeling schemes can be viewed
as establishing that the problem is complete (e.g., NP-complete). Centralized property
testing was actually extended to a non-deterministic setting [26, 33] in which the centralized
algorithm is provided with a centralized certificate. In error-sensitive proof-labeling schemes,
we try to get the best of both worlds, that is, if the input graph is far from satisfying the
property, then, whatever are the certificates provided to the nodes by the prover, a large
number of nodes must reject the instance. The farness notion used in distributed property
testing refers to the edges, while we use a farness notion related to the nodes, but the two
notions are essentially the same in bounded-degree graphs.

From a higher perspective, our approach aims at closing the gap between local distributed
computing and centralized computing in networks, by studying distributed error-detection
mechanisms that perform locally, but generate individual outputs that are related to the
global correctness of the system at hand. As such, it is worth mentioning other efforts in the
same direction, including especially work in the context of centralized local computing, like,
e.g., [14, 24, 36]. Finally, distributed property testing and proof-labeling schemes are different
forms of distributed decision mechanisms (e.g., distributed interactive proofs [27, 34]), which
have been investigated under various models for distributed computing. We refer to [16] for
a survey on distributed decision, and to [15] for a more introductory text.
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2 Model and definitions

Throughout the paper, all graphs are assumed to be connected and simple (no self-loops, and
no parallel edges). Given a node v of a graph G, we denote by N(v) the open neighborhood
of v, i.e., the set of neighbors of v in G. In some contexts (as, e.g., MST), the considered
graphs may be edge-weighted.

All results in this paper are stated in the classical local model [37] for distributed
network computing, where networks are modeled by undirected graphs whose nodes model the
computing entities, and edges model the communication links. Recall that the local model
assumes that nodes are given distinct identities (a.k.a. IDs), and that computation proceeds
in synchronous rounds. All nodes simultaneously start executing the given algorithm. At each
round, nodes exchange messages with their neighbors, and perform individual computation.
There are no limits placed on the message size, nor on the amount of computation performed
at each round. Specifically, we are interested in proof-labeling schemes [31], which are
well established mechanisms enabling to locally detect inconsistencies in the global states
of networks with respect to some given boolean predicate. Such mechanisms involve a
verification algorithm which performs in just a single round in the local model. In order
to recall the definition of proof-labeling schemes, we first recall the definition of distributed
languages [19].

A distributed language is a collection of labeled graphs, that is, a set L of pairs (G, `)
where G is a graph, and ` : V (G)→ {0, 1}∗ is a labeling function assigning a binary string
to each node of G. Such a labeling may encode just a boolean (e.g., whether the node is in a
dominating set or not), or an integer (e.g., in graph coloring), or a collection of neighboring
IDs (e.g., for locally encoding a subgraph). In the latter case, or whenever ` encodes a set
of nodes at each vertex, we may slightly abuse notation by viewing `(v) as an actual set of
nodes, i.e., by considering `(v) ⊆ V (G). A distributed language is said to be constructible
if, for every graph G, there exists ` such that (G, `) ∈ L. It is Turing decidable if there
exists a (centralized) algorithm which, given (G, `) returns whether (G, `) ∈ L or not. All
distributed languages considered in this paper are always assumed to be constructible and
Turing decidable.

Given a distributed language L, a proof-labeling scheme for L is a prover-verifier pair
(p,v), where p is an oracle assigning a certificate function c : V (G)→ {0, 1}∗ to every labeled
graph (G, `) ∈ L, and v is a 1-round distributed algorithm1 taking as input at each node v
its identity ID(v), its label `(v), and its certificate c(v), such that, for every labeled graph
(G, `) the following two conditions are satisfied:

If (G, `) ∈ L then v outputs accept at every node of G whenever all nodes of G are given
the certificates provided by p;
If (G, `) /∈ L then, for every certificate function c : V (G)→ {0, 1}∗, v outputs reject in
at least one node of G.

The first condition guarantees the existence of certificates allowing the given legally
labeled graph (G, `) to be globally accepted. The second condition guarantees that the
verifier cannot be “cheated”, that is, an illegally labeled graph will systematically be rejected
by at least one node, whatever “fake” certificates are given to the nodes. It is known that
every distributed language has a proof-labeling scheme [31].

1 That is, every node outputs after having communicated with all its neighbors only once.
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To define the novel notion of error-sensitive proof-labeling schemes, we introduce the
following notion of distance between labeled graphs. Let ` and `′ be two labelings of a
same graph G. The Hamming distance between (G, `) and (G, `′) is the minimum number
of elementary operations required to transform (G, `) into (G, `′), where an elementary
operation consists of replacing a node label by another label. That is, the Hamming distance
between (G, `) and (G, `′) is simply

|{v ∈ V (G) : `(v) 6= `′(v)}|.

The Hamming distance from a labeled graph (G, `) to a language L is the minimum, taken
over all labelings `′ of G satisfying (G, `′) ∈ L, of the Hamming distance between (G, `)
and (G, `′). Note that “Hamming distance” is usually defined for words of equal length,
by counting the number of characters that must be changed for moving from one word to
another word. We use the same terminology in this paper as our distance measures the
minimum number of nodes whose states have to be modified to transform a given global
state (G, `) into another global state (G, `′). (Instead, distance such as the Edit distance
would rather refer to the numbers of edges to be added or deleted for transforming one graph
into another.)

Roughly, an error-sensitive proof-labeling scheme satisfies that the number of nodes that
reject a labeled graph (G, `) should be (at least) proportional to the distance between (G, `)
and the considered language.

I Definition 1. A proof-labeling scheme (p,v) for a language L is error-sensitive if there
exists a constant α > 0, such that, for every labeled graph (G, `),

If (G, `) ∈ L then v outputs accept at every node of G whenever all nodes of G are given
the certificates provided by p;
If (G, `) /∈ L then, for every certificate function c : V (G) → {0, 1}∗, v outputs reject
in at least α d nodes of G, where d is the Hamming distance between (G, `) and L, i.e.,
d = dist

(
(G, `),L

)
.

Note that the nodes rejecting a labeled graph (G, `) do not need to be the same for
all certificate assignments. Also note that, as far as this first study of the notion of error-
sensitivity is concerned, we are mostly interested in the existence of some constant α = Θ(1),
and not much in the exact value of α. However, it is worth keeping in mind that the larger α,
the better the error-detection mechanism is, i.e., it is desirable to design protocol for which α
is large. For this paper, our focus is a first attempt to explore the notion of error-sensitivity,
thus we have not tried not optimize the constants. Nevertheless, we shall explicitly state
what values for the sensitivity α were used for establishing each of our theorems.

3 Basic properties of error-sensitive proof-labeling schemes

In this section, we explore basic properties of error-sentivity. First, we show that some
proof-labeling schemes are error-sensitive (Theorem 2), but that some other proof-labeling
schemes are not error-sensitive (Theorem 3). More precisely, Theorem 3 shows that even if
a language has an error-sensitive proof-labeling scheme, not all proof-labeling schemes for
that language have this property. Second, we show that if a language has an error-sensitive
proof-labeling scheme, then the so-called universal scheme also has this property (Lemma 4).
This implies that for checking whether there exists an error-sensitive scheme for a given
language, we can just check whether the universal scheme for that language is error-sensitive.



L. Feuilloley and P. Fraigniaud 8

We use this fact for proving that there exist languages that do not have error-sensitive
proof-labeling schemes (Theorems 5 and 6).

Let us first illustrate the notion of error-sensitive proof-labeling scheme by exemplifying
its design for a classic example of distributed languages. Let acyclic be the following
distributed language (which is a mere relaxation of spanning tree):

acyclic =
{

(G, `) : ∀v ∈ V (G), `(v) ∈ N(v)∪{⊥}, and
⋃

v∈V (G) : `(v)6=⊥

(v, `(v)) is acyclic
}

That is, the label of a node is interpreted as a pointer to some neighboring node, or to null.
Then (G, `) ∈ acyclic if the subgraph of G described by the set of non-null pointers is
acyclic. We show that acyclic has an error-sensitive proof-labeling scheme. The proof
of this result is easy, as fixing of the labels can be done locally, at the rejecting nodes.
Nevertheless, its proof serves as a basic example illustrating the notion of error-sensitive
proof-labeling scheme.

I Theorem 2. acyclic has an error-sensitive proof-labeling scheme, with sensitivity 1.

Proof. Let (G, `) ∈ acyclic. Every node v ∈ V (G) belongs to an in-tree rooted at a node r
such that `(r) = ⊥. The prover p provides every node v with its distance d(v) to the root of
its in-tree (i.e., number of hops to reach the root by following the pointers specified by `).
The verifier v proceeds at every node v as follows: first, it checks that `(v) ∈ N(v) ∪ {⊥};
second, it checks that, if `(v) 6= ⊥ then d(`(v)) = d(v)− 1, and if `(v) = ⊥ then d(v) = 0. If
all these tests are passed, then v accepts. Otherwise, it rejects. By construction, if (G, `)
is acyclic, then all nodes accept with these certificates. Conversely, if there is a cycle C
in (G, `), then let v be a node with maximum value d(v) in C. Its predecessor in C (i.e.,
the node u ∈ C with `(u) = v) rejects. So (p,v) is a proof-labeling scheme for acyclic.
We show that (p,v) is error-sensitive. Suppose that v rejects (G, `) at k ≥ 1 nodes. Let
us replace the label `(v) of each rejecting node v by the label `′(v) = ⊥, and keep the
labels of all other nodes unchanged, i.e., `′(v) = `(v) for every node where v accepts. We
have (G, `′) ∈ acyclic. Indeed, by construction, the label of every node u in (G, `′) has
a well-formatted label `′(v) ∈ N(v) ∪ {⊥}. Moreover, let us assume, for the purpose of
contradiction, that there is a cycle C in (G, `′). By definition, every node v of this cycle is
pointing to `′(v) ∈ N(v). Thus `′(v) = `(v) for every node of C, from which it follows that
no nodes of C was rejecting with `, a contradiction with the fact that, as observed before,
v rejects every cycle. Therefore (G, `′) ∈ acyclic. Hence the Hamming distance between
(G, `) and acyclic is at most k. It follows that (p,v) is error-sensitive, with sensitivity
parameter α ≥ 1. J

The definition of error-sensitiveness is based on the existence of a proof-labeling scheme for
the considered language. However, two different proof-labeling schemes for the same language
may have different sensitivity parameters α. In fact, we show that every non-trivial language
admits a proof-labeling schemes which is not error-sensitive. That is, the following result
shows that demonstrating the existence of a proof-labeling scheme that is not error-sensitive
for a language does not prevent that language to have another proof-labeling scheme which
is error-sensitive. We say that a distributed language is trivially approximable if there exists
a constant d such that every labeled graph (G, `) is at Hamming distance at most d from L.

I Theorem 3. Let L be a distributed language. Unless L is trivially approximable, there
exists a proof-labeling scheme for L that is not error-sensitive.
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Proof. Let L be a non trivially approximable distributed language. Given a labeled graph
(G, `) ∈ L, let T be a spanning tree of G. It is folklore (cf., e.g., [4, 31]) that T can be
certified by a proof-labeling scheme where the certificate assigned to each node u consists
of a pair (I(u), d(u)) where I(u) is the ID of a node r picked as the root of T , and d(u)
the hop-distance in T from u to r. The verifier checks the distances the same way as it
does in the proof of Theorem 2 (which guarantees the absence of cycles). In addition, every
node checks that it agrees with its neighbors in the graph about the ID of the root (which
guarantees that T is not a forest with more than one tree). At every node, if all these tests
are passed at that node, then it accepts, else it rejects.

We now prove that every proof-labeling scheme (p,v) for L can be transformed into a
proof-labeling scheme (p′,v′) for L which is not error-sensitive. On a legal instance (G, `) ∈ L,
the prover p′ selects a spanning tree T of G, and provides every node u with:
1. the certificate that the prover p would assign to u for (G, `), denoted by p(u);
2. the local description of the tree T , together with the corresponding certificate;
3. a boolean b(u), set to true.

The verifier v′ checks the correctness of the spanning tree T , and rejects if it is not correct.
From now on, we assume that T is correct. The verifier v′ then outputs accept or reject
according to the following rules.

1. At every node u distinct from the root of T , v′ accepts if and only if one of the two
conditions below is fulfilled:
a. b(u) = false, and either v rejects at u, or a child v of u in T satisfies b(v) = false;
b. b(u) = true, v accepts at u, and b(v) = true for every child v of u in T .

2. At the root of T , the verifier v′ rejects if and only if
a. v rejects, or a child v of u satisfies b(v) = false.

By construction, if (G, `) ∈ L then v′ accepts at all nodes, when provided with the
appropriate certificates, because, with these certificates, all booleans b are true, and v
accepts at all nodes.

If (G, `) /∈ L, then v′ rejects in at least one node if the given certificates do not encode
a spanning tree T . Therefore, let us assume that the given certificates correctly encode a
spanning tree T , rooted at r. Since (G, `) /∈ L, there exists at least one node where v rejects.
Let u be a node where v rejects, such that v rejects at no other nodes on the shortest path
from u to r in T . If u = r, then, since v rejects, we get that v′ rejects as well. So, let us
assume that u 6= r. Let u0, u1, . . . , ut with u0 = u, t ≥ 1, and ut = r be the shortest path
from u to r in T . For v′ to accept at u0, it must be the case that b(u) = false. The same
holds at each node along the path: For v′ to accept at ui, i = 0, . . . , t− 1, it must be the case
that b(ui) = false. This leads v′ to reject at ut = r. Therefore, (p′,v′) is a proof-labeling
scheme for L.

We now show that (p′,v′) is not error-sensitive. Let (G, `) /∈ L. Let T be a spanning
tree of G, rooted at node r. We provide the nodes with the proper description of T and the
certificates to certify T . We also provide the nodes with arbitrary certificates for v. Then we
provide the nodes with the following “fake” boolean certificates that we assign by visiting
the nodes of the tree T bottom-up, as follows. Let u be a node:

1. if v rejects at u or a child v of u in T satisfies b(v) = false, then set b(u) = false;
2. else set b(u) = true.
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In this way, only the root of T can reject. Therefore, with such certificates, even instances
(G, `) that are arbitrarily far from L will be rejected by a single node. It follows that (p′,v′)
is not error-sensitive, as claimed. J

Recall that the fact that every distributed language has a proof-labeling scheme can be
established by using a universal proof-labeling scheme (puniv,vuniv) (see [25]). Given a
distributed language L, the universal proof-labeling scheme is defined as follows. On a legal
instance (G, `) ∈ L, where G has n vertices, the prover assigns a certificate c(u) = (T,M,L)
to every node u. Specifically, the prover orders the vertices from 1 to n arbitrarily, and T is a
vector with n entries indexed from 1 to n where T [i] is the ID of the i-th node u. Then, L[i]
is the label `(v) of the i-th node u. Finally, M is the adjacency matrix of G, where the i-th
raw (and i-th column) corresponds to the i-th vertex in T . The prover puniv assigns c(u) to
every node u ∈ V (G). The verifier vuniv then checks at every node u that its certificate is
consistent with the certificates given to its neighbors (i.e., they all have the same T , L, and
M , the indexes match with the IDs, and the actual neighborhood of v is as it is specified in
T , L and M). If this test is not passed, then vuniv outputs reject at u, otherwise it outputs
accept or reject according to whether the labeled graph described by (M,L) is in L or not.
It is easy to check that (puniv,vuniv) is indeed a proof-labeling scheme for L.

The universal scheme uses large certificates, of size O(n(logn+ maxv |`v|) + n2). We are
interested in the design of proof-labeling schemes using significantly smaller certificates.

The universal proof-labeling scheme has the following nice property, that we state as a
lemma for further references in the text.

I Lemma 4. If a distributed language L has an error-sensitive proof-labeling scheme, then
the universal proof-labeling scheme applied to L is error-sensitive.

Proof. Let (p,v) be an error-sensitive proof-labeling scheme for L, and let (puniv,vuniv) be
the universal proof-labeling scheme for L. Let (G, `) /∈ L. We show that (puniv,vuniv) is
at least as good as (p,v) with respect to the number of rejecting nodes. Specifically, we
show that if vuniv rejects (G, `) at r nodes for some certificate function c, then there exists a
certificate function c′ such that v rejects (G, `) in at most r nodes. We now describe how to
construct the certificate assignment c′, on (G, `). Given any node u, the definition of the
certificate c′(u) depends on the behavior of u and its neighbors in the universal scheme with
certificate c.

The first case is when vuniv accepts at u, with certificate c(u) = (T,M,L). Let GM be
the graph described by M , and `L be the labeling of GM that correspond to L. Since u
accepts, we have (GM , `L) is in L. The certificate c′(u) is the certificate that the prover
p would assign to u if it were in (GM , `L).
The second case is when: (1) vuniv rejects (G, `) at u, and (2) u is adjacent to at least
one node v at which vuniv accepts (G, `). Note that this situation can occur only under
special circumstances. The fact that v accepts means that u and v were given the same
triplet (T,M,L), and that this triplet corresponds to a correct instance of the language.
Therefore, the fact that u rejects can only come from the fact that its neighborhood does
not match the description of this neighborhood in (T,M,L). As before, we set c′(u) as
the certificate assigned to node u by p in the labeled graph (GM , `L). Note that if u is
adjacent to two different nodes v and v′ at which vuniv accepts, then these two nodes v
and v′ share the same certificates (T,M,L). Hence the definition of c′ at u is well defined.
The third case is when none of the previous two cases apply. In this case c′(u) is set to ∅.
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Let us now consider the behavior of v on (G, `) with certificates c′. We observe that
for a node u in which vuniv accepts, its certificate c(u) is consistent with the certificates of
all its neighbors, and thus, in particular, u and its neighbors share the same labeled graph
representation (M,L). Therefore, the certificates c′ assigned to u and its neighbors are
consistent with respect to v. It follows that every node u at which vuniv accepts (G, `) with
certificate function c satisfies that v accepts (G, `) at u with certificate function c′. This
implies the Lemma. J

While every distributed language has a proof-labeling scheme, we show, using Lemma 4,
that there exist languages for which there are no error-sensitive proof-labeling schemes.

I Theorem 5. There exist languages that do not admit any error-sensitive proof-labeling
scheme.

Proof. We show that there exist languages L such that, for every proof-labeling scheme
(p,v) for L, and every d ≥ 1, there exists a labeled graph (G, `) at Hamming distance at
least d from L, and a certificate function c, such that v rejects (G, `) with certificate c in
at most a constant number of nodes. We consider labeled graphs (G, `) where ` encodes a
subgraph of G as follows. The label `(u) of node u is a list of neighbors of u in G, such that

v is in the list of `(u) ⇐⇒ u is in the list of `(v).

Such a labeling defines a subgraph of G where every edge {u, v} of G is in that subgraph if
and only if v is in the list of `(u). For a given (G, `), we define H` as the subgraph described
by `. Now, let us consider the language

regular = {(G, `) : ` describes a subgraph H`, and H` is regular}.

Let us assume, for the purpose of contradiction, that there exists an error-sensitive proof-
labeling scheme (p,v) for regular. From Lemma 4, it follows that the universal scheme
(puniv,vuniv) is error-sensitive for regular. We show that this is not the case.

Let d1 and d2 be two distinct integers. Let G1 be a regular graph of degree d1, and
let G′1 be a copy of G1. Let {u1, v1} ∈ E(G1), and let {u′1, v′1} be the corresponding edge
in G′1. We construct the graph G∗1, obtained from G1 and G′1, by removing {u1, v1} and
{u′1, v′1}, and adding {u1, u

′
1} and {v1, v

′
1}. By construction, G∗1 is d1-regular. Similarly, we

can construct a d2-regular graph G∗2 from a d2-regular graph G2 and its copy G′2. We denote
by {u2, u

′
2} and {v2, v

′
2} the edges connecting G2 to its copy G′2 in G∗2. For i ∈ {1, 2}, let `i

be the labeling of the nodes of G∗i such that H`i
= G∗i . We have

(G∗1, `1) ∈ regular, and (G∗2, `2) ∈ regular.

Let G∗3 be the graph obtained from G1 and G2 by removing {u1, v1} from G1, removing
{u2, v2} from G2, and adding the edges {u1, u2} and {v1, v2}. Again, let us consider the
labels `3 assigned to the nodes of G∗3 with H`3 = G∗3. Since d1 6= d2, we have

(G∗3, `3) /∈ regular.

Now, let us assign to the nodes of G1 in G∗3 the certificates assigned by puniv to the nodes
of G1 in G∗1. Similarly, let us assign to the nodes of G′2 in G∗3 the certificates assigned by
puniv to the nodes of G′2 in G∗2. With such certificates, only the four nodes u1, v1, u2,
and v2, can detect an inconsistency between their certificates and the certificates of their
neighborhoods. Therefore only these nodes may reject when running vuniv. Therefore, at
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most 4 nodes reject. On the other hand the distance between (G∗3, `3) and regular is at
least as large as min{|V (G1)|, |V (G2)|}. This distance can be made arbitrarily large, while
the number of rejecting nodes remains constant. Hence, the universal proof-labeling scheme
is not error-sensitive. J

Remark. The language regular used in the proof of Theorem 5 to establish the existence
of languages that do not admit any error-sensitive proof-labeling schemes actually belongs to
the class LCL of locally checkable labelings [35]. Therefore, the fact that a language is easy
to check locally does not help for the design of error-sensitive proof-labeling schemes.

We complete this warmup section by some observations regarding the encoding of dis-
tributed data structures. Let us consider the following two distributed languages, both
corresponding to spanning tree. The first language, stp, encodes the spanning trees using
pointers to parents, while the second language, stl, encodes the spanning trees by listing all
the incident edges of each node in these tree.

stp =
{

(G, `) : ∀v ∈ V (G), `(v) ∈ N(v) ∪ {⊥}

and
( ⋃
v∈V (G) : `(v)6=⊥

(v, `(v))
)
forms a spanning tree

}

stl =
{

(G, `) : ∀v ∈ V (G), `(v) ⊆ N(v) and u ∈ `(v) iff v ∈ `(u),

and
( ⋃
v∈V (G)

⋃
u∈`(v)

(u, v)
)
forms a spanning tree

}
.

Obviously, stp is just a compressed version of stl as the latter can be constructed from the
former in just one round. However, note that stp cannot be recover from stl in a constant
number of rounds, because stp provides a consistent orientation of the edges in the tree. It
follows that stp is an encoding of spanning trees which is actually strictly richer than stl.
This difference between stp and stl is not anecdotal, as we shall prove later that stl admits
an error-sensitive proof-labeling scheme, while we show hereafter that stp is not appropriate
for the design of error-sensitive proof-labeling schemes.

I Theorem 6. stp does not admit any error-sensitive proof-labeling scheme.

Proof. In this proof, we will write `(u) = v to denote the fact that the pointer encoded in
the label of u is pointing towards node v. Let Pn be the n-node path u1, u2, . . . , un with n
even. Let `0, `1, and `2 be labelings defined by:

`1(ui) = ui+1 for all 1 ≤ i < n, and `1(un) = ⊥;
`2(ui) = ui−1 for all 1 < i ≤ n, and `2(u1) = ⊥;
and `3(ui) = ui−1 for all 1 < i ≤ n

2 , `3(ui) = ui+1 for all n
2 + 1 ≤ i < n, and

`3(u1) = `3(un) = ⊥.

We have (Pn, `1) ∈ stp and (Pn, `2) ∈ stp. The distance from (Pn, `3) to stp is at least n2 .
Indeed, let us modifying (Pn, `3) to get a correct instance (Pn, `4). Suppose, w.l.o.g., that the
root of the tree described by `4 is among the first half of the nodes. Then, to get from `3 to
`4, all the pointers of the second half have to be changed, which means that the certificates
in at least n/2 nodes must be modified.

Let (p,v) be a proof-labeling scheme for stp. Consider the case of (Pn, `3) where every
ui, i = 1, . . . , n2 , is given the certificate assigned by p to ui in (Pn, `2), and every ui,
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i = n
2 + 1, . . . , n, is given the certificate assigned by p to ui in (Pn, `1). With such certificates,

all nodes ui for i = 1, . . . , un
2−1 have the exact same view as in (Pn, `1), and all nodes ui for

i = un
2 +2, . . . , n have the exact same view as in (Pn, `2). Therefore all these n nodes must

accept. Hence, (Pn, `3) can only be rejected by v at the two nodes un
2
and un

2 +1. J

4 Characterization

In this section, we define a notion of local stability for languages (Definition 10), and show that
being locally stable is equivalent to the fact of having an error-sensitive scheme (Theorem 11).
Then, we discuss a simpler but less general version of local stability, that we call strong local
stability. Finally, we give several examples of application of our equivalence therorem.

Roughly, local stability captures whether a patchwork of several correct instances (with a
small contact area between the instances), can be a “very incorrect” instance, or an “almost
correct” instance. For example, the language regular from the previous section in non
locally stable, because, by gluing together two regular graphs, one can get a graph that is
very far from being regular whenever the original graphs have different degrees.

In order to define the notions of local stability, we need to formalize the notion of a
“patchwork of solutions” and of “contact area”. Let G be a graph, and let H be a subgraph
of G, that is, a graph H such that V (H) ⊆ V (G), and E(H) ⊆ E(G). We first define partial
labelings and induced labelings (see Figure 1).

I Definition 7 (Partial labeling). Given a labeling ` of a graph G, and a subgraph H of G,
the partial labeling `H denotes the labeling of H induced by ` restricted to the nodes of H:

`H(v) =
{
`(v) if v ∈ V (H)
∅ otherwise (where ∅ denotes the empty string).

I Definition 8 (Induced labeling). Let G be a graph, and let H1, . . . ,Hk be a family of
connected subgraphs of G such that (V (Hi))i=1,...,k is a partition of V (G). For every i ∈
{1, . . . , k}, let us consider a labeled graph (Gi, `i) ∈ L such that Hi is a subgraph of Gi.
Let ` be the following labeling of G: for every v ∈ V (G), `(v) = `i(v) where i is such that
v ∈ V (Hi). We say that such a labeled graph (G, `) is induced by the labeled graphs (Gi, `i),
i = 1, . . . , k, via the subgraphs H1, . . . ,Hk.

We also define a notion of boundary.

I Definition 9 (Boundary). Let G be a graph, and H be a subgraph of G. The boundary
of H in G, denoted by ∂GH is the set of nodes of V (H) that are incident to an edge in
E(G) \ E(H).

We are now ready to define local stability.

I Definition 10. A language L is locally stable if there exists a constant β > 0, such that,
for every labeled graph (G, `) and for every k, the following holds. For every labeled graphs
(Gi, `i) ∈ L, i = 1, . . . , k, and every subgraphs H1, . . . ,Hk, such that (G, `) is induced by the
labeled graphs (Gi, `i) i = 1 . . . k via the graphs Hi, i = 1 . . . k, the following holds:

dist((G, `),L) ≤ β | ∪ki=1 (∂GHi ∪ ∂Gi
Hi)|.

Intuitively the definition says that by taking pieces of labelings from different correct
instances (that might not use the same underlying graph), we get a labeling whose distance to
the language is at most the size of the boundary between the pieces, up to some multiplicative
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Figure 1 Illustration of a labeling induced by other labelings. First, consider the three graphs on
the left. The top-left graph is G1, which has a labeling `1 represented by the node colored white,
and H1 is the subgraph that is above the dashed line. Similarly, G2 is the top-right graph, with
labeling `2 represented by color light grey, and H2 is on the right of the dashed line. Finally, G3

is the graph on the bottom, with labeling `3 represented by color dark gray, and H3 is below the
dashed line. Now, the graph on the right has a labeling that is induced by (G1, `1), (G2, `2) and
(G3, `3), via H1, H2 and H3.

constant. Note that ∂GHi ∪ ∂Gi
Hi measures the size of the boundary of the i-th piece in the

patchwork instance, but also in the correct instance it comes from.
Our characterization is the following.

I Theorem 11. Let L be a distributed language. L admits an error-sensitive proof-labeling
scheme if and only if L is locally stable.

More precisely, we establish that a language with sensitivity α is locally stable with
parameter β = 1

α , and that a language with local stability β is error-sensitive with parameter
α = 1

β+1 . We do not know whether these relations are tight or not.

Proof. We first show that if a distributed language L admits an error-sensitive proof-labeling
scheme then L is locally stable. So, let L be a distributed language, and let (p,v) be an error-
sensitive proof-labeling scheme for L with sensitivity parameter α. Let (G, `) be a labeled
graph induced by labeled graphs (Gi, `i) ∈ L, i = 1, . . . , h, via the subgraphs H1, . . . ,Hh for
some h ≥ 1. Since, for every i ∈ {1, . . . , h}, (Gi, `i) ∈ L, there exists a certificate function ci
such that v accepts at every node of (Gi, `i) provided with the certificate function ci. Now,
let us consider the labeled graph (G, `), with certificate ci(u) on every node u ∈ V (Hi) for
all i = 1, . . . , h. With such certificates, the nodes in V (Hi) that are not in ∂GHi ∪ ∂Gi

Hi

have the same close neighborhood in (G, `) and in (Gi, `i). Therefore, they accept in (G, `)
the same way they accept in (Gi, `i). It follows that the number of rejecting nodes is
bounded by | ∪hi=1 (∂GHi ∪ ∂Gi

Hi)|, and therefore (G, `) is at Hamming distance at most
1
α | ∪

h
i=1 (∂GHi ∪ ∂GiHi)| from L. Hence, L is locally stable, with parameter β = 1

α .
It remains to show that if a distributed language is locally stable then it admits an

error-sensitive proof-labeling scheme. Let L be a locally stable distributed language with
parameter β. We prove that the universal proof-labeling scheme (puniv,vuniv) for L (cf.



L. Feuilloley and P. Fraigniaud 15

Section 3) is error-sensitive for some parameter α depending only on β. Let (G, `) /∈ L, and
let us fix some certificate function c. The verifier vuniv rejects in at least one node. We show
that if vuniv rejects at k nodes, then the Hamming distance between (G, `) and L is at most
k/α for some constant α > 0 depending only on β. For this purpose, let us consider the
outputs of vuniv applied to (G, `) with certificate c, and let us define the graph G′ as the
graph obtained from G by removing all edges for which vuniv rejects at both extremities.
Note that the graph G′ may not be connected.

Let C be a connected component of G′, with at least one node u at which vuniv accepts.
Recall that we used the notation (T,M,L) for the certificates of the universal scheme (cf.
Section 3). We claim that all the vertices of C have received the same certificate (T,M,L).
Indeed, if it is not the case, then, by connectivity there exist two vertices that are adjacent
in C, and that do not have the same certificate. This is a contradiction. Indeed, these
two vertices would have detected the inconsistency, and would have both rejected, thus the
edge between them would have been removed. We denote by (GC , `C) the labeled graph
described by (M,L). In addition, since vuniv accepts in at least one node u, it must be that
(GC , `C) ∈ L. Finally, we prove that C is a subgraph of GC , and that the labeling ` and `C
coincide on C. Consider an edge of C. Necessarily, at least one of its endpoints is accepting
(otherwise this edge would have been removed). If the vertex accepts, it means that this
edge exists in GC , and that both endpoints have the same label in ` and `C .

Let us now consider the other possibility: C is a connected component of G′ where all
nodes reject. By construction, such a component is composed of just one isolated node. For
every such isolated rejecting node u, let us denote by (GC , `C) a labeled graph composed of a
unique node, with ID equal to the ID of u, and with labeling `C(u) such that (GC , `C) ∈ L.

Let C be the set of all connected components of G′. Note that C is a partition of the
vertices of G, and that we established that for every C, C is a subgraph of GC , and the
labelings `C and ` coincides on C. Therefore we can legally define (G, `′) as the graph
induced by labeled graphs (GC , `C) via the subgraphs C ∈ C. By local stability, we get the
following:

dist((G, `′),L) ≤ β | ∪C∈C (∂GC ∪ ∂GC
C)|.

Now, let us consider the number k of nodes rejecting (G, `). By construction, the nodes in
∪C∈C(∂GC ∪ ∂GC

C) are exactly the nodes that are rejecting (G, `), thus:

k = | ∪C∈C (∂GC ∪ ∂GC
C)|.

Finally, again by construction, the Hamming distance between (G, `′) and (G, `) is at most
the number of isolated rejecting nodes, which implies:

dist((G, `′), (G, `)) ≤ k.

Putting all the pieces together we get:

dist((G, `),L) ≤ (β + 1) k.

In other words, the universal proof-labeling scheme is error-sensitive, with parameter α =
1

β+1 . J

Theorem 5 can be viewed as a corollary of Theorem 11 as it is easy to show that regular
is not locally stable. Nevertheless, local stability may not always be as easy to establish,
because it is based on merging an arbitrary large number of labeled graphs. We thus consider
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another property, called strong local stability, which is easier to check, and which provides a
sufficient condition for the existence of an error-sensitive proof-labeling scheme. Given two
labeled graphs (G, `) and (G′, `′), and a subgraph H of both G and G′, we define a third
labeling of G, that we call `− `H + `′H . For every node v ∈ V (G):

(`− `H + `′H)(v) =
{
`′H(v) if v ∈ V (H),
`(v) otherwise.

To avoid double subscript, in the following we will sometimes use superscripts instead of
subscripts for sequences, e.g., `i instead of `i.

I Definition 12. A language L is strongly locally stable if there exists a constant β > 0,
such that, for every graph H, and every two labeled graphs (G, `) ∈ L and (G′, `′) ∈ L
admitting H as a subgraph, the labeled graph (G, ` − `H + `′H) is at hamming distance at
most β |∂G′H + ∂GH| from L.

The following theorem states that strong local stability is indeed a notion that is at least
as strong as local stability.

I Theorem 13. If a language L is strongly locally stable, then it is locally stable.

Proof. Let us consider a strongly locally stable language L, with parameter β, and a
labeled graph (G, `) induced by labeled graphs (Gi, `i) ∈ L, i = 1, . . . , h, via the subgraphs
H1, . . . ,Hh. We will establish that dist((G, `),L) ≤ β | ∪hj=1 (∂GHj ∪ ∂Gj

Hj)|, which is the
condition of local stability.

For a labeling `′ of G, let disti((G, `), (G, `′)) be the distance between the labelings
` and `′, restricted to ∪ij=1Hj (in other words the label differences in ∪hj=i+1Hj do not
count for disti). We consider two sequences of labelings of G, ρi for i = 0, . . . , h, and µi for
i = 1, . . . , h. They are defined iteratively in the following way. We take ρ0 to be an arbitrary
labeling such that (G, ρ0) ∈ L. For i ≥ 1, ρi is a labeling such that (G, ρi) ∈ L, and:

disti
(
(G, `), (G, ρi)

)
≤ β

i∑
j=1
|∂GHj ∪ ∂GjHj |. (1)

Finally, we set

µi = ρi−1 − ρi−1
Hi

+ `Hi
,

Note that this labeling satisfies the distance inequality, because dist0 is always zero. To prove
our result, it is sufficient to show that we can indeed define the sequence ρi, i = 0, . . . , h.
Indeed, if we get to ρh, then since (G, ρh) ∈ L and disth = dist, Equation 1 transforms
into dist ((G, `) ,L) ≤ β

∑h
j=1 |∂GHj ∪ ∂Gj

Hj |, and because the sets (∂GHj ∪ ∂Gj
Hj)j are

disjoint, the right-hand side is equal to β| ∪hj=1 ∂GHj ∪ ∂GjHj |, which is what we want.
By induction, suppose that we have built a proper ρi. To define µi+1, we take ρi and

copy the labeling of ` on a still untouched subgraph Hi+1. Therefore:

disti+1
(
(G, `), (G,µi+1)

)
= disti

(
(G, `), (G, ρi)

)
≤ β

i∑
j=1
|∂GHj ∪ ∂Gj

Hj |. (2)

We take ρi+1 to be a labeling such that (G, ρi+1) is in L, and the distance between (G, ρi+1)
and (G,µi+1) is minimized. By strong local stability, since ` and ρi are legal labelings for L,
we get that:

dist((G,µi+1), (G, ρi+1)) = dist((G,µi+1),L) ≤ β|∂GHi+1 ∪ ∂Gi+1Hi+1|. (3)
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Putting the Equations 2 and 3 together, by triangle inequality, we get:

disti+1
(
(G, `), (G, ρi+1)

)
≤ β

i+1∑
j=1
|∂GHj ∪ ∂GjHj |.

That is, we get Equation 1 at index i+ 1, which proves the theorem by induction. J

In fact, strong local stability is a notion strictly stronger than local stability, although
they coincide on bounded-degree graphs.

I Theorem 14. There are languages that are locally stable but not strongly locally stable.
However, all locally stable languages on bounded degree graphs are strongly locally stable.

Proof. Let us define a language L to prove the first part of the theorem. As earlier in the
paper (e.g., in the proof of Theorem 5), a proper labeling ` for L describes a set of edges H`.
Here, in addition, every node is also assigned a color: blue or red. The labeling is in the
language L if every connected component of H` is monochromatic.

This language has a proof-labeling scheme with empty certificates. The verifier simply
checks that H` is well-defined, and that every neighbor in H` has been given the same color.
In addition, this scheme is error-sensitive. This is because, for every inconsistency in the
description of H`, or any edge of H` that is not monochromatic, both endpoints reject. As
a consequence, if every rejecting node modifies its local description of H` by removing the
faulty edges, the new labeling is in the language. In turn, this means that the distance from
the language is upper bounded by the number of rejecting nodes. By Theorem 11, we know
that the language L is locally stable.

We show that L is not strongly locally stable. Consider a graph G that is a star with
2p leaves. Now, consider two labelings ` and `′ where H` = H`′ = G, and all the nodes are
blue in ` and red in `′. Let H be a subgraph of G with the center and p leaves. We note
that (G, `− `H + `′H) is at distance p from L. This is because the best we can do is to edit
the labels of all the vertices of G \H. On the other hand, ∂GH contains only one node, the
center. As we can make p arbitrarily large, the condition of strong local checkability cannot
be fulfilled.

We now show that all locally stable languages on bounded degree graphs are strongly
locally stable. Let ∆ ≥ 1, and let F∆ be the family of graphs with maximum degree ∆. Let
L be a locally stable language on graphs in F∆. Let us consider a connected graph H, and
two labeled graphs (G, `) ∈ L and (G′, `′) ∈ L, with G ∈ F∆, and G′ ∈ F∆, both admitting
H as a subgraph. Let (G, `− `H + `′H) be the labeled graph induced by (G, `) and (G′, `′)
via the subgraph H. We view (G, ` − `H + `′H) as induced by (G, `) and (G′, `′) via the
subgraphs G \H and H. By local stability, we get that the distance from (G, `− `H + `′H) to
L is at most β | (∂GH ∪ ∂G′H) ∪ (∂G(G \H)) |. (Note that for G \H, G is both the original
graph, and the one that induces the labeling, hence there is just one border to consider.)
Now, |∂G(G \ H)| ≤ ∆|∂GH|, because each edge from the cut (H,G \ H) must have an
endpoint in H and these endpoints have degree at most ∆. As a consequence the distance
from (G, `− `H + `′H) to L is at most β(∆ + 1)|∂GH ∪ ∂G′H|, and the strong local stability
follows. J

We do not have examples of “natural” languages that are locally stable but not strongly
locally stable. In fact, the rest of this section is devoted to using strong local checkability
applied to various “natural” languages. Let us give an example where strong local stability
is useful for easily proving error-sensitivity. Consider the following language.
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leader =
{

(G, `) : ∀v ∈ V (G), `(v) ∈ {0, 1},
and there exists a unique v ∈ V (G) for which `(v) = 1

}
.

I Corollary 15. leader admits an error-sensitive proof-labeling scheme.

Proof. Consider an arbitrary graph H, and two labeled graphs (G, `) and (G′, `′) in leader.
On the one hand, in (G, ` − `H + `′H), there can be only 0, 1, or 2 vertices with `(v) = 1.
On the other hand, |∂G′H + ∂GH| is at least 1, by connectivity. Therefore we get that
(G, `−`H +`′H) is at Hamming distance at most 2 |∂G′H+∂GH| from the language, thus that
language is strongly locally stable, and the corollary follows from Theorems 11 and 13. J

Also, one can show that the language STl of spanning trees, whenever encoded by
adjacency lists, admits an error-sensitive proof-labeling scheme, in contrast to Theorem 6.

I Corollary 16. stl admits an error-sensitive proof-labeling scheme.

Proof. We show that stl is strongly locally stable. Let us consider two labeled graphs
(G, `) ∈ stl and (G′, `′) ∈ stl, both admitting H as a subgraph. We show that (G, `−`H+`′H)
is not far from L. For this purpose, we aim at modifying the labels of few nodes so that to
form a spanning tree of G. First, for every node u ∈ ∂GH ∪ ∂G′H, we modify `′H(u) such
that the label of u becomes consistent with its neighborhood in G. That is, all edges listed
in the label exist in G, and they match edges listed by the neighbors of u in G. After this
modification, which impacts only |∂GH ∪ ∂G′H| nodes, the resulting labeling of the nodes
in G encodes a set of edges F ⊆ E(G). However, F may not be a spanning tree, as it may
include cycles, and may even be not connected.

Let Ĝ be the graph obtained from G after removing all edges in E(H), and all nodes in
V (H) \ (∂GH ∪ ∂G′H). Note that V (H) ∪ V (Ĝ) = V (G) and V (H) ∩ V (Ĝ) = ∂GH ∪ ∂G′H.
The set F is equal to the union of the edges described by ` on Ĝ, and of the edges described
by `′ on H. Indeed consider an edge e ∈ F . If both endpoints of e are in Ĝ, then this edge is
encoded by ` at its two endpoints, as the labels of these endpoints are copied from `, and
the modification of ` − `H + `′H performed at the nodes in ∂GH ∪ ∂G′H does not impact
such nodes. If e has both endpoints in H \ (∂GH ∪ ∂G′H) then, by the same reasoning, this
edge is encoded by `′ at its two endpoints. If e has both endpoints in ∂GH ∪ ∂G′H, then
the modification of ` − `H + `′H performed at the nodes in this latter set did not affected
edge e, which implies that e was originally encoded in `′. Finally, if e has one endpoint in
∂GH ∪ ∂G′H, and the other one outside ∂GH ∪ ∂G′H, then, from by the modification of
`− `H + `′H , the edge e was present in ` in at least one of its extermities.

As ` is the labelling of a spanning tree of G, F restricted to Ĝ is a spanning forest of Ĝ.
Similarly, as `′ is a spanning tree of G′, F restricted to H is a spanning forest of H. Also,
since V (Ĝ) ∩ V (H) = ∂GH ∪ ∂G′H, it follows that, in both forests, every tree contains a
node of V (Ĝ) ∩ V (H). Let us denote by n

Ĝ
, m

Ĝ
, and s

Ĝ
the number of nodes, edges, and

connected components of F restricted to Ĝ, respectively. Similarly, let us denote by nH , mH ,
and sH the same parameters for H. Since the connected components of F restricted to Ĝ,
and to H, are forests, we get that:

m
Ĝ

= n
Ĝ
− s

Ĝ
, and mH = nH − sH . (4)

Moreover, since each connected component contains a node of the border, we get

s
Ĝ
≤ |V (Ĝ) ∩ V (H)|, and sH ≤ |V (Ĝ) ∩ V (H)|. (5)
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Now, let us consider the whole set F , and let us define nF , mF , and sF as the number of
nodes, edges, and connected components of F , respectively. By definition, mF = m

Ĝ
+mH .

Thus, by Eq. (4), we get that

mF = n
Ĝ

+ s
Ĝ

+ nH + sH .

Moreover, by definition, nF = n
Ĝ

+ nH − |V (Ĝ) ∩ V (H)|. Therefore,

mF = nF + |V (Ĝ) ∩ V (H)|+ s
Ĝ

+ sH .

We can now bound the number of edges that we need to remove from F in order to get a
spanning forest (with the same number of connected components). For such a forest, it must
hold that its number of edges, m, satisfies m = nF + sF . Therefore,

mF −m = (nF + |V (Ĝ) ∩ V (H)|+ s
Ĝ

+ sH)− (nF + sF )

≤ |V (Ĝ) ∩ V (H)|+ s
Ĝ

+ sH

≤ 3|V (Ĝ) ∩ V (H)|,

where the last equality holds by Eq. (5). Thus, by removing at most 3|∂GH ∪ ∂G′H| edges
from F , we get a spanning forest of G with at most |∂GH ∪ ∂G′H| connected components.
Therefore, by adding |∂GH ∪ ∂G′H| − 1 edges, one can construct a spanning tree of G. So, in
total, transforming F into a spanning tree required to modify at most 4|∂GH ∪ ∂G′H| edges.
This may impact the labels of at most 8|∂GH ∪ ∂G′H| nodes. As the labels of the nodes in
∂GH ∪ ∂G′H were also modified at the very beginning of the construction, it follows that the
number of node labels impacted by our spanning tree construction is at most 9|∂GH ∪ ∂G′H|.
It follows that stl is strongly locally stable with parameter at most 9, which implies that
it admit an error-sensitive proof-labeling scheme with sensitivity parameter at least 1

9 , by
Theorem 11, and Theorem 13. J

Also, Theorem 11 allows us to prove that minimum-weight spanning tree (MST) is
error-sensitive (whenever the tree is encoded locally by adjacency lists). More specifically, let

mstl =
{

(G, `) : ∀v ∈ V (G), `(v) ⊆ N(v) and
( ⋃
v∈V (G)

⋃
u∈`(v)

{u, v}
)
forms a MST

}
. (6)

I Corollary 17. mstl admits an error-sensitive proof-labeling scheme.

Proof. We show that mstl is strongly locally testable. Let us consider a graph H, and two
labeled graphs (G, `) ∈ mstl and (G′, `′) ∈ mstl admitting H as a subgraph. We show that
the labeled graph (G, `− `H + `′H) is not far from mstl. Let T be the spanning tree of G
defined by the set of edges defined by `, and let T ′ be the spanning tree of G′ defined by
the set of edges defined by `′. Let F the edge set defined by ` − `H + `′H on G, after the
same modification of that labeling on the nodes of ∂GH ∪ ∂G′H as in the proof of Corollary
16, i.e., the labels of ∂GH ∪ ∂G′H are modified so that the adjacency lists of these nodes in
their labels match the labels of their neighbors. Let Ĝ be the graph defined as in the proof
of Corollary 16, that is, Ĝ is the graph obtained from G after removing all edges in E(H),
and all nodes in V (H) \ (∂GH ∪ ∂G′H). Note that F is obtained from the union of the two
forests that came from ` and `′, on E(Ĝ) and E(H), respectively. Hence, every connected
component of F contains a node in ∂GH ∪ ∂G′H.

Recall that Kruskal algorithm constructs an MST by considering the edges in increasing
order of their weights, and by adding the currently considered edge to the current set of
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edges if and only if this edge does not create a cycle with the previously added edges. It is
known that every MST of a graph can be generated by Kruskal algorithm, by breaking ties
between edges of identical weight in a way to add all edges of the desired MST. Let O be
the ordering of the edges of G that leads to the tree T , and let O′ be the ordering of the
edges of G′ that leads to the tree T ′. Let O′H , be the same ordering as O′ but restricted to
the edges of H.

Let G1 be the graph obtained from H by adding a new node u connected to every node of
∂GH + ∂G′H by edges with weights smaller than the smallest weight in E(G) and in E(G′).
Let O1 be the ordering of E(G1) obtained by concatenating O′H to an arbitrary ordering of
the edges incident to u. Let T1 be the MST of G1 that Kruskal algorithm constructs in G1
when it uses the ordering O1. Also let G2 be a copy of H, let T2 be the MST constructed by
Kruskal algorithm on G2 using O2 = O′H . Finally, we define the ordering O3 of the edges of
G as the ordering such that the edges of E(Ĝ) appear in the same order as in O, the edges
of E(H) appear in the same order as in O′, and the edges of E(T )∩E(Ĝ) have priority. Let
T3 be the spanning tree defined by Kruskal algorithm on G with O3. T3 is necessarily equal
to T on the edges of Ĝ because they are MST of the same graph, and because the edges of
E(T ) ∩ E(Ĝ) have priority in O3. We claim the following:

B Claim 18. The following inclusions hold.

E(T1) ∩ E(H) ⊆ E(T ′) ∩ E(H) ⊆ E(T2) ∩ E(H).

E(T1) ∩ E(H) ⊆ E(T3) ∩ E(H) ⊆ E(T2) ∩ E(H).

Before proving Claim 18, let us show how to complete the proof using that Claim. By
Claim 18, on H, T3 can be transformed into T ′ by changing only edges of E(T2) \ E(T1).
Moreover E(T2) ∩ E(H) and E(T1) ∩ E(H) are a spanning forests of H with at most
|∂GH ∪ ∂G′H| trees in it, because, as in the proof of Corollary 16, every tree contains at
least a node of ∂GH ∪ ∂G′H. We get that

|(E(T2) ∩ E(H)) \ (E(T1) ∩ E(H))| ≤ |∂GH ∪ ∂G′H|.

Therefore, restricted to the graph H, the tree T3 can be transformed into the tree T ′ by
adding or removing at most |∂GH ∪ ∂G′H| edges. Now, as T3 is equal to T on Ĝ, E(T3) can
be transformed into F by changing at most |∂GH ∪ ∂G′H| edges. Thus F is at Hamming
distance at most 2|∂GH ∪ ∂G′H| from a MST of G. Since the modification we made at
the very beginning to ensure the consistency of the labels affected at most |∂GH ∪ ∂G′H|
nodes, it follows that the Hamming distance from (G, `− `H + `′H) to the language is most
3|∂GH ∪ ∂G′H|, and thus the language is strongly locally stable. This completes the proof of
Corollary 17, assuming Claim 18.

It just remains to prove Claim 18. We show the two sets of inclusion at once. Let M
be either E(T ′) or E(T3), and let Ω be the ordering of the edges which makes Kruskal
algorithm build T ′ or T3. Note that, by construction, Ω, O1, and O2 are consistent on the
edges that they have in common, i.e., on all the edges of E(H). Let Otot be an ordering that
is consistent with the three orderings Ω, O1 and O2. We can run Kruskal algorithm on the
three instances G, G1 and G2 with Otot. Let i ≥ 1, and let M (i)

1 , M (i)
2 and M (i), be the

subset of edges in E(T1), E(T2), and M , respectively, that have been added to the current
tree by Kruskal algorithm before considering the ith edge in Otot. We show, by induction on
i, that the three following properties hold for every i ≥ 1:

P1: M (i)
1 ∩ E(H) ⊆M (i) ∩ E(H) ⊆M (i)

2 ∩ E(H);
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P2: if two nodes of H are linked by a path in M (i)
2 then they are linked by a path in M (i);

P3: if two nodes of H are linked by a path in M (i) then they are linked by a path in M (i)
1 .

These properties are trivially true for i = 1, as all sets M (1)
1 , M (1)

2 and M (1) are empty.
Suppose that P1, P2, and P3 hold are true for i − 1, and consider i-th edge e = {u, v}
considered by Kruskal algorithm in Otot for T1, T2 and T ′ or T3. We consider two cases.

Consider first the case where e /∈ E(H). Then e appears either only in O1, or only in Ω.
If e appears only in O1, then independently of whether Kruskal algorithm takes e or not,
the three properties P1, P2, and P3 hold for i. If e appears only in Ω, then, clearly, P1 and
P2 hold for i. The only scenario for which P3 may not hold for i is if e is added to M , and
this addition creates a new path between two nodes x and y of H, while there are no paths
between x and y in M (i)

1 . Let us show that this does not happen. Indeed, since e /∈ E(H),
such a path must pass through the border of H, which is included in ∂GH ∪ ∂′GH (this holds
for both choices for M , that is, either E(T ′) or E(T3)). In particular adding e to the set of
edges taken by Kruskal algorithm so far connects two nodes of the border of H. Now, all
the nodes of ∂GH ∪ ∂′GH are already connected in M (i)

1 . Indeed, the edges of E(G1) \E(H)
have smaller weights. Therefore, all the nodes of ∂GH ∪ ∂′GH are connected in M (i)

1 , and
thus it is not possible that there is a path created by adding e in M that does not already
exists in M (i)

1 .
Second, consider the case e ∈ E(H). Then e appears in all the orderings. Let us consider

two subcases depending on whether or not e is taken in M .
If e is taken in M , then e is not closing a cycle in M (i−1), and thus, thanks to P2, e is
not closing any cycle in M (i−1)

2 either. Thus e is also taken in T2, and P1 holds. P2 still
holds as well since e is added to both sets. If e is taken in T1 then P3 holds. Instead if e
is not taken in T1, then its two extremities were already linked by a path, and P3 also
holds.
If e is not taken in M , then e closes a cycle in M (i−1). Therefore, by P3, e also closes a
cycle in M (i−1)

1 , and thus it is not taken in T1 either, and P1 holds. P3 still holds as we
have added no edges to M . If e is not taken in T2 then P2 holds. And if e is taken in T2,
then the fact that e is not taken in M implies that the nodes were already connected,
and thus again P2 holds.

This completes the proof of Claim 18, and thus the proof of Corollary 17. J

5 Compact error-sensitive proof-labeling schemes

The characterization of Theorem 11 together with Lemma 4 implies an upper bound of
O(n2) bits on the certificate size for the design of error-sensitive proof-labeling schemes
for locally stable distributed languages. In this section, we show that the certificate size
can be drastically reduced in certain cases. As said in the introduction, we focus on the
spanning tree and minimum spanning tree problems, as they play a central role in the theory
of proof-labeling schemes, and in distributed computing in general. It is known that these
languages have proof-labeling schemes using respectively certificates of Θ(logn) bits [4, 31],
and Θ(log2 n) bits [29]. We show that these schemes are actually error-sensitive.

Recall that Theorem 6 proved that the language STp of spanning trees encoded at each
node by a pointer to its parent does not admit any error-sensitive. Hence, we are interested
in STl, i.e., the language of spanning trees encoded by adjacency lists.

I Theorem 19. STl has an error-sensitive proof-labeling scheme with certificates of size
O(logn) bits, and sensitivity 1

4 .
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Proof. We show that the classical proof-labeling scheme (p,v) for STl is error-sensitive. Let
us first remind precisely what this scheme is.

On instances of the language, i.e., on labeled graphs (G, `) where ` encodes a spanning
tree T of G, the prover p does the following. It chooses an arbitrary root r of T , and then
assigns to every node u a certificate (I(u), P (u), d(u)) where I(u) = ID(r), P (u) is the ID of
the parent of u in the tree (where we consider that the root is its own parent), and d(u) is
the hop-distance in the tree from u to r. The verifier v at every node u first checks that:

the adjacency lists are consistent, that is, if u is in the list of v, then v is in the list of u;
there exists a neighbor of u with ID P (u), we denote it p(u);
the node u has the same root-ID I(u) as all its neighbors in G;
d(u) ≥ 0.

Then, the verifier checks that:
if ID(u) 6= I(u) then d(p(u)) = d(u) − 1, and for every other neighbor w listed in `,
d(w) = d(u) + 1 and p(w) = u;
if ID(u) = I(u) then P (u) = ID(u), d(u) = 0, and every neighbor w of u listed in `

satisfies d(w) = d(u) + 1 and p(w) = u.

The scheme and later steps of the proof are illustrated in Figure 2.
By construction, if (G, `) ∈ STl, then v accepts at every node. Conversely, if (G, `) /∈ STl,

then, for every certificate function c, at least one node rejects. To establish error-sensitivity
for the above proof-labeling scheme, let us assume that v rejects at k ≥ 1 nodes with some
certificate function c. Then, let (G′, `′) be the labeled graph coinciding with (G, `) except
that all edges for which v rejects at both endpoints are removed both from G, and from the
adjacency lists in ` of the endpoints of these edges. Note that modifying ` into `′ only requires
to edit labels of nodes that are rejecting. Note that the graph G′ might be disconnected.
Also note that the edges described in the labeling that are still present in (G′, `′) form a
forest. (This is because the verification of the counters ensures that any cycle is cut by our
procedure).

Let (C, `′C) be a connected component of (G′, `′). We claim that the edges of `′C form a
forest in C. If there is a cycle in the edges of `′C , then this cycle already existed in ` because
no edges were added when transforming ` into `′. Let us consider such a cycle in ` (if it
exists), and let us consider the certificates given by p to the nodes of this cycle. Either
an edge is not oriented, i.e., no nodes use this edge to point to its parent, or the cycle is
consistently oriented but some distances are not consistent. In both cases, two adjacent
nodes of the cycle would reject when running v. It follows that this cycle cannot be present
in `′C , as at least one edge has been removed. As a consequence `′C form a forest of C. If a
node is connected to no other nodes by an edge of `′C , then we will consider such isolated
node as a tree of a unique node. With this convention, `′ is a spanning forest of G′.

We now bound the number of trees in `′ by a function of k. The number of trees in
`′ is equal to the sum of the number of trees in each component (C, `′C). Let us run v on
the graph (C, `′C), and let kC be the number of rejecting nodes. Observe that, for every
two nodes u and v in a component C, it holds that I(u) = I(v). Indeed, otherwise, there
would exist two adjacent nodes u and v in C with I(u) 6= I(v), resulting in v rejecting at
both nodes, which would yield the removal of {u, v} from G. Consequently, at most one
tree of `′C has a root whose ID corresponds to the ID given to the nodes in the certificate.
Therefore, in every tree described in `′C , except at most one, there exists at least one node
that rejects (typically a vertex that is pointing to itself, but whose root-ID is different from
its ID). As a consequence, the number of trees in `′C is upper bounded by kC + 1, and the
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(a) Instance (b) Certification

(c) Verifier output (d)Graph G′

Figure 2 Construction in the proof of Theorem 19. (a) Illustration of an instance. The black
edges are the edges described in ` (in this example, ` is a proper encoding of a set of edges), and
the gray edges are the other edges of the graph. Note that (G, `) is not in the languages as the set
of black edges in neither connected, nor acyclic. (b) Illustration of a certificate assignment. The
depicted numbers are the hop-distances, and the arrows provide the orientation of the pointers. The
nodes in the light grey area have the ID of the black node as their root-ID in their certificates. The
ones in the dark grey rectangle have the ID of the white node as their root-ID in their certificates.
(c) Illustration of the rejecting nodes and edges. The black nodes are the ones that reject, and the
dashed edges have both endpoints rejecting. The two top left black nodes reject because they do not
have the same root-ID. The ones linked by a dashed edge at the bottom reject because they detect
that the edge connecting them is in the input but is not oriented (that is, the condition “p(w) = u”
does not hold). The third black node on the bottom rejects because it has a distance-counter equal
to zero, and a pointer to itself, as if it was the root, but its ID is not the root-ID in its certificate.
Finally, the endpoints of the dashed edge on the right reject because their distance counter are not
consistent with the pointers. (d) The labeled graph (G′, `′) obtained after removing the edges whose
both endpoints reject. The black nodes are the ones that reject when we run again the verifier on
this labeled graph, with the same certificate.

total number of trees is bounded by
∑
C(kC + 1) = (

∑
C kC) + |C|. Now, by construction of

the proof-labeling scheme, the nodes that accept when running v on (G, `) also accept in
(G′, `′). Therefore

∑
C kC ≤ k.

For every connected component C, let VC be the set of nodes of C. We claim that there
exists a node of VC that rejects when we run v on (G, `). Suppose by contradiction that
there exists a component where no node reject. Then no edges between C and the rest of the
graph would have been removed, and therefore there would be only one component in the
graph. And then, as we know that at least one node rejects there would be a contradiction.
Therefore |C| ≤ k. It follows that `′ encodes a spanning forest with at most 2k trees in total.
Such a labeling can thus be modified to get a spanning tree by modifying the labels of at
most 4k nodes. That is, (p,v) is error-sensitive with parameter α ≥ 1

4 . J

Last, but not least, we show that the compact proof-labelling scheme in [29, 31] for
minimum-weight spanning tree (MST), as specified in Eq. (6) of Section 4, is error-sensitive
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whenever the edge-weights are pairwise distinct.

I Theorem 20. mstl admits an error-sensitive proof-labeling scheme with certificates of size
O(log2 n) bits, and sensitivity 1

7 .

The proof of Theorem 20 is quite technical. So, before entering into the details of the
proof, let us provide the reader with some intuitions. A classic proof-labeling scheme for mst
(see, e.g., [28, 29, 31]) consists in encoding a run of Borůvka algorithm. Recall that Borůvka
algorithm maintains a spanning forest whose trees are also called fragments. Starting with
the forest in which every node forms a fragment, Borůvka algorithm proceeds in a sequence
of steps where, at each step, the lightest edge outgoing from every fragment of the current
forest is selected, and is added to the mst. The fragments linked by the selected edges are
merged, and the algorithm goes to the next step. This algorithm eventually produces a single
fragment, which is a mst of the whole graph, after at most a logarithmic number of steps.

At each node u, the certificate of the classical proof-labeling scheme for mst consists of
a table with a logarithmic number of fields, one for each step of Borůvka algorithm. The
corresponding entry of the table provides a proof of correctness for the fragment including u
at this step, plus the certificate of a tree pointing to the lightest outgoing edge of the fragment.
The verifier verifies the structures of the fragments, and the fact that no edges outgoing
from each fragment have smaller weights than the one given in the certificate. It also checks
that the different fields of the certificate are consistent. In particular, it checks that, if two
adjacent nodes are in the same fragment at the same step, then they are also in the same
fragment at the next step.

To prove that this classic scheme is actually error-sensitive, we perform the same decom-
position as in the proof of Theorem 19, by removing the edges that have both endpoints
rejecting. We then consider each connected component C of the remaining graph, and the
subgraph S of that component induced by the edges of the given labeling. In general, S
is not a mst of the component C, as it can even be disconnected. Nevertheless, we can
still make use of a key property, which is that the subgraph S is not far from a mst of C.
Indeed, the edges of S form a forest, and these edges belong to a mst of the component. As a
consequence, it is sufficient to add a few edges to S for obtaining a mst. Thus, to show that
S is indeed not far from being a mst of C, we define a relaxed version of Borůvka algorithm,
and show that the labeling of the nodes corresponds to a proper run of this modified version
of Borůvka algorithm. We then show how to slightly modify both the run of the modified
Borůvka algorithm, and the labeling of the nodes, to get a mst of the component. Finally,
we prove that the collection of msts of the components can be transformed into a single mst
of the whole graph, by editing a few node labels only.

The rest of the section is dedicated to formalizing the above intuition.

Proof of Theorem 20. We show that the proof-labeling scheme for MST described
in [29, 31] is error-sensitive. Let G be an edge-weighted graph. For simplicity we assume
that all the edge-weights of G are distinct, and thus the MST is unique. It is now folklore
(see, e.g., [37]) that one can run a parallel version of Borůvka algorithm which proceeds in at
most dlog2 ne rounds, where each round consists in merging fragments in parallel. Note that
a merging may involve more than just two fragments during a single round, so the number
of fragments may actually decrease faster than by a factor 2 at each round.

The standard proof-labeling scheme for mst. Recall that, in the proof-labeling scheme
of [29, 31], the prover p essentially encodes at each node the run of the parallel version of
Borůvka algorithm. More specifically, the certificate at each node u is divided into dlog2 ne+1
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fields, one for each round i = 1, . . . , dlog2 ne, plus an additional one. The field corresponding
to round i in the certificate of a node u contains:
1. a pointer to a parent of u in a rooted tree T1 that is supposed to span the fragment

including u at round i, rooted at an arbitrary node of the fragment, whose ID is the ID
of the fragment, and the local proof used at u to certify that T1 is indeed a spanning tree
of the fragment;

2. a pointer to a parent of u in another rooted tree T2, also spanning the fragment, but
rooted at the endpoint of the lightest edge e outgoing the fragment, with the local proof
at u certifying T2;

3. the ID of the other endpoint of the edge e, and its weight.
The tree T1 ensures the connectivity of the fragment, and is used in the merging procedure
of Borůvka algorithm, while T2 is used to make sure that the edge e is indeed the edge of
minimum weight incident to the fragment. The additional field is used to encode and certify
locally the mst of the whole network.

The verifier v checks that, for each round, the two spanning trees T1 and T2 of the
fragment are correct. It also checks that the run is consistent, that is:

two adjacent nodes with same fragment ID at some round have the same fragment ID
and the same lightest outgoing edges for all further rounds;
if an edge is used to merge two fragments at some round, then its endpoints belong to
the same fragment for all remaining rounds;
if a spanning tree is pointing to an edge, then this edge exists, and it is used to merge
the fragment with another fragment;
the final spanning tree has exactly the edges described by the given labeling, and it
correctly spans the whole graph, i.e., all the nodes have the same root-ID for this tree.

It is proved in [29, 31] that (p,v) is a proof-labeling scheme for mst. We show that it is
error-sensitive.

Edge deletion. Let us fix some some certificate function c, and let us assume that k ≥ 1 nodes
reject with certificate c. We perform the same decomposition as in the proof of Theorem 19,
removing from G and ` the edges whose two extremities are rejecting. We obtain a labeled
graph (G′, `′). Let C be a connected component of G′, and let us run the verifier on (C, `′C)
with the same certificate function. Let kC be the number of rejecting nodes in C. As argued
in the proof of Theorem 19, the number of rejecting nodes in the whole graph can only
decrease from (G, `) to (G′, `′). Therefore,

∑
C kC ≤ k.

Let us consider a node that is rejecting in (C, `′C). We claim that the only cases for which
a node rejects are (1) it is not a root in one of the trees encoded in the certificates, but there
are inconsistencies with its parent (i.e., no parent, or incorrect root-ID, or incorrect distance
counter), or (2) it is the root in one of the trees encoded in the certificates, but it is not
incident to the edge announced in the certificate. This is because, using the same line of
arguments as the proof of Theorem 19, if another case of rejection would exist, then there
would be an edge whose both endpoints reject, but such an edge cannot exist in (C, `C), by
construction (these edges have precisely be removed when doing the decomposition).

Lazy Borůvka. We will now consider a relaxed version of Borůvka algorithm that we call “lazy
Borůvka”. As the classical version of Borůvka, the lazy variant grows a forest of fragments.
Initially, there is one fragment per node. At each round, lazy Borůvka proceeds in three
steps. First it picks an arbitrary name for each fragment. Second, for each fragment F , it
considers all edges connecting F to a fragment with different name, and either chooses the
incident edge with smallest weight, or do not choose any edge, in which case we say that



L. Feuilloley and P. Fraigniaud 26

F is skipping its turn. Third, Lazy Borůvka merges the fragments that are linked by edges
selected during the second step. The algorithm stops whenever all the fragments have the
same name.

Note that in general lazy Borůvka does not produce an MST, and it may even not
terminate. However, if the names assigned to adjacent fragments are distinct at each round,
and if there is no round i such that all fragments skip their turn at every round j ≥ i, then
lazy Borůvka eventually produces an MST.

Given a fragment F , we refer to all fragments including F during the further rounds of
lazy Borůvka as its successors. The fragments of the previous rounds contained in F called
predecessors. Also, a maximal set of adjacent fragments having the same name during a
same round is called a cluster.

We restrict our attention to the runs of lazy Borůvka satisfying the following two
properties:

P1 If some fragments form a cluster, then all their successors will also be part of a same
cluster, but they will remain in different fragments.

P2 At every round of the run, at most one fragment per cluster chooses an edge, and all the
other skip their turn.

We show that `′C corresponds to the outcome of a run of lazy Borůvka satisfying the above
two properties.

B Claim 21. The labeling `′C is the outcome of a correct run R of lazy Borůvka on C, and
this run satisfies the properties P1 and P2.

Proof of the claim. Let us consider an execution of lazy Borůvka where fragments are
as described by the certificates, and the names of the fragments are the root-ID of the
corresponding fragments. As we argued before, these fragments are well-defined, that is, they
are trees with correct proof, and the same root-ID at every node. Moreover these fragments
are consistent from any round to the next one, because they satisfy the consistency properties
checked by the verifier. The fact that the root-ID may not be the ID of the root of the tree is
not a problem, as it corresponds to a name. Finally, recall that if a node of C rejects when
checking round i, this is because that node has no parent in a tree encoded in the certificate,
and either it does not have the appropriate root ID, or it is not incident to the appropriate
edge. In both cases, there are no outgoing edges corresponding to that fragment for round i.
We interpret this fact as the fact that this fragment skipped its turn at this round. It follows
that the different steps are valid for lazy Borůvka, and they correspond to `′C .

We now prove that the run has property P1 and P2.
For establishing P1, let us assume, for the purpose of contradiction, that, at some round

in R, two adjacent fragments F1 and F2 have the same name, but two successors F ′1 and F ′2
have different names. If this is the case, then, when verifying the certificates, both endpoints
of an edge e connecting F1 to F2 reject. Indeed, the certificates describe this run, and the
verifier checks that the rounds are consistent. There are no such edge e in C by construction
of G′, thus this situation does not occur. Also, if the two successors F ′1 and F ′2 are identical,
then, at some round, the certificates tell that a fragment is taking an edge to a fragment
that has the same root-ID, which is impossible (as such an edge would have been removed
when creating G′). These arguments generalize to clusters, by connectivity.

For establishing P2, let us assume that, at some round i, two fragments of a cluster choose
an edge. It means that in the certificates of this run, there were two fragments with correct
spanning trees pointing to these edges. As the verifier checks that two adjacent nodes with
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the same root-ID have the same outgoing edge, this implies that either the outgoing edge e
was the same in the certificates of the two fragments, or this edge was different for the two
fragments. In the former case, at least one of the two fragments will take no edge because
it will detect that it does not have the edge e. In the latter case, all the edges between
these fragments would have both endpoints rejecting, and then they would not be adjacent
as these edges would have been removed. Again, these arguments generalize to cluster, by
connectivity.

Finally, the termination of the run is also correct with respect to the specification of lazy
Borůvka. This is because of two facts. First, in the certificate, the last field describes a tree
that has the same root-ID at every node, and the verifier checks this. Thus this holds after
the decomposition step. The run stops at a round where all the fragments have the same
name. Second, suppose there was a round i before the last round described by the certificate
at which all the fragments had the same name. Then thanks to P1, at round i, the fragments
were exactly the same as in the last round, and every node has skipped all the remaining
rounds. Thus we can consider round i if it was the last round. It still holds that the run
corresponds to `C , and has property P1 and P2. This completes the proof of Claim 21. �

Getting closer to an MST. In general, whenever it terminates, lazy Borůvka can produce a
forest which is arbitrarily far from being an MST. Nevertheless, we show that, as the run R
satisfies the properties P1 and P2, the forest produced by this run is at distance at most
O(kC) from an MST of C, where kC is the number of rejecting node in C. To do so, we now
modify the run R, by applying iteratively an operation on the run, adding edges to `′C . This
addition of edges is repeated until one obtains a run where, at every round, not two adjacent
fragments have the same name, that is, until one obtains a run that builds an MST.

We now describe the operation that we apply to a run, and the labeling associated with
the resulting run. Consider the first round for which there is a cluster with more than one
fragment. Let K be such a cluster. There are only a few cases to consider.

Case 1: none of the fragments in K is choosing an edge, although there are fragments
with names different from the one of K that are adjacent to K. In this case, for this
round, we assign new distinct names to all of the fragments in K, making sure that these
names are not already used at that round by other fragments — that is, we use “fresh”
names.
Case 2: one of the fragments of K is choosing an edge that has minimum weight among
all edges that connect this fragment to the other fragments of C, including the fragments
of K. In this case, we replace the names of the other fragments of K by fresh names.
Case 3: a fragment F of the cluster K is choosing an edge e, although the lightest edge
outgoing from F is an edge e′ that connects it to a fragment F ′ of K. In this case, we
add a round between round i− 1 and round i where all fragments of C are given distinct
names, and every fragment is skipping its turn, except F , which is choosing the edge e′.
Also we add this edge e′ to the labeling.
Case 4: round i is the last round. In this case, we have only one cluster K containing all
the remaining fragments. We consider the lightest edge e connecting two fragments in K,
and add a round between round i − 1 and round i where all fragments of C are given
distinct names, and every fragment is skipping its turn except F , which is choosing the
edge e. Also we add this edge e to the labeling.

B Claim 22. If a correct run of lazy Borůvka satisfies property P1 and P2, and corresponds
to the current labeling, then the above operations preserve these properties.
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Proof of the claim. Let us consider a correct run of lazy Borůvka satisfyng property P1 and
P2, and that corresponds to the current labeling. We consider the four cases of the operation,
and establish the claim for each of them.

Case 1. The run is still correct after the renaming because the fragments of K were
skipping, from which it follows that the modification of the names does not affect their
behavior. The behavior of the other fragments is still the same because we have chosen
fresh names. In particular if, at round i, a fragment F /∈ K chooses an edge to a fragment
F ′ ∈ K, then this action is still valid as F and F ′ still have different names. P2 and
the outcome of the run are still correct as we have not changed the fact that the nodes
are skipping, and we have not modified the labeling. Finally, P1 holds because we have
considered the first round with a cluster containing more than one fragment, so the
predecessors of the fragments of K had different names at the previous rounds.
Case 2. The same line of reasoning as in Case 1 holds. That is, the behavior is unchanged,
the change of name does not affect the correctness of the actions of neither the fragments
of K, nor the ones outside K, and P1 holds because we consider the first round.
Case 3. Let us consider first the round that we have added. The fragment F chooses the
lightest edge to a fragment that has a different name, because we have chosen different
names for all the fragments. Therefore, this round is correct for lazy Borůvka algorithm.
Now we have to check that the next rounds are also correct. Merging two fragments,
we may cause several problems. First, the name of this fragment could be incorrectly
defined, as the names of the successors of these fragments can be different. However, this
cannot be the case because P1 holds in the run before the modification. Second, the
merged fragment could take two edges at the same round, one taken by the successor of
F before the operation, and one taken by the successor of F ′ before the operation. In
fact, this cannot happen, because of P2. Finally the behavior of the other fragments is
unchanged as they only consider the names of their adjacent fragments, and these names
have not beed modified. Therefore the run is still correct after the operation. Moreover,
we have added a new edge in the labeling, thus the run still describes the labeling at
hand. Property P1 and P2 still hold for the added round, and they also hold for the next
rounds, as we have just merged two fragments of the same cluster, which implies that
the names remain unchanged, and if two fragments of a cluster were now choosing an
edge at the same round, then this also happened in the run before the operation, which a
contradiction.
Case 4. The same reasoning as for the previous case also holds in this case.

This case analysis completes the proof of Claim 22. ♦

Thanks to Claim 21, the labeling `′C is the outcome of a correct run R of lazy Borůvka
on C, and this run satisfies the properties P1 and P2. Therefore we can apply the operation
on it. We claim that we can iterate this operation, and eventually get a run R in which there
are no clusters with more than just one fragment, after a finite number of iterations.

To see why, let us first prove that, after an iteration for which we have used Case 3 or
Case 4, the number of fragments in the final cluster has decreased by one. Let us consider the
two fragments that we have merged during the operation. In the run before the operation,
these two fragments had successors that were never merged, because of P1. It follows that
these successors were distinct fragments at the end. Now that we have merged them, they
form only one fragment at the end. As the behavior of the other fragments is not affected by
the change, the number of fragment at the end has therefore indeed decreased by one.
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Let us now prove that for Cases 1 and 2, the sum, over the rounds, of the number
of clusters with more than one fragment has strictly decreased. This is because we have
scattered such a cluster in both Case 1 and Case 2, without creating new ones. Also, the
number of fragments in the final cluster remains unchanged. Therefore, at every step, either
the number of fragment in the final cluster has decreased by one, or it remains unchanged
but the sum, over the runs, of the number of clusters with more than one fragment has
strictly decreased. The operation can be repeated for a finite amount of time. After all these
operations, the run is such that, at every round, no two adjacent fragments have the same
name. Therefore, the modified labeling `′C is a spanning tree of C.

Overall, we have added exactly one edge every time we have decreased by one the number
of fragments in the final cluster. Thus, the number of edges added is equal to the number of
fragments in the final cluster in the original run R, minus one. This number is at most kC .
Indeed, at most one fragment contains no rejecting nodes, since only one fragment can have
the node whose ID was used as the root-ID in the certificates, and all the roots of the other
fragments reject, with kC rejecting nodes in total. Therefore the distance (i.e., the number
of modified edges) between the original labeling `′C and the modified labeling `′C , which is a
correct spanning tree of C, is at most kC . As the same reasoning holds for every connected
component, by defining a “spanning” tree of a disconnected graph as the union of trees
spanning each of its connected component, we get that the modified labeling `′ = ∪C`′C is
the spanning tree of G′, and it is at distance at most

∑
C kC ≤ k from the original labeling

`′ = ∪C`′C .

Comparison with the original spanning tree. We now compare the modified labeling `′ with
the spanning tree of the original graph G. We claim that the set of edges described by `′ can
be transformed into a spanning tree of G by adding or removing at most 2k edges. Indeed,
recall that, to go from G to G′, we have removed only the edges that were between two
rejecting nodes. Let us call S this set of edges. Let us go backwards, and let us remove edges
from G to go to G′ while keeping track of the spanning tree. Among the edges of S, at most
k − 1 can be part of the MST of G, as otherwise there would be a cycle since there are only
k rejecting nodes. Removing the other edges from G does not change the MST. Let G1 be G
without these edges, and let us also remove them from S.

Now, let us consider one of the remaining edges in S, denoted by e = {u, v}. Let G2 be
the graph G1 without this edge e. If removing e disconnects the graph, then the spanning
tree of G2 is the same as the one of G1, without e. If removing e does not disconnect the
graph, then we define e′ as the edge of smallest weight in the cut between the nodes that are
closer to u in the tree, and the ones that are closer to v in the tree. The resulting spanning
tree is minimum. To see why, let us check that, for every cycle in the graph, the heaviest
edge is not part of the spanning tree. The only cycles that we have to consider are the ones
that contain e′. Suppose that the edge e′ is the heaviest of a cycle in G2. This cycle must
cross the cut via another edge, and this edge must have a smaller weight, as otherwise e′
would not be the heaviest. This contradicts the definition of e′, and thus, by adding e′, we
obtain a spanning tree of G2. We can repeat this construction until there are no more edges
in S. At the end, the graph Gk = G′, and the spanning tree of G′ is the modified `′. We
have therefore added or removed at most 2k edges.

To conclude, in the first step from (G, `) to (G′, `′), we have edited only the labels of
the rejecting nodes, thus k labels at most. Then, we got from each labeling `′C to the final
labeling `′C by adding at most kC edges. Thus, in the whole graph, we have modified at
most 2k labels in total. Finally, we have added or removed at most 2k additional edges, and
thus we have modified at most 4k labels. Thus, overall, we have edited at most 7k labels. It
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follows that the distance of (G, `) to MST is at most linear in the number of rejecting nodes,
from which it follows that the proof-labeling scheme is error-sensitive. The sensitivity is 1/7.
This completes the proof of Theorem 20 J

6 Conclusion and perspectives

In this paper, we have considered on a variant of proof-labeling scheme, named error-sensitive
proof-labeling scheme. We have provided a structural characterization of the distributed
languages that can be verified using such a scheme. This characterization highlights the fact
that some basic network properties do not have error-sensitive proof-labeling schemes, which
is in contrast to the fact that every network property has a proof-labeling scheme. However,
important network properties, like cycle-freeness, leader, spanning tree, MST, etc., do admit
error-sensitive proof-labeling schemes. Moreover, these schemes can be designed with the
same certificate size as the one for the classic proof-labeling schemes for these properties.

Our study of error-sensitive proof-labeling schemes raises intriguing questions. In this
paper, we have considered two scenarios only for a given language: either the language does
not admit error-sensitive proof-labeling schemes, or it admits an error-sensitive proof-labeling
scheme with the same certificate size as the optimal proof-labeling schemes.

B Open question 1. Is it the case that, for every language, either the language is not
error-sensitive, or it is error-sensitive at no cost (that is, the optimal certificate size is the
same with and without the error-sensitivity requirement)?

Another interesting topic is the sensitivity parameter. In this paper, for a given language,
we have been interested in the existence of α-sensitive scheme for some constant α, but we
have not tried to optimize α. It would be interesting to study whether we can optimize α
beyond the values derived in this paper.

B Open question 2. In Theorem 19 and 20, we derive error-sensitive schemes with optimal
certificate size, with sensitivity parameters 1/4 and 1/7, for spanning tree and minimum
spanning tree, respectively. Are these sensitivity parameters optimal?

The two questions above are actually related. Indeed, a larger sensibility parameter
implies more constraints on the certification. Therefore, in general, certificate size grows with
the required sensitivity. Nevertheless, we do not know which way the certificate size grows.

B Open question 3. For a given language, is it the case that there is a threshold value for
the sensitivity parameter (that could be 0), such that, below this threshold, one gets error-
sensitivity at no cost in term of certificate size, while, above this threshold, error-sensitivity
is impossible? Instead, is there a smooth trade-off between the sensitivity and the certificate
size?

Another desirable property for a proof-labeling scheme is proximity-sensitivity, requiring
that every error is detected by a node located closely to the location of the error. Proximity-
sensitivity however appears to be a very demanding notion, stronger than error-sensitivity.
Indeed, the former implies the latter whenever the errors are spread out in the network at
sufficiently large mutual distances.

B Open question 4. Under which circumstances it is possible to design proximity-sensitive
proof-labeling schemes? Is it possible to provide a simple characterization of the languages
admitting proximity-sensitive proof-labeling schemes?
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Finally, let us mention error-sensitivity for network properties. This paper has been
motivated by self-stabilizing algorithms, for which mechanisms used to locally certify the
correctness of global states of the system are required. More recently, there has been a new
direction explored in local certification, which consists in designing proof-labeling schemes
for properties of the network itself. For example, [12, 17, 18] design compact proof-labeling
schemes for planar and bounded-genus graphs. In such setting, our notion of error-sensitivity
is not relevant, as the distance is about the number of edits at the vertices, whereas for
network properties, one should consider edits on the graph itself. A natural question is:

B Open question 5. Can we generalize error-sensitivity to network properties? If yes, is
planarity an error-sensitive property?
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