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Application de la théorie des jeux a
I'optimisation du placement et chainage des
VNFs

Ali El Amine et Olivier Brun

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

La technologie Network Function Virtualization (VNF) vise a simplifier le déploiement des services réseau de maniere
flexible, automatisée et indépendante du fournisseur. Le déploiement de ces services nécessite 1’allocation des Virtual
Network Function - Forwarding Graphs (VNF-FGs), ce qui implique de placer et d’enchainer les VNFs en fonction
des requétes des VNF-FGs. Dans ce travail, nous considérons le probleme d’allocation hors-ligne des VNF-FGs pour
améliorer I’utilisation des ressources du réseau afin de répondre a un maximum de demandes, et réduire les cofits.
Etant donné une fonction cofit non linéaire associée a chaque ressource réseau, nous formulons le probleme comme
un probléme de routage non linéaire a chemin unique dans un graphe étendu. Ensuite, nous proposons un algorithme
heuristique de routage inspiré de la théorie des jeux pour le résoudre. Nous montrons que cet algorithme converge
et établissons son rapport d’approximation dans un certain nombre de cas. Les résultats expérimentaux obtenus pour
différentes topologies de réseau et différentes fonctions de cofit montrent que cet algorithme fournit des solutions de
tres bonne qualité avec des temps de calcul assez modestes.

Mots-clefs : Service Function Chain, Virtual Network Function, Slice as a Service, Game Theory, Optimization.

1 Introduction

According to ETSI, a VNF Forwarding Graph (VNF-FG) is a directed graph of an ordered set of Virtual
Network Functions (VNFs) that compose an end-to-end service [1]. The logical service graph described
by a VNF-FG is decoupled from the network and has to be mapped to existing network capabilities. This
implies not only fulfilling of the service requirements in terms of Quality of Service (QoS), but also consid-
ering the constraints of the underlying infrastructure. Two types of decisions have to be made: (a) where to
run the VNFs, and (b) how to interconnect them in the physical network, taking into account specific VNFs
ordering requirements. This problem is known as the VNF Forwarding Graph Embedding (VNF-FGE)
problem and has been studied in the online context where requests to create network services are submitted
one after the other [2, 3], and in the offline context where multiple VNF-FGs have to be embedded in the
physical network at the same time [4, 5].

Despite the previous efforts on the VNF-FGE problem, little considered the re-optimization of resources
utilization on the physical infrastructure with non-linear cost functions. Thus, in this work, we study the
offline joint routing and VNF placement problem with non-linear cost functions to reduce total costs and
improve resource utilization under a physical infrastructure capacity constraints. We formulate the problem
as a non-linear single-path routing problem in an extended graph. To solve this problem, we adapt a single-
path routing algorithm inspired by Game Theory which was proposed in [6]. Experimental results obtained
for different network topologies and different cost functions show that this algorithm provides very good
quality solutions with a rather modest computation time.

2 Problem Statement

We are given a physical network represented by a directed graph G = (V, &), where V is the set of
nodes and & is the set of links. A subset D C V of the nodes have the required compute and storage
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resources to host VNF. These nodes will be called the function nodes in the following. They are used to
execute one or more VNFs out of a set ¥ of K VNFs, where a function f € ¥ is available at function
nodes v € D(f) € D. A function node corresponds to a logical entity representing reserved compute and
storage capacity in a data center. Multiple VNFs may be deployed at the same function node, and a VNF
may be replicated at different function nodes. The transmission links of the network and the function nodes
are the critical resources in our problem and, in the following, we shall denote by R = & U D the set of
these resources.

We are also given a set ‘W of traffic demands. Each traffic demand w € ‘W is characterized by its source

node sy, its destination node ¢,, and the sequence 7, = ( S5 IR ) of network functions it must

flow through in that prescribed order. The sequence is called the Service Chain associated with the traffic
demand. The processing path of demand w may therefore be decomposed into different stages, where stage
0 corresponds to the transmission of the original traffic volume from the source to VNF f}* (excluded),
stage 1 represents the processing at VNF f}* followed by the transmission to VNF f}¥, etc. We define bkw,r
as the capacity required from resource r for processing demand w at stage k. Here, r could be either a
transmission link e € & or a function node v € D(f¥).

The problem at hand amounts to choosing a single path through the network for each traffic demand
such that the function nodes are visited in the prescribed order and that a certain network cost function is
minimized. We shall shortly discuss the network cost function to be optimized, but we would first like to
emphasize that a first difficulty is related to the modeling of precedence constraints on the order in which
the function nodes must be visited by each traffic request. We handle this constraint by constructing an
expanded network. Due to the lack of space, we omit the discussion about expanded networks that can be
found in [7].

3 Penalized Best-Response Algorithm

Suppose that we are given a set I1,, of candidate feasible paths through the expanded network for each
demand w € W, a feasible solution for the joint routing and VNF placement problem is then defined as
a vector & = (m,,) € II, where m,, is the path assigned to traffic demand w and IT = ®W€W I1,,. The
goal is to find a feasible solution 7 € IT that minimizes the network cost F(m) = Y ,.cg ¥r () ¢y (¥, (7).
Formally, the problem is as follows:

minimize F(x) = ) y,(7) ¢, (3,(x)) (OPT)
reR
subject to:
Ty € Iy, wew. (1

where y, () is the total amount of traffic flowing through resource r and ¢, () is the cost per unit of capacity
of resource r that may depend on the total traffic flowing on that resource.

In order to solve the above problem, we propose a heuristic algorithm based on game theory. The idea is
to view the traffic demands as the players of a non-cooperative game in which each player independently
optimizes its own objective function. Starting from an arbitrary initial feasible solution, the algorithm then
mimics the best-response dynamics of the game, that is, the players take turns in some order to adapt their
strategy based on the most recent known strategy of the others.

Let us think of the traffic demands as the players of the game. The strategy of player w € ‘W is the path
my, it chooses in the set I1,,, and a strategy profile of the game is a feasible solution to problem (OPT), that
is, a vector € I1. Given the strategy of the other players &_,, = (71,),4,,, We shall assume that the player
w seeks to solve the following problem:

minimizeﬂenwcw(n, T_w) = fw(ma_y) + pw(m, ), (OPT-w)

where the value f,, (7, w_,,) associated to path 7 by player w reflects the cost of this path, whereas the term
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Topology  # Nodes # Links PWL Quadratic M/M/1
AARNET 19 46 0.71 £0.65 1.81 +0.85 1.43 £1.76
ARPANET 25 56 1.15 £0.5 3.725 £1.55 1.5 £0.79
NSENET 13 30 0.42 +£0.49 1.67 £1.12 0.31 £0.32
IBM 18 48 1.7 0.8 2.85 +0.98 0.53 £0.71
CESNET 10 18 0.051 £0.003  0.047 £0.008  0.070 £0.056

TABLE 1: Relative gap (% = std) to the optimal solution for different topolgies.

Function Costs AARNET . ARPANET. NSFNET . IBM ‘ CESNET .
BR Gurobi BR Gurobi BR Gurobi BR Gurobi BR  Gurobi
PWL 7.1 1.2 8.09 1.72 4.93 0.72 6.83 0.9 1.96 0.07
Quadratic 7.89 126 8.89 124 6.3 40 8.27 109 2.33 0.3
M/M/1 8.17 300 9.84 300 7.52 300 9.17 300 2.79 300

TABLE 2: Average computing times (seconds) for the 100 problem instances.

pw(m, m_y,) is a penalty term measuring the impact of player w’s choice on other players. More precisely,
we shall assume that the selfish and penalty objective functions of player w are respectively as follows:

Folm o) = D00 (1) ¢, (3" + 37 (1), )
pulmay) = S ) (o (07" + ) () = 60 (7)) 3)
reR u#tw

Given the strategies xr_,, of the other players, the path 7 minimizing c,, (7, 7_,,) in problem (OPT-w) is
known as the best response of player w. The heuristic algorithm that we propose is an iterative algorithm that
starts from an initial feasible solution 7(?). At each iteration, the players update their strategies in a given
order by computing their best responses to the strategies of the others. This algorithm has the following
characteristics: (a) it converges in a finite number of steps, (b) If it ever reaches a global optimum of problem
(OPT), it returns this optimal solution, (c) it computes an optimal solution of problem (OPT) for linear

resource costs, that is, when the functions ¢, () are constant functions ¢, (y) = a, and (d) its approximation
(d+1
d

—(d+1)
ratio is (2ﬁ -1 when the functions ¢, () are polynomials of degree d, that s, ¢, (y) = X5_o ar.ny".

Due to lack of space, all proofs are omitted and can be found in [7].

4 Performance Evaluation

In this section, we experimentally evaluate the performance of the penalized best-response algorithm. We
first describe the different types of objective functions used to solve the penalized best-response algorithm,
then we present the numerical results for the different topologies evaluated under the different types of
objective functions.

Given the cost per-unit of capacity of resource r function ¢,, we denote by @, = y,¢,(y,) the cost
function of resource r. We consider four types of cost functions: linear (®, = a X y,.), increasing piece-
wise linear, quadratic (®, = y?/c2) and the Kleinrock Function M /M /1 (®, = y,/(c, —y,)). In contrast to
linear cost functions that assume constant costs per unit capacity, non-linear cost functions allow the costs
per unit capacity to increase as the traffic y, increases. This allows to achieve a better load distribution.

In order to evaluate the performance of the penalized best-response algorithm, we use five network
topologies (see Table 1) collected from the IEEE literature and from The Internet Topology Zoo [8]. We
expand the original topology with three function nodes that can host two types of VNFs out of three. Then,
for each topology, we generate 100 random instances with 25 traffic demands each. We report in Tables
1 and 2 the performance of the penalized Best Response (BR) algorithm for different cost functions under



Ali El Amine et Olivier Brun

distinct topologies. We evaluate the algorithm performance by calculating the relative gap between the
penalized BR solution and the optimal solution from Gurobi. Following the obtained results, the penalized
BR algorithm provides very good quality solutions for the different cost functions with impressive compu-
tation time. Its average relative gap to the optimal solution is under 5%, and it is almost negligible for small
topologies such as CESNET. The average execution time of the algorithm depends on the size of the topol-
ogy and on the cost function used. Nevertheless except for the PWL cost function where the MILP solver
is known to be efficient and quick at solving, the solver is significantly slower for the other more complex
cost functions. In the case of the quadratic cost function, the maximum relative error of the BR algorithm
over the 100 instances is 3.725%. However, if we look at the computing times in Table 2, we observe that
the BR algorithm is at most 16 times faster and at worst 6.3 times faster than the solver. Here, the standard
deviation has been omitted because the runtime values for the different instances for each topology were
similar. It is interesting to note that for the M /M /1 cost function, the solver has reached its time limit that
has been set to 5 minutes, while the BR algorithm takes less than 10 sec to execute with a solution as close
as 1.43% to the solver. While PWL approximations can sometimes be considered for non-linear functions,
it is not evident how to choose the intervals to build an approximation for non-linear cost functions.

5 Conclusion

In this work, we have considered the offline VNF placement and chaining problem, assuming that a
non-linear cost function is associated to each network resources. With respect to previous works, the main
originality of the considered model is that the cost per unit capacity of a resource is not constant, instead it
grows with its utilization rate, which is an essential feature to achieve a better load distribution. We have
formulated the problem as a single-path routing problem in an extended network and adapted an existing
game-theoretic algorithm to solve it. Our numerical results suggest that the algorithm provides near-optimal
solutions in substantially lower computing times than the solver for non-linear cost functions.
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