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This work is part of an artistic-research residency where composer Aaron Einbond seeks to apply audio descriptor
analysis and corpus-based synthesis techniques to the spatial manipulation of instrumental radiation patterns for
projection with a compact spherical loudspeaker array. Starting from a database of 3D directivity patterns of
orchestral instruments, measured with spherical microphone arrays in anechoic conditions, we wish to derive
spatial descriptors in order to classify the corpus. This paper investigates the use of spherical cross-correlation as a
similarity measure between radiation patterns. Considering two directivity patterns f and g as bandlimited, square
integrable functions on the 2-sphere, their correlation can be computed from their spherical harmonic spectra via a
spatial inverse discrete Fourier transform. The magnitudes of these Fourier coefficients provide a rotation-invariant
representation of the functions on the sphere. One can therefore search for the transformation matrix m, in the 3D
rotation group SO(3), which maximizes the cross-correlation, i.e. which offers the optimal spherical shape matching
between f and g. The mathematical foundations of these tools are well established in the literature ; however, their
practical use in the field of acoustics remains limited and challenging. In this study, we apply these techniques to
both simulated and measured radiation data, attempting to answer a number of practical questions : How does the
similarity measure behave when f and g are not rotated cousins ? How can we adapt the cross-correlation formalism
established for complex-valued harmonics to real-valued harmonics, as the latter are predominantly used in the
field of Ambisonics? Can we compute the correlation of spherical spectra of different bandwidths? What is the
impact of the finite sampling distribution used for integration on the SO(3) space? And most importantly, is the
cross-correlation an efficient measure for the classification of 3D radiation patterns?

1 Introduction
Spherical correlation is a tool that allows the evaluation

of similarity between radiation data on the sphere based on
its spherical harmonics expansion. This is well discussed in
the mathematical literature and widely used for 3D shape-
matching in the field of image processing. The state of the art
is introduced in [17], building on the foundation of the spatial
Fourier transform [5]. However, so far, the practical use of
spherical correlation in the field of acoustics remains limited
and challenging.

Guillon [6, 7] uses spherical correlation to compute
similarities between spatial frequency response surfaces
(SFRS), and later to clusterize a dataset of SFRS. This work
is probably the most detailed usage of spherical correlation
in spatial audio thus far. Moreau [20, 21] employs spatial
correlation to assess qualitatively a directivity model of
spherical microphone arrays against measured data. However,
his work does not operate in the spherical harmonics domain
and does not apply rotational matching. Similar to our
study, Hohl and Zotter [10, 30] use the spherical correlation
coefficient as a similarity measure of radiation patterns of
musical instruments. They examine whether different partials
at the same frequency, but originating from different played
pitches, exhibit similar radiation on a given instrument. This is
promising work, but their short paper does not provide much
detail.

Our study is both motivated and facilitated by the
availability of a large database of anechoic measurements
of acoustic instrumental radiation data produced at the
Technische Universität (TU) Berlin [28, 24]. With radiation
patterns for 41 modern and historical orchestral instruments,
the database suggests several questions : how do the radiation
patterns of partials and registers of a given instrument correlate
with each other, how do they correlate with those of different
instruments, and how could these correlations be used to
classify and navigate the database?

2 Theoretical background

2.1 Cross-correlation on the sphere
Given two shapes f and g, how do we find the rotation

to align them best ? Let f be a square-integrable function on
the unit sphere f ∈ L2(S2). In the simple case, let us assume
that g is a rotated version of f , i.e. f = ΛR(g) for some 3D
rotation R. We denote ΛR the rotational operator defined such
that ∀Ω ∈ S2

Λ : L2(S2)→ L2(S2)

ΛR(g) (Ω) = g
(
R−1(Ω)

)
.

(1)

We wish to find the rotationR. In the more general case, given
the two patterns f and g, we wish to find the rotation that best
aligns the two shapes on the sphere. This can be accomplished
by evaluating the cross-correlation between the two functions

CR(f, g) =

∫
S2
f(Ω) ΛR(g)(Ω) dΩ , (2)

and finding the rotation R that maximizes the above
integral [17]. This has a number of useful applications, e.g.
in the field of 3-D shape-matching, also known as shape
registration [14, 15, 16, 8, 26, 25].

How do we maximize Equation 2 ? Evaluating CR(f, g)
for all possible rotations in the spatial domain is a time-
consuming task. Instead, we undertake it in the spatial Fourier
domain. Since f and g are square-integrable on the sphere,
we can write their Fourier expansions [5] :

f(Ω) =

N∑
n=0

m=+n∑
m=−n

fmn Y mn (Ω) . (3)

Here we have further assumed that f and g are bandlimited,
with their bandwidth B = (N + 1), N being the maximum
order of the Fourier expansion. Y mn (Ω) are the spherical
harmonic functions, and fmn are the Fourier coefficients of f .
A well-known property of the (Euclidian) Fourier transform
is that a translation in the time domain is interpreted as a
phase shift in the frequency domain. For the Fourier transform
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in S2, this property means that the magnitudes of the Fourier
coefficients are invariant under rotation : writing fn(Ω) for
the nth frequency component of f

fn(Ω) =

m=+n∑
m=−n

fmn Y mn (Ω) , (4)

the quantity |fn(Ω)| is invariant under rotation.
Furthermore, the spherical harmonic basis functions of each
order n transform among themselves under rotation according
to

ΛR(Y mn (Ω)) =

m′=+n∑
m′=−n

Y mn (Ω) Dn
mm′(R) , (5)

where Dn
mm′(R) is the Wigner-D function (see section 7).

Equation 5 is valid for complex-valued spherical harmonics.
When considering real-valued spherical harmonics, a similar
result holds, however involving the Wigner-d function instead
of Wigner-D; details can be found for instance in [23]
(Equations (16) to (20)).
Now, using relations 3, 4, and 5, it is possible to simplify 2
into :

CR(f, g) =

N∑
n=0

∑
|m|≤n

∑
|m′|≤n

f−mn gm′
n (−1)m−m

′
Dn
mm′(R) .

(6)
A complete demonstration can be found for instance in [17].
Equation 6 allows us efficiently to compute the cross-
correlation by combining the Fourier coefficients of f and g.
From this, we can now search for which rotation R maximizes
CR(f, g).

In equations 5 and 6, the Fourier coefficients are rotated by
means of the explicit formulae with the Wigner-D functions
(or Wigner-d for real-valued harmonics) ; in our practical
implementation, we rather use recurrence relations [13] as this
appears to be computationally more efficient.

2.2 Normalized cross-correlation
The normalized cross-correlation [11, 26, 7, 11] is simply

a variant of Equation 2 normalized by the energy of f and g,
written

CR(f, g) =

∫
S2 f(Ω) ΛR(g)(Ω) dΩ√∫

S2 |f(Ω)|2 dΩ ·
∫
S2 |g(Ω)|2 dΩ

. (7)

The numerator of this expression has already been
developed in Equation 6. The denominator can be easily
calculated thanks to Parseval’s identity :

∫
S2 |f(Ω)|2 dΩ =∑N

n=0

∑m=+n
m=−n |fmn |2 .

3 Searching for the optimal rotation R

A rotation in R3 can be equivalently represented by : (a) a
3×3 rotation matrix, (b) a set of 3 Euler angles (or alternatively
3 Tait–Bryan angles), (c) a unit quaternion, also known as a
versor, or (d) an axis–angle representation (i.e. a unit vector
indicating the direction of an axis of rotation, and an angle
describing the magnitude of the rotation about the axis). The
different properties – such as compactness, numerical stability,

computational cost, singularity or gimbal lock, etc. – of these
formalisms can be easily found in the literature [4], as well as
conversion formulae from one representation to another.
We denote as SO(3) the 3D rotation group, also known as
the special orthogonal group. SO(3) contains all rotations
R about the origin of three-dimensional Euclidean space :
SO(3) =

{
R ∈ R3 | RRT = I3 and det(R) = +1

}
,

where I3 is the 3× 3 identity matrix. In other words, SO(3)
is the subgroup of orthogonal matrices with determinant +1.

We need to explore the SO(3) space in order to determine
argmax
R∈SO(3)

CR(f, g) that maximizes Equations 6 or 7. One

possibility is to use a gradient descent technique. Gradient
descent has been formalized on the SO(3) rotation group
in [27, 2]. The procedure requires approximation of the
directional derivatives, with an adjustable small step size,
in order to converge to the nearest local maximum. It might
also be necessary to restart the algorithm from several initial
values. Choosing the optimal step size or the initial value
is not a trivial task. Therefore we have decided not to use
a gradient descent, but instead to proceed with brute force
sampling in SO(3).

3.1 Sampling the rotation group SO(3)

The rotation group SO(3) can be parameterized by
quaternions, Euler angles, or orthogonal matrices. Sampling
these different parameter spaces is not a trivial task, and
they can generate sampling distributions of SO(3) with
various properties. To solve our problem, we typically need a
uniform and deterministic sampling scheme. The definition
of “uniform” is subject to interpretation, but essentially
the sampling grid should ensure both global coverage and
local separation. This problem has been studied for instance
in [19, 29, 18]. An extensive analysis is beyond the scope of
this article.

3.1.1 Parametrization by Euler angles

For the sake of simplicity, we will follow [17, 6] and use a
regular sampling in terms of ZYZ Euler angles (α, β, γ) :

αj = γj =
2πj

2B
and βk =

π (2k + 1)

4B
, (8)

with 0 ≤ j, k < 2B. According to [17], this sampling scheme
is suitable for the analysis of bandlimited functions with
bandwidth B. With this sampling, the size of the search space
is 2B × 2B × 2B.

Note that the “null” rotation (α = β = γ = 0) is not part
of the sampling grid. Consequently, correlating a signal with
itself will not yield α = β = γ = 0, but rather β = π/(4B).
This is counter-intuitive but not problematic. To circumvent
this, it has been proposed [6] first to rotate one of the patterns,
f or g, by −π/(4B) around the y axis.

We should also note that the “true” rotation R might not
be on the sampling grid. Therefore, we might only find an
approximate solution R̂ that should be close to R. The notion
of “distance” in SO(3) will be discussed in section 3.1.3.
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3.1.2 Angle and axis representation

Any 3D rotation can be represented by an angle-axis
representation. This formalism is useful for visualizing the
projective space in R3 [29] : each rotation is drawn as a vector
with direction n (the axis of the rotation) and a magnitude
corresponding to ϑ (the rotation angle). As can be observed
graphically in Figure 1, the Hopf fibration sampling proposed
in [29] is highly uniform. Yet, for the remainder of this article,
we will use the basic Euler sampling (Equation 8) for its
simplicity and scalability (with respect to B).

F I G U R E 1 – Visualization of SO(3) sampling grids using
the angle-axis representation. (a) Regular sampling of Euler
angles (as in Equation 8) withB = 4, leading to (2B)3 = 512
elements ; (b) Uniform incremental sampling using the Hopf
fibration [29] (with 576 sampling points). The color represents
the magnitude of the rotation (from blue to red).

3.1.3 Distance measure of two rotation matrices

Various functions for measuring distance between
3D rotations have been proposed in the literature. The
usual (angular) distance between two rotation matrices
R,Q ∈ SO(3) is given by [19, 9, 3] d1(R,Q) =
acos

(
1
2

(
tr
(
QRT

)
− 1
))

. This metric measures the angle
of rotation needed to map the transformation R to the
transformation Q, or equivalently the angle of rotation
associated to the transformation QR−1. Alternatively, we
can interpret d1(R,Q) as a scaled Froebenius norm, since
d2(R,Q) = ‖R − Q‖F = 2

√
2 sin

(
d1(R,Q)

2

)
, where

‖·‖F is the Frobenius norm defined as ‖R‖F =
√

tr (RRT ).
Huynh [12] presents a detailed analysis of various metrics,
and demonstrates that many of them are functionally
equivalent. Huynh concludes that the following metric, based
on quaternions, is both spatially and computationally more
efficient : d(R,Q) = 1 − |qR · qQ| , where qR is the unit
quaternion corresponding to matrix R, and · denotes the inner
product. This metric will be used for the remainder of this
article.

Note that, while a distance metric in SO(3) is useful,
it must be handled with care in the context of this paper :
consider for example an axis-symmetric pattern f , for example
a cardioid in the y direction. Rotate f around the z-axis with
R0 ≡ (α0, β0, γ0) = (π, 0, 0). Rotate f around the x-axis
with R1 ≡ (α1, β1, γ1) = (0, 0, π). Both scenarios result in
the exact same pattern g ; however, the two rotations differ,
and their distance is d(R0, R1) = 1 !

3.2 Numerical simulations
3.2.1 Impact of SO(3) sampling

As discussed in the previous paragraphs, the choice of
the sampling grid for SO(3) might have an influence on the
accuracy and efficiency of the maximization problem 7. For
the sake of simplicity, we consider only the regular Euler
sampling of equation 8. However, we investigate the use of
“oversampling” i.e. we use a smaller step size in discretizing
the Euler angles (α, β, γ). Instead of using 2B samples for
each parameter, we use N ≥ 2B. This seems relevant as
our scenario involves spatial functions with relatively low
bandwidth (B = 5 if we consider the radiation patterns
available in the TU Berlin database) compared to other authors
(Kostelec [17] typically presents results with B = 128).
With such low bandwidth, the angular step size is very large
(π/B = 36◦), and therefore high angular misalignment might
occur. Of course, oversampling the search grid results in higher
computation time, but that is not the focus of this paper.

We run the following numerical simulation : (a) generate
a random spatial function f with a limited bandwidth B,
(b) generate a random rotation matrix [1] R in SO(3) and
compute g = ΛR(f), (c) sample SO(3) and search for
the rotation matrix R̂ that maximizes the cross-correlation,
(d) compute the cross-correlation after rotational matching,
i.e. the cross-correlation between g and ΛR̂(f), (e) repeat
the simulation for various samplings of SO(3), varying the
oversampling factor N/(2B), (f) repeat the simulation for
various bandwidths B. For each test case, we perform 10000
Monte-Carlo runs. The results are presented in Figure 2.
For each simulated bandwidth B, it can be observed that
oversampling the search space improves accuracy, allowing for
a higher cross-correlation (closer to 1), and a smaller distance
(closer to 0) between the expected and estimated rotation
matrices.

F I G U R E 2 – Impact of oversampling the SO(3) search space.

3
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3.2.2 Comparing two patterns of different bandwidths

The cross-correlation function in equation 6 assumes that
the two patterns f and g have the same bandwidth. In practice,
it might be desirable also to compare patterns with different
bandwidths.
We run the following numerical simulation : (a) generate a
random spatial function f with a limited bandwidth Bf =
11, (b) generate a random rotation matrix R and compute
g = ΛR(f), (c) reduce the bandwidth of g to Bg ≤ Bf by
zeroing the higher order components, (d) compute the cross-
correlation after rotational matching, i.e. the cross-correlation
between g and ΛR̂(f) (e) repeat the simulation for various
truncation bandwidth Bg. For each test case, we perform
10000 Monte-Carlo runs. The results are presented in Figure 3.
We observe that it is possible to compare two rotated cousins
even if their bandwidths differ : when Bf − Bg increases,
the cross-correlation decreases, which is expected, but the
patterns are correctly aligned since the distance between
rotation matrices d(R, R̂) is low. When the mismatch between
Bf and Bg becomes very large (Bf −Bg) > 6, the accuracy
of the rotational matching decreases significantly.

F I G U R E 3 – Comparing two patterns of different bandwidths.

3.2.3 Comparing two arbitrary patterns

In the most general case, we are interested in comparing
two arbitrary radiation patterns, not only rotated cousins. Such
a scenario generally yields |CR̂(f, g)| < 1, but the rotational
alignment can still be effective. In Figure 4, we simulate
two arbitrary patterns, having different bandwidth, shape,
and orientation of their “main lobe”. We observe that f is
properly aligned with g. The resulting correlation coefficient
is CR̂(f, g) ≈ 0.45.

4 Visualization with multidimensional
scaling

With an approach to pairwise spherical correlation in place,
we can now examine applications to classify and navigate

F I G U R E 4 – Example of rotational matching. Left :
visualization on the sphere. Right : restriction on the
horizontal plane.

larger collections of 3D radiation patterns. One approach
is to apply multidimensional scaling (MDS). MDS is used
to translate information about the pairwise distances (or
dissimilarities) among a set of n objects or individuals into a
configuration of n points mapped into an abstract Cartesian
space. MDS is therefore a means of visualizing the level of
similarity of samples within a dataset.

We begin with a proof of concept using the functions
Y mn (Ω) as our dataset. First we compute the normalized cross-
correlation between all pairs Y m1

n1
(Ω) and Y m2

n2
(Ω). From

this similarity matrix, we perform MDS and visualize the
information map, choosing a dimensionality of 2 for simplicity
of visualization and interpretation. The results in Figure 5

F I G U R E 5 – Left : normalized cross-correlation between all
pairs Y m1

n1
(Ω) and Y m2

n2
(Ω). Right : resulting 2D MDS.

for maximum order N = 5 show that, within each order, the
functions are highly correlated. For order N = 1, the three

4
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functions are even fully correlated, which is expected as these
spherical harmonics are dipoles along the x, y, and z axes (i.e.
they are exactly rotated cousins). The map clearly exhibits
six clusters of samples, each cluster corresponding to a given
order N . Orders 0, 1, and 2 are relatively close, while 3, 4 and
5 are maximally distant from the lower orders and from each
other.

5 Application to measured data
We now apply the approaches presented in the previous

sections to measured radiation patterns of musical instruments.
Our source is the acoustic instrumental radiation database,
containing 41 modern and historical orchestral instruments,
made available by the TU Berlin [28, 24].

5.1 Radiation patterns of partials
To test the claim in [10] that instrumental partials with the

same frequency have correlated radiation patterns, we compute
a similarity matrix containing the pairwise correlation between
partials of different played pitches. The matrix is organized
in blocks each containing a chromatic scale, with each
successive block representing a different partial for each
played note. With this matrix arrangement, partials with
matching frequency are located on the secondary diagonals.
Figure 6 illustrates examples of results for clarinet and cello.
It can be observed that different partials at the same frequency
exhibit strongly correlated radiation, regardless of the played
pitch from which they originate. Other findings are also in line
with [10], however the results are less obvious. This might be
partly explained by the lower resolution of TU Berlin database,
leading to a lower bound for the spatial aliasing frequency.

Clarinet_modern_et_ff Cello_modern_et_ff

F I G U R E 6 – First 6 partials of the clarinet in B-flat for
pitches ranging from C4 to C5 (left) and of the cello for
pitches ranging from E2 to E3 (right).

5.2 MDS applied to TU Berlin data
Another motivation for this work is to classify the TU

Berlin database for subsequent manipulation with corpus-
based synthesis techniques : by organizing instrumental
samples according to their spatial characteristics, the resulting
low-dimensional representation can be used, along with
other audio descriptors, to navigate the sample corpus. We
applied MDS analysis as presented in section 4 to measured
radiation patterns of different instruments for various played
pitches. An example is presented in Figure 7. The color code

corresponds to the three categories of instruments proposed by
Shabtai [24]. In red : instruments with one expected radiation
point ; this mainly includes the brass instruments. In blue :
instruments with several expected radiation points, such as
woodwind instruments, with sound radiated by the bell, the
fingering holes, and the mouthpiece. In black : instruments
with a full body radiating sound, such as string instruments.
We observe that MDS based on spherical correlation allows
us efficiently to segregate and organize the instruments, in
accordance with their expected category.

Tenor_trombone_modern_et_ff

Bass_trombone_historical_et_ff

Bass_clarinet_modern_et_ff

Alto_trombone_historical_et_ff

Bass_trombone_modern_et_ff

Contrabassoon_modern_et_ff

French_horn_modern_et_ff

Classic_bassoon_historical_et_ff

Double_bass_modern_et_ff

Dulcian_historical_et_ff

Baroque_bassoon_historical_et_ff

Cello_historical_et_ff

Natural_horn_historical_et_ff
Cello_modern_et_ff

Tuba_modern_et_ff

Double_bass_historical_et_ff

Double_action_harp_modern_et_ff

Bassoon_modern_et_ff

F I G U R E 7 – MDS applied to radiation patterns of the pitch
D2 for various brass, woodwind, and string instruments.

6 Conclusion
In this paper, we discussed the use of cross-correlation

on the sphere as a similarity measure for the classification
of 3D radiation patterns. We showed that this tool can
facilitate thorough analysis of directivity pattern similarities
across partials of one instrument or between different
instruments. However, spherical correlation can only capture
rotational resemblance ; it might therefore be necessary also to
consider energetic criteria when comparing radiation patterns.
Future work will investigate other spatial descriptors for the
classification of the 3D database of orchestral instruments. A
further direction will be transformations of radiation patterns
based on interpolation between correlated and rotated pairs,
which we hypothesize will give more consistent results than
interpolation between unrotated patterns, to be applied in the
context of regression for a machine learning algorithm.
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7 Annex : Wigner-D function
Considering Euler angles with the ZYZ convention, the

rotation matrix R can be expressed as a rotation of α about
the z axis, followed by a rotation β about the y axis, and
finally a rotation γ about the z axis : Rzyz (α, β, γ) =
Rz(α) Ry(β) Rz(γ) with :

Rz(α) =

(
cosα − sinα 0
sinα cosα 0
0 0 1

)
Ry(β) =

(
cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

)
and 0 ≤ α, γ < 2π and 0 ≤ β ≤ π. With this convention,
the Wigner-D function Dn

mm′(R), required to rotate complex-
valued spherical harmonics, is written

Dn
mm′(α, β, γ) = e−imα dnmm′(β) e−im

′γ , (9)

where dnmm′(β) is the Wigner-d function [22].
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