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Abstract Mathematical morphology is a valuable theory of nonlinear operators widely used
for image processing and analysis. Although initially conceived for binary images, mathe-
matical morphology has been successfully extended to vector-valued images using several
approaches. Vector-valued morphological operators based on total orders are particularly
promising because they circumvent the problem of false colors. On the downside, they often
introduce irregularities in the output image. This paper proposes measuring the irregularity
of a vector-valued morphological operator by the relative gap between the generalized sum
of pixel-wise distances and the Wasserstein metric. Apart from introducing a measure of the
irregularity, referred to as the irregularity index, this paper also addresses its computational
implementation. Precisely, we distinguish between the ideal global and the practical local
irregularity indexes. The local irregularity index, which can be computed more quickly by
aggregating values of local windows, yields a lower bound for the global irregularity index.
Computational experiments with natural images illustrate the effectiveness of the proposed
irregularity indexes.

Keywords mathematical morphology · vector-valued images · total order · irregularity
issue · optimal transport.

1 Introduction

Mathematical morphology (MM) is a nonlinear theory that uses geometric and topological
concepts for image and signal processing [18,29]. The theory of mathematical morphology
is usually defined on an algebraic structure called complete lattices, which is satisfactory
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for binary and gray-scale images [14,22]. In the case of vector-valued images, vector spaces
endowed with a total order are one of the most comfortable frameworks for the extension
of morphological processing [1,2,36]. Approaches that have been recently formulated us-
ing total orderings include [17,24,31,33–35]. Despite their successful applications for color
and hyperspectral image processing, Chevallier and Angulo showed that the information
contained in a total order is too weak to reproduce the natural topology of the value space
[6]. As a consequence, morphological operators may introduce irregularities and aliasing on
images. Our motivation is to formulate measures to study the irregularity implied by a mor-
phological operator on vector-valued images. We believe this is the first work proposing a
framework based on the Wasserstein metric to score the irregularity effect considering pairs
of input/output images besides our conference paper [30]. Indeed, this paper extends [30]
by presenting more efficient estimators for the irregularity measure using local windows and
entropic regularized optimal transport methods [19,26]. This paper also presents extensive
computational experiments to show the effectiveness of the proposed irregularity measures.

The paper is organized as follows: Section 2 reviews mathematical morphology concepts
for vector-valued images and the difficulties produced by operators based on total orders.
Sections 3 and 4 present our proposed irregularity measure. Additionally, results on natural
images show the goodness of the proposed measure. The paper ends with Section 5 including
conclusions and recommendations for future works.

2 Basic Concepts on Mathematical Morphology

Let us begin by presenting the basic concepts and the notations used in this paper. First, an
image I corresponds to a mapping from a point set D to a value set V, that is, I : D → V.
The set of all images from a domain D to V is denoted by V = VD . Throughout the paper,
the set D is finite with ND = Card(D) points. Moreover, we assume D is included in
a space E , where (E ,+) is a group. Usually, we consider E = R2 or E = Z2 with the
usual addition. We also assume the value set V is a complete lattice equipped with a metric
d : V× V→ [0,+∞). For simplicity, we consider the RGB color space endowed with the
Euclidean distance throughout the paper.

2.1 Mathematical Morphology on Complete Lattices

Mathematical morphology (MM) is mainly concerned with image operators used to extract
relevant geometric and topological information from an image [7,14,18,29]. The two ele-
mentary operators of MM are dilations and erosions. Many other operators, such as opening,
closing, and the morphological gradient, are obtained by combining the elementary morpho-
logical operators.

Complete lattices provide an appropriate mathematical background for defining the ele-
mentary morphological operators [14,22]. A complete lattice L is a partially ordered set in
which any subset X ⊂ L has both an infimum and a supremum [3]. The infimum and the
supremum of X are denoted by

∧
X and

∨
X , respectively.

The elementary morphological operators are those that commute with the supremum
and the infimum operations in a complete lattice. When the value set V is a complete lattice,
the operators δS , εS : V → V given by the following equations are respectively a dilation
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and an erosion:

δS(I)(p) =
∨
s∈S

p−s∈D

I(p− s) and εS(I)(p) =
∧
s∈S

p+s∈D

I(p+ s), (1)

where S ⊆ E is a finite set referred to as the structuring element (SE) [29]. The images δS(I)
and εS(I) are the dilation and the erosion of I by the structuring element S, respectively. Al-
though there exist more general definitions, the elementary morphological operators given
by (1) are widely used in practical situations. Combining dilations and erosions, we obtain
many other morphological operators. In this paper, we focus on elementary operators de-
fined by (1). We also consider openings γS and closings φS , which are obtained by the
compositions γS = δS ◦ εS and φS = εS ◦ δS [29].

2.2 Vector-Valued Mathematical Morphology

Let us now address morphological operators for vector-valued images. A vector-valued im-
age is obtained by considering V ⊆ R̄d, where R̄ = R ∪ {−∞,+∞} and d ≥ 2. Vector-
valued dilations and erosions can be defined using (1) whenever the vector-valued set V is a
complete lattice. However, there are several ordering schemes for vector-valued sets. Defin-
ing an appropriate ordering scheme is one of the main challenges of vector-valued MM. The
following references address interesting directions of research on vector-valued MM [1,2,
5,6,12,17,31,33,34,36].

As examples of ordering schemes on vector-valued sets, let us recall the marginal and
the lexicographical orderings [2]. The marginal ordering is defined as follows for all u =
(u1, . . . , ud) ∈ V and v = (v1, . . . , vd) ∈ V:

u ≤M v ⇐⇒ ui ≤ vi, ∀i = 1, . . . , d, (2)

where “≤” denotes the usual ordering on R. The marginal ordering is also known as the
component-wise ordering or the Cartesian product ordering. The lexicographical ordering is
defined as follows:

u ≤L v ⇐⇒ ∃ i : ui ≤ vi and uj = vj , ∀j < i. (3)

In contrast to the marginal ordering, the lexicographical ordering is a total ordering. Thus,
at least one of the inequalities u ≤L v or v ≤L u holds for any u, v ∈ V.

There are many other approaches to vector-valued mathematical morphology besides the
marginal and lexicographical approaches. The following papers survey several interesting
approaches [1,2,36]. For comparative purposes, in this paper, we consider two approaches
based on reduced orderings [11], and one approach based on the Loewner order [5].

A reduced ordering is defined by a surjective mapping ρ : V → L that maps the value
set to a complete lattice as follows:

u ≤ρ v ⇐⇒ ρ(u) ≤L ρ(v). (4)

A reduced ordering is not a partial order but a preorder because it may fail to be antisym-
metric; that is, the inequalities u ≤ρ v and v ≤ρ u do not necessarily imply u = v.
Nevertheless, reduced orderings can be used for the development of effective vector-valued
morphological operators [11]. Precisely, combining (4) with look-up tables (LUTs), one can
define computationally efficient vector-valued morphological operators taking advantage of
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gray-scale morphological operators [36]. Together with a LUT, a reduced ordering given by
(4) becomes a total ordering on the set V (I) = {I(p) : p ∈ D} of values of an image
I. Moreover, the surjective mapping ρ : V → L can be defined using machine learning
techniques [36]. Accordingly, depending on how the mapping ρ is determined, a morpho-
logical approach can be classified as supervised or unsupervised. We consider a radial-basis
function support vector machine (SVM) as a representative supervised vector-valued ap-
proach [34]. Also, the statistical projection depth function is considered as a representative
example of an unsupervised reduced ordering-based approach [35]. These two vector-valued
morphological approaches are briefly revised in Appendix A.

Besides the marginal approach, we consider in this paper a second vector-valued mor-
phological approach based on a partial order for comparison purposes. Specifically, we con-
sider the approach to color-morphology based on the Loewner order proposed by Burgeth
and Kleefeld [5]. The Loewner order is a partial order on the set of symmetric matrices.
Formally, given symmetric matrices A and B, the Loewner order is defined by

A ≤W B ⇐⇒ B−A is positive semidefinite. (5)

The Loewner order has been successfully applied for the development of vector-valued mor-
phological approaches [4,5]. In particular, the Loewner order can be used as follows for
defining morphological operators for color images. First, a color value is represented using
hue (H), chroma (C), and luminance (L) instead of the traditional RGB representation [9,16,
15,10]. Geometrically, the considered HCL space corresponds to a bi-cone centered at zero,
with tips at (0, 0, 1) and (0, 0,−1) and a circular base of radius one on the horizontal plane.
Then, each coordinate of the bi-cone is mapped onto a symmetric 2× 2 matrix A such that

− 1√
2
I ≤W A ≤W

1√
2
I,

where I denotes the identity matrix. Finally, the isomorphism between colors and symmetric
2× 2 matrices allows defining the so-called Loewner approach for color morphology1.

2.3 The False Colors Problem Versus the Irregularity Issue

One problem on vector-valued MM is the creation of “false colors” or, more generally, false
values [28]. A morphological operator ψ : V → V introduces false values whenever there
are values in ψ(I) which do not belong to the original image I. Formally, let 2V denote the
power set of V and let V : V → 2V be the mapping given by

V (I) = {I(p) : p ∈ D}, ∀I ∈ V. (6)

A morphological operator ψ introduces false colors if the set difference V (ψ(I)) \ V (I) is
not empty. The abnormal false values can be a problem in some applications such as when
dealing with satellite data [28]. Using a partial order such as the marginal or the Loewner
orders, the dilation and the erosion given by (1) usually yield false colors.

A total order, such as the lexicographical order and a reduced ordering combined with a
look-up table, circumvents the problem of false values [28]. Using a total order, the supre-
mum and the infimum of a finite set are elements of the set, i.e., they coincide with the

1 The source-codes for the Loewner morphological approach can be found at https://www.math.
tu-cottbus.de/INSTITUT/lsnmwr/kleefeld/SourcePRL/.
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a) Toy Image I
b) Dilated Image JL

(Lexicographical RGB)
c) Dilated Image JM

(Marginal)

Fig. 1 Illustrative example of the irregularity issue. Image with three colors and its corresponding dilation by
a cross structuring element using the RGB lexicographical and marginal orderings.

maximum and minimum operations, respectively. As a consequence, if D is finite, the ele-
mentary morphological operators given by (1) only contain values of the input image I.

On the downside, a total order can be irregular in a metric space. According to Chevallier
and Angulo, the irregularities follow because the topology induced by a total order may not
reproduce the topology of a metric space [6]. Specifically, let the value set V be a totally
ordered set as well as a metric space, with metric d : V × V → [0,+∞). Chevallier and
Angulo showed that there exist u, v,w ∈ V such that u ≤ v ≤ w but d(u,w) < d(u, v)
under mild conditions with respect to the connectivity of V. In words, although u is closer
to w than to v, the inequalities u ≤ v ≤ w suggest w is farther from u than v. Since the
morphological operators are defined using the extrema operators, they do not take the metric
of V into account.

A visual interpretation of the irregularity is shown in Figure 1, which is very similar
to an example provided in [6]. Figure 1a) shows an image with three RGB colors, namely
u = (0, 0, 0), v = (0, 0, 1), and w = (1/255, 0, 0). The toy image I is obtained by
replacing pure black values u by w with probability 0.3 from an image of size 32× 64 with
two stripes of colors blue and black. The dilations JL = δLS (I) and JM = δMS (I) by a cross
structuring element S obtained using the lexicographical RGB and the marginal ordering
schemes are also depicted in Figure 1. Visually, u and w are black colors while v is a pure
blue. Using the Euclidean distance, we obtain d(u, v) = 1 and d(u,w) = 0.005. These
distances agree with our color perception. However, using the lexicographical ordering, we
obtain u ≤L v ≤L w. As a consequence, the following happens when we compute the
dilation δLS (I) = JL using the lexicographical ordering: the blue v advances over the black
u but it is overlaid by the black w, resulting in the irregularities shown in Figure 1b). In
contrast, the dilated image depicted in Figure 1c) obtained using the marginal ordering does
not present any visual irregularity.

Although we know that the irregularity results from a divergence between the topologies
induced by the metric and the total order, no consensual measure agrees with our visual
perception. A measure for the irregularity can help to choose an appropriate ordering scheme
for vector-valued mathematical morphology. The following section proposes a measure of
irregularity using the Wasserstein metric.

3 Measuring the Irregularity

In this section, we present a measure for the irregularity, referred to as the global irregularity
index. Although we are interested in measuring the irregularity implied by a total ordering,
we will not assume V is totally ordered. Indeed, the proposed irregularity measure is well
defined wheneverD is finite and V is a metric space. For simplicity, however, the value set V
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corresponds to the RGB color space equipped with the Euclidean distance in the following
examples and computational experiments.

3.1 The Wasserstein Metric and the Generalized Sum of Pixel-wise Distances

The global irregularity index is given by the relative gap between the Wasserstein metric and
a generalized sum of pixel-wise distances. Let us begin by reviewing the generalized sum of
pixel-wise distances.

Consider an image operator ψ : V → V . Given an input image I ∈ V , let J = ψ(I)
denote the output of the image operator. The generalized sum of pixel-wise distances of I
and J is an operator Dp : V × V → [0,+∞) given by

Dp(I,J) =

(∑
x∈D

dp
(
I(x),J(x)

)) 1
p

, p ≥ 1. (7)

The generalized sum of pixel-wise distances is one of the simplest measures that considers
the metric d and the pixel locations. However, Dp is usually not properly scaled, possibly
because its dimension is the same as the metric d. For example, the images shown in Figure
1 yield the values D1(I,JL) = 34.12 and D1(I,JM ) = 66.05. Note that the inequality
D1(I,JL) < D1(I,JM ) holds true although JL is more irregular than JM . Hence, the
generalized sum of pixel-wise distances is not an appropriate measure for the irregularity.

Let us now review the Wasserstein metric, also known as the Earth mover’s distance
or the Kantorovich-Rubinstein distance in some contexts [23,37]. The Wasserstein metric,
named after the Russian mathematician Leonid Vaseršteı̆n, has been previously used by
Rubner et al. for content-based image retrieval [23]. The Wasserstein metric is formulated
as a transport problem and can measure distances between probability distributions [37].

The objective of a transport problem is to minimize the cost to deliver items from n fac-
tories tom shops [19]. In our context, the transport problem minimizes the cost to transform
the input image I into the output image J. The cost is defined using the metric on the value
set V. Precisely, let V (I) = {v1, . . . , vn} and V (J) = {u1, . . . , um} be the sets of color
values of I and J, respectively. Also, let

fi = Card({x : I(x) = vi}) and gj = Card({x : J(x) = uj}), (8)

denote respectively the number of pixels of value vi in the image I and the number of
occurrences of the value uj in J, for i = 1, . . . , n and j = 1, . . . ,m. Given p ≥ 1, the cost
to transform a value vi of I into a value uj of J is defined by

cij = dp(vi, uj), ∀i = 1, . . . , n, ∀j = 1, . . . ,m. (9)

The Wasserstein metric, denoted byWp : V × V → [0,∞) for p ≥ 1, is given by

Wp(I,J) =

 n∑
i=1

m∑
j=1

cijxij

 1
p

, p ≥ 1, (10)
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where xij solves the linear programming problem

minimize
n∑
i=1

m∑
j=1

cijxij

subject to
m∑
j=1

xij = fi, ∀i = 1, . . . , n,

n∑
i=1

xij = gj , ∀j = 1, . . . ,m,

xij ≥ 0, ∀i = 1, . . . , n, ∀j = 1, . . . ,m.

(11)

The Wasserstein metric is the p-th root of the minimal cost to transform I into J. In the
transport problem (11), the variable xij represents the (optimal) number of pixels with value
vi of I transformed to pixels with value uj of J. Moreover, the solution of (11), which can be
arranged in a matrixX ∈ Rn×m, is an optimal transport plan. An optimal transport plan is a
cyclically monotone plan in the sense that the cost

∑n
i=1

∑m
j=1 cijxij cannot be improved

by changing the number of pixels with value vi transformed to pixels with value uj [37].
For the images shown in Figure 1, we obtainW1(I,JL) = 6.18 andW1(I,JM ) = 65.94.
Note that the inequality W1(I,JL) < W1(I,JM ) holds despite JL being more irregular
than JM . Like the generalized sum of pixel-wise distances, the Wasserstein metric is not
appropriate for measuring the irregularity.

3.2 The Global Irregularity Index

Although both the generalized sum of pixel-wise distances and the Wasserstein metric are,
per se, not appropriate to evaluate the irregularity, we advocate that they can be combined
to yield a useful measure.

First of all, note that the generalized sum of pixel-wise distances satisfies

Dp(I,J) =

 n∑
i=1

m∑
j=1

cijyij

 1
p

, p ≥ 1, (12)

where
yij = Card ({x : I(x) = vi and J(x) = uj , x ∈ D}) , (13)

for all i = 1, . . . , n and j = 1, . . . ,m. Moreover, it is not hard to see that yij ≥ 0 and the
identities

m∑
j=1

yij = fi and
n∑
i=1

yij = gj , (14)

where fi and gj are given by (8), hold for all i = 1, . . . , n and j = 1, . . . ,m. Therefore,
the generalized sum of pixel-wise distances also measures the cost of transforming I into
J. Because Wp is the minimal cost, the inequality Wp(I,J) ≤ Dp(I,J) holds for any I
and J = ψ(I). The yij’s given by (13), which can be arranged in a matrix Y ∈ Rn×m, is
called the operator’s plan. The operator’s plan is probably not an optimal transport plan. In-
deed, one usually can reduce the cost

∑n
i=1

∑m
j=1 cijyij by rerouting the number of pixels

with value vi in I transformed to pixels with value uj in J. In some sense, the difference
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Dp(I,J)−Wp(I,J) measures the cycles in the operator’s plan that can be reduced. Exam-
ple 1 below illustrates the relationship between cycles and the irregularities introduced by a
morphological operator using the toy image shown in Figure 1.

In order to reduce the impact of the metric d on the value set V and the impact on the
choice of the parameter p ≥ 1, we propose to measure the irregularity using the mapping
Φgp : V ×V → [0, 1] given by the relative gap betweenDp andWp. Precisely, given images
I,J ∈ V , we define the global irregularity index by means of the equation

Φgp(I,J) =
Dp(I,J)−Wp(I,J)

Dp(I,J)
, if Dp(I,J) 6= 0, (15)

and Φgp(I,J) = 0 if Dp(I,J) = 0. Note that the larger the gap between Wp(I,J) and
Dp(I,J), the larger the global irregularity index. Equivalently, we have

Φgp(I,J) =

0, if Dp(I,J) = 0,

1− Wp(I,J)

Dp(I,J)
, otherwise.

(16)

The irregularity index is symmetric and bounded, that is, Φp(I,J) = Φp(J, I) and 0 ≤
Φp(I,J) ≤ 1. Moreover, because Dp andWp have the same units and similar magnitudes,
Φgp(I,J) is a dimensionless quantity. The more irregular is J = ψ(I), the larger the value
of Φgp(I,J) is expected to be. For example, the irregularity index of the dilated images JL
and JM shown in Figure 1b) and 1c) are Φg1(I,JL) = 81.9% and Φg1(I,JM ) = 0.17%,
respectively. The following examples explores further the global irregularity index using toy
images.

Example 1 Consider the toy image I and the dilated image JL = δLS (I) shown in Figure
1. The operator’s and the optimal transport plans are arranged respectively in the following
matrices:

Y =

156 18 541
0 1010 14
0 0 309

 and X =

156 4 550
0 1024 0
0 0 309

 . (17)

Because u = (0, 0, 0), v = (0, 0, 1), and w = (1/255, 0, 0), we have

D1(I,JL) = 18d(u, v) + 541d(u,w) + 14d(v,w) = 34.12, (18)

W1(I,JL) = 4d(u, v) + 555d(u,w) = 6.18, (19)

and
D1(I,JL)−W1(I,JL) = 14

(
d(u, v) + d(v,w)− d(u,w)

)
= 27.95, (20)

From (20), we conclude that the cost of the operator’s plan can be reduced by replacing 14
times the route u → v → w by u → w or, equivalently, by avoiding the cycle (u, v),
(v,w), (w,u). Moreover, note that the route u → v → w reflects the lexicographical
inequalities u ≤L v ≤L w. Thus, the difference D1(I,JL) −W1(I,JL) is proportional
to the number of pixels with irregular values (14 in this example) as well as to the distance
between the pixel values (in this example, the amount d(u, v) + d(v,w) − d(u,w)). The
global irregularity index is obtained by dividing the difference D1(I,JL) −W1(I,JL) by
D1(I,JL), that is,

Φg1(I,JL) =
D1(I,JL)−W1(I,JL)

D1(I,JL)
=

27.95

34.12
= 0.819. (21)
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Fig. 2 Top: Global irregularity index by the probability of replacing a pure black pixel value u = (0, 0, 0) by
the black w = (0.005, 0, 0) in an image similar to Figure 1a). Bottom: Lexicographical dilation of images
obtained using π = 0.0, 0.25, 0.5, 0.75, and 1.0, respectively.

Example 2 Figure 2 shows the percentage of the global irregularity index computed on di-
lated versions of toy images similar to the one provided by Chevallier and Angulo [6].
Precisely, we first construct an image of size 64× 32 with two stripes of the same width but
with the pure colors black u = (0, 0, 0) and blue v = (0, 0, 1). Then, a pure black pixel
value is replaced by the black w = (1/255, 0, 0) with probability π ∈ [0, 1]. The result-
ing image I is dilated by a cross structuring element using both the lexicographical and the
marginal ordering schemes, yielding the images JL and JM , respectively. The simulation
has been repeated 500 times for each probability π ∈ [0, 1]. Figure 2 shows the average
of the global irregularity index by the probability π. For a better interpretation of this plot,
dilated samples of the images generated with probabilities π = 0.0, 0.25, 0.50, 0.75, and 1
are shown at the bottom of Figure 2. Note that the irregularity index for the lexicographical
RGB ordering increases until close to π = 0.3 and then decreases. Furthermore, the irregu-
larity indexes agree with the visual irregularity provided in the sample images at the bottom
of Figure 2. In contrast, the marginal approach yields small irregularity indexes. This toy
example confirms our expectation that the more irregular is the image J = ψ(I), the larger
is the global irregularity index Φg1(I,J).
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Fig. 3 Illustrative examples of the global irregularity index Φg1 computed for several tiny color images using
different morphological operators.

3.3 Computational Experiments with Tiny Color Images

Let us now provide some computational experiments with tiny color images2. Precisely, we
compute the global irregularity indexΦg1 of morphological operators applied on one hundred
color images from the CIFAR10 dataset. The measures have been computed using erosion,
dilation, opening, and closing by a 3 × 3 square structuring element. Specifically, we have
computed twenty-five dilations, erosions, openings, and closings on different images from
the CIFAR10 dataset.

We considered three approaches based on total orderings. The first is the RGB lexico-
graphical order in which the colors are ranked sequentially according to the red, green, and
blue channels. The other two approaches are based on reduced orderings [36]. Specifically,
we considered the supervised reduced ordering based on an SVM with radial basis function
kernel [34]. In this computational experiment, we trained the SVM to distinguish the central
object on an image from the rest. The last approach uses an unsupervised reduced ordering
based on the random projection depth, which aims to discriminate between background and
foreground pixels [35]. For comparison, we also include two approaches based on partial
orderings. Namely, the marginal approach and the approach based on Loewner order [5].
Because these two approaches are not based on total orders, their output images are not
expected to be very irregular.

Figure 3 depicts some original images, the outcome of a morphological operator, and
the corresponding global irregularity index. The images in the first column correspond to
the original color images. The following columns present the output of morphological op-

2 The Julia’s source-code for the global irregularity index is available at https://github.com/
mevalle/Irregularity-Index.
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Fig. 4 The boxplot of the global irregularity index of dilations, erosions, openings, and closings for 100 color
images of size 32× 32 using five different morphological approaches.

erators defined using the marginal, Loewner, lexicographical RGB, supervised SVM-based,
and projection depth approaches, respectively. We provide the global irregularity index be-
low the images produced by the morphological operators. As expected, the marginal and
the Loewner approaches yielded global irregularity indexes smaller than the lexicograph-
ical, SVM-based, and projection depth approaches. The supervised SVM-based approach
yielded the most irregular dilated image. The irregularity index of 5.38% produced by pro-
jection depth’s dilation of the cat image is an outlier of the global irregularity index pro-
duced by this unsupervised morphological approach. Indeed, the median of the global ir-
regularity index produced by the morphological operators based on the projection depth is
45.22%. The eroded image depicted in the last column of Figure 3 is a typical outcome
of the projection depth approach. The median of the irregularity indexes produced by the
marginal, Loewner, lexicographical, and the SVM-based approaches are 2.56%, 2.81%, 6%,
and 22.98%, respectively. The truck image’s openings and the car image’s closings provide
typical examples of the global irregularity index produced by the marginal, Loewner, and
lexicographical approaches. The opening of the car image produced by the projection depth
approach yielded the largest global irregularity index of this experiment.

The boxplot shown in Figure 4 summarizes the outcome of this computational exper-
iment. As expected, the morphological operators based on the marginal and the Loewner
partial orderings resulted in minor global irregularity indexes. In contrast, the morphological
operators based on the lexicographical RGB, SVM-based, and the projection depth yielded
the largest global irregularity indexes. Accordingly, the morphological approaches can be
ranked increasingly using the global irregularity index as follows: marginal, Loewner, lexi-
cographical RGB, supervised SVM-based, and projection depth. We confirmed the ranking
of the morphological approaches statistically using the Wilcoxon signed-rank test with a
confidence level of 99%. Concluding, the morphological operators based on total order-
ings yielded more significant global irregularity indexes than the morphological operators
obtained using partial orderings.
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Finally, we would like to emphasize that neither the generalized sum of pixel-wise dis-
tances nor the Wasserstein metric are appropriate for measuring the irregularity of morpho-
logical operators. For example, the generalized sum of pixel-wise distances and the Wasser-
stein metric between the original and the eroded frog image produced by the marginal ap-
proach are 182.31 and 180.61, respectively. Similarly, the same measures between the orig-
inal and the eroded frog image produced by the projection depth approach are 135.44 and
74.13. Although the projection depth approach yielded a smaller generalized sum of pixel-
wise distances and Wasserstein metric values, the former outcome is a visually more irreg-
ular image than the image produced by the marginal approach. Conversely, a more irregular
image does not necessarily result in a smaller generalized sum of pixel-wise distances or a
smaller Wasserstein metric value. Indeed, the generalized sum of pixel-wise distances and
the Wasserstein metric between the original truck and its opening by the marginal approach
are 31.05 and 30.18, respectively. The same measures applied to the original truck and its
closing by the projection depth approach are 53.96 and 37.17. However, the projection depth
approach visually yielded a more irregular truck image than the opening by the marginal ap-
proach.

4 Computing the Irregularity Index

Despite its mathematical formulation, computing the global irregularity index is not an easy
task for natural images. Precisely, the irregularity index requires solving a linear program-
ming problem withmn variables, wherem and n are the numbers of distinct pixel values of
the images I and J, respectively. As a consequence, the complexity for computing the global
irregularity index analytically grows asO

(
m3n3 log(mn)

)
[20]. In practical situations, the

dimension of the linear programming problem (11) is enormous, making it impossible to
compute the global irregularity index analytically in real-time. We propose to compute the
Wasserstein metric and the generalized sum of pixel-wise distances locally and aggregate
the values into a single index to circumvent this computational burden.

4.1 The Local Irregularity Index

Let {W1,W2, . . . ,Wk} be a partition of the image domainD, that is,W1,W2, . . . ,Wk are
non-overlapping local windows such that D = ∪ki=1Wi. Also, letWp(I,J|W`) denote the
Wasserstein metric computed restricting the images I and J to the local window W`. The
local irregularity index is defined by the following equation for all I,J ∈ V:

Φlp(I,J) = 1−

(
k∑
`=1

(
Wp(I,J|W`)

)p)1/p

Dp(I,J)
. (22)

The size of the local windows W1, . . . ,Wk plays an important role in the local irregularity
index. On the one hand, it is impractical to compute the irregularity index using large local
windows. On the other hand, the local irregularity index approaches zero as the size of
the local windows decreases. Thus, the size of the local windows is a trade-off between
computational cost and accuracy of the local irregularity index.



Irregularity Index for Vector-Valued Morphological Operators 13

Remark 1 We would like to point out that we previously used the geometric mean to aggre-
gate the quotient ofWp(I,J|W`) byDp(I,J|W`) [30]. However, the geometric mean does
not scale well for moderate and large size images because 0 <

Wp(I,J|W`)
Dp(I,J|W`)

< 1 implies∏k
`=1

Wp(I,J|W`)
Dp(I,J|W`)

→ 0 as the number k of local windows increases. In this paper, the local
irregularity index is given by (22) which, besides scaling well to moderate and large scale
images, is closely related to the minibatch Wasserstein metric [8].

The local irregularity index provides a lower bound to the global irregularity index, i.e.,
the inequality Φlp(I,J) ≤ Φgp(I,J) holds true for all I ∈ V and J = ψ(I). Precisely, let

f`i = Card
(
{x ∈W` : I(x) = vi}

)
and g`j = Card

(
{x ∈W` : J(x) = uj}

)
, (23)

denote respectively the number of pixels of I with value vi and the number of pixels of J
with value uj , both restricted to the local window W`, for ` = 1, . . . , k, i = 1, . . . , n, and
j = 1, . . . ,m. Note that f`i = 0 and g`j = 0 if the images I and J have no pixels with
values vi and uj in the windows W`, respectively. Moreover, since {W` : ` = 1, . . . , k} is
a partition of the images domain D, the identities

k∑
`=1

f`i = fi and
k∑
`=1

g`j = gj , (24)

where fi and gj are given by (8), hold for all i = 1, . . . , n and j = 1, . . . ,m. Although
in practice we compute Wp(I,J|W`) using only the pixel values of I and J in the local
window W`, the restricted Wasserstein metric satisfies(

Wp(I,J|W`)
)p

=
n∑
i=1

m∑
j=1

cijx
`
ij , (25)

where x`ij solves the linear programming problem
minimize

n∑
i=1

m∑
j=1

cijx
`
ij

subject to
m∑
j=1

x`ij = f`i ,
n∑
i=1

x`ij = g`j , and x`ij ≥ 0, ∀i,∀j.
(26)

Now, define the non-negative variables

zij =
k∑
`=1

x`ij , ∀i = 1, . . . , n and ∀j = 1, . . . ,m. (27)

From (24), we conclude that

m∑
j=1

zij =
m∑
j=1

k∑
`=1

x`ij =
k∑
`=1

f`i = fi and
n∑
i=1

zij =
k∑
`=1

g`j = gj . (28)

Thus, the variables zij satisfy the constraints of the linear programming problem (11). Be-
cause

(
Wp(I,J)

)p is the minimum value of (11), from (25) we conclude that

(
Wp(I,J)

)p ≤ n∑
i=1

m∑
j=1

cijzij =
k∑
`=1

n∑
i=1

m∑
j=1

cijx
`
ij =

k∑
`=1

(
Wp(I,J|W`)

)p
, (29)
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Fig. 5 The boxplot of the local irregularity index with local windows of size 16×16 obtained from dilations,
erosions, openings, and closings for 100 natural color images using five different morphological approaches.

which results in the desired inequality

Φgp(I,J) = 1−
(
Wp(I,J)

)p
Dp(I,J)

≥ 1−

(∑k
`=1

(
Wp(I,J|W`)

)p) 1
p

Dp(I,J)
= Φlp(I,J), (30)

for all I ∈ V and J = ψ(I).

4.2 Computational Experiments with Natural Color Images

In analogy to the previous section, let us perform some computational experiments with
natural color images. However, instead of computing the global irregularity index on tiny
color images from the CIFAR10 dataset, we compute the local irregularity index Φl1 of mor-
phological operators applied on one hundred colors images from the Berkeley segmentation
dataset3. The local irregularity index is computed using local windows of size 16×16 for di-
lations, erosions, openings, and closings by a 9× 9 square structuring element. The boxplot
shown in Figure 5 summarizes the outcome of this computational experiment.

Note from Figure 5 that the approaches based on partial orderings, namely the marginal
and the Loewner approaches, yielded the minor local irregularity indexes. In contrast, the
approaches based on total orderings produced the largest irregularity indexes. Using the
Wilcoxson signed-rank test with a confidence level at 99%, we rank the local irregularity in-
dexes increasingly by the marginal, Loewner, lexicographical RGB, supervised SVM-based,
and the projection depth approaches.

Figures 6–9 provide illustrative examples of images produced by the morphological op-
erators together with the corresponding local irregularity index. As expected, the marginal

3 The Julia’s source-code for the local irregularity index is available at https://github.com/
mevalle/Irregularity-Index.
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Original image Marginal: 0.70%

Loewner: 0.61% Lexicographical: 1.02%

SVM-based: 5.93% Projection Depth: 2.31%

Fig. 6 Original color image and the corresponding dilation by a 9 × 9 square produced by the marginal,
the Loewner, lexicographical, SVM-based, and projection depth approaches. The local irregularity index,
obtained using local windows of size 16× 16, is given together with the dilated images.

and the Loewner approaches produced the smallest local irregularity indexes among the
dilated images shown in Figure 6. In contrast, the SVM-based and the projection depth ap-
proaches yielded the largest local irregularity indexes. We would like to point out that the
value of 2.31% is an outlier corresponding to the smallest local irregularity index produced
by the projection depth approach on the one hundred natural color images considered in
this computational experiment. Similarly, Figure 7 depicts an original color image and the
corresponding eroded images. The SVM-based and the projection depth approaches again
yielded the most significant local irregularity indexes. Furthermore, in contrast to the out-
lier irregularity value attained by the dilated image shown in Figure 6, the eroded image in
Figure 7 is a typical image produced by the projection depth approach in this experiment.
Other typical images produced by the five morphological approaches are shown in Figures
8 and 9.

We would like to conclude this subsection by calling the reader’s attention to the quali-
tative similarity between the boxplots shown in Figures 4 and 5. Apart from a scaling factor,
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Original image Marginal: 0.47%

Loewner: 0.77% Lexicographical: 0.95%

SVM-based: 5.34% Projection Depth: 18.11%

Fig. 7 Original color image and the corresponding erosion by a 9 × 9 square produced by the marginal,
the Loewner, lexicographical, SVM-based, and projection depth approaches. The local irregularity index,
obtained using local windows of size 16× 16, is given together with the eroded images.

the global and local irregularity represents well the visual irregularity introduced by the mor-
phological operators. Moreover, although the local irregularity index yields a lower bound
for the global irregularity index, we advocate its use for measuring the irregularity of vector-
valued morphological operators.

4.3 Entropic regularized methods for approximating the Wasserstein metric

Besides partitioning the domain of a vector-valued image into local windows, we can further
reduce the computational cost for computing the irregularity index by considering entropic
regularized methods for approximating the analytical Wasserstein metric. In a few words,
entropic regularized methods like the Sinkhorn method and its stabilized version add an
entropic penalty to the original transport problem. In mathematical terms, the entropic reg-
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Original image Marginal: 1.29% Loewner: 1.75%

Lexicographical: 4.31% SVM-based: 8.41% Projection Depth: 12.61%

Fig. 8 Original color image and the corresponding opening by a 9 × 9 square produced by the marginal,
the Loewner, lexicographical, SVM-based, and projection depth approaches. The local irregularity index,
obtained using local windows of size 16× 16, is given together with the opening images.

ularized methods aim to solve the convex optimization problem



minimize
n∑
i=1

m∑
j=1

cijxij + ε
n∑
i=1

m∑
j=1

xij (log(xij)− 1)

subject to
m∑
j=1

xij = fi/ND, ∀i = 1, . . . , n,

n∑
i=1

xij = gj/ND, ∀j = 1, . . . ,m,

xij ≥ 0, ∀i = 1, . . . , n, ∀j = 1, . . . ,m.

(31)

where ε > 0 is a regularization term and ND denotes the number of pixels of the processed
images. Note that, for obtaining a meaningful entropic regularization, the variables xij must
satisfy

∑n
i=1

∑m
j=1 xij = (1/ND)

∑n
i=1 fi = (1/ND)

∑m
j=1 gj = 1. The Wasserstein
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Original image Marginal: 0.76% Loewner: 0.98%

Lexicographical: 1.78% SVM-based: 5.16% Projection Depth: 20.27%

Fig. 9 Original color image and the corresponding opening by a 9 × 9 square produced by the marginal,
the Loewner, lexicographical, SVM-based, and projection depth approaches. The local irregularity index,
obtained using local windows of size 16× 16, is given together with the opening images.

metric is then approximated by

Wr
p(I,J) =

ND n∑
i=1

m∑
j=1

cijxij

1/p

, p ≥ 1, (32)

where xij solves (31). Note that the approximationWr
p is computed without the regulariza-

tion term. Since both (11) and (31) have equivalent constraints (they differ only because of
the term ND), the inequality Wp(I,J) ≤ W r

p (I,J) holds for all image I and J = ψ(I).
As a consequence, the irregularity index computed by an entropic regularized method also
yields a lower bound for the analytical irregularity index.

As pointed out by Peyré and Cuturi [19], the objective in (31) is an ε-strongly convex
function. Therefore, the regularized optimization problem has a unique optimal solution.
Furthermore, the optimal solution can be computed using the Sinkhorn method, which uses
only matrix-vector products and, thus, it is suited to be executed in GPU. Also, the unique
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Fig. 10 Scatter plot of the local irregularity index computed using the analytical Wasserstein metric and the
stabilized Sinkhorn method with regularization term ε = 10−3, both with local windows of size 16× 16.

solution of (31) converges to the analytical solution as ε tends to zero. On the downside,
the convergence of the Sinkhorn method slows as the entropic term approaches zeros. For
small ε, the regularized optimization problem defined by (31) can be solved using stabilized
versions of the Sinkhorn method [26]. The Sinkhorn method and its stabilized versions are
implemented in optimal transport libraries such as the Python Optimal Transport4

(POT) and Julia’s Optimal Transport5.
Figure 10 compares the local irregularity index computed using an entropic regularized

optimal transport method with the analytical Wasserstein metric. Precisely, the scatter plot
in Figure 10 shows the local irregularity index computed on the considered subset of the
Berkeley segmentation dataset. Similarly to the previous experiments, we considered dila-
tions (δS), erosions (εS), openings (γS), and closings (φS) by a 9 × 9 square structuring
element S. We distinguished the marginal, Loewner, lexicographical, SVM-based, and pro-
jection depth approaches using the superindexes M , W , L, S, and P , respectively. The
horizontal and the vertical axes in the scatter plot shown in Figure 10 correspond to the local
irregularity index obtained using the analytical and the stabilized Sinkhorn method, respec-
tively. In this computational experiment, we have used the regularization term ε = 10−3.
Figure 10 also shows the line y = x. The closer a point is to the line y = x, the better
is the approximation obtained by the stabilized Sinkhorn method to the analytical solution.
Notably, the coefficient of determination obtained from the 500 points is R2 = 0.98. Thus,
the stabilized Sinkhorn method yielded good estimations for the analytical local irregularity
index using local windows of size 16 × 16. Furthermore, computing the local irregularity
index by the stabilized Sinkhorn method is much faster than using the analytical Wasser-

4 https://optimaltransport.github.io/
5 https://github.com/JuliaOptimalTransport/OptimalTransport.jl
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Fig. 11 Scatter plot of the local irregularity index computed using the parameters p = 1 and p = 2.

stein metric. Thus, we encourage computing the local irregularity index using the Sinkhorn
method or its variations. We would like to point out that other methods, such as sliced ap-
proximations of the optimal transport problem [20,21], can also be considered for estimating
the irregularity index.

4.4 Additional Remarks on the Local Irregularity Index

Let us finish this section by briefly addressing the sensibility of the local irregularity index
with respect to the parameter p. Let us also address the role of the sizes of the local windows
and the structuring element on the local irregularity index.

First, analogous to Figure 10, Figure 11 compares the local irregularity index obtained
using p = 1 and p = 2. In Figure 11, a point above the line y = xmeans that the local irreg-
ularity index for p = 1 is smaller than for p = 2, that is, Φl1(I,J) < Φl2(I,J). Conversely,
the inequality Φl1(I,J) > Φl2(I,J) yields a point below the line y = x. Although the local
irregularity index is predominantly larger for p = 2 than for p = 1, they are similar for val-
ues greater than 5%. Indeed, the coefficient of determination increases from 0.77 for the 500
images to 0.89 restricting both Φl1(I,J) > 5% and Φl2(I, J) > 5%. The less irregular the
morphological operator is, the more significant is the parameter p to the irregularity index.
Indeed, although the local irregularity index with p = 2 ranked the approaches based on the
total orders well, it could not distinguish the irregularity introduced by the morphological
operators based on the marginal and the Loewner orders.

Let us now turn our attention to the size of the local windows and the structuring ele-
ment. We consider square structuring elements of size 3× 3, 5× 5, . . . , 25× 25 and local
windows of size 4 × 4, 8 × 8, 16 × 16, and 32 × 32. Figure 12 shows the median of the
local irregularity index by the size of the structuring element obtained by considering four
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Fig. 12 Local irregularity index by the size of the structuring element. The first and third quartiles delimit
the filled area.

different local windows. The area between the first and third quartiles is also included in
Figure 12. Note from Figure 12 that the local irregularity index decreases with the size of
the structuring element independently of the local windows. Moreover, there is no clear re-
lationship between the size of the local windows and the structuring element. In particular,
the local window does not need to be larger nor smaller than the structuring element.

Also, note that the local irregularity index increases with the size of the local windows.
Despite the noticeable differences between the median of the local irregularity index, the
filled area between the first and third quartiles overlaps for local windows of size 16 × 16
and 32× 32 for some approaches. Accordingly, the local irregularity index should converge
to the global irregularity index as the size of the local windows increases. Finally, although
we face a trade-off between computational cost and approximating the global irregularity
index, fixed local windows can be confidently used for comparing the irregularity of different
morphological operators or approaches.

5 Concluding Remarks

Despite the rigorous formulation of the irregularity issue provided by Chevallier and Angulo
[6], as far as we know, there was no effective measure for this problem. This paper proposed
two measures for the irregularity of morphological operators: the global and the local irreg-
ularity indexes, denoted by Φgp and Φlp respectively. The global irregularity index is given by
the relative gap between the Wasserstein metricWp and the generalized sum of pixel-wise
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distances Dp. The computational experiments detailed in Section 3 confirmed good values
for the irregularity of tiny color images. However, in practical situations, the number of dis-
tinct pixel values makes it impossible to compute the global irregularity index. We proposed
computing the irregularity index on several non-overlapping local windows to circumvent
this computational drawback, resulting in the local irregularity index. Furthermore, the com-
putational cost can be reduced significantly by replacing the analytical Wasserstein metric
with entropic regularized approximations of the optimal transport problem, such as the one
produced by the Sinkhorn or the stabilized Sinkhorn methods [19,26]. The computational
experiments detailed in Section 3 confirmed the practical application of the local irregularity
index as a measure of the irregularity in natural color images. Indeed, besides the illustra-
tive examples provided in Figures 6-9, we provided a statistical analysis with one hundred
natural images from the Berkeley segmentation dataset using four different morphological
operators obtained from five vector-valued approaches.

Finally, we would like to point out that the irregularity index can be used in the future
to evaluate the performance of morphological operators. The irregularity index can also be
used for the design of efficient morphological operators. For example, it can be used as
the objective function for the design of vector-valued morphological operators based on
uncertain reduced orderings [25].

Appendix A Supervised and Unsupervised Morphological Approaches

Let us briefly review the supervised and unsupervised vector-valued morphological ap-
proaches, whose details can be found in [34,35].

In a supervised ordering, the surjective mapping ρ : V→ L is defined using a set F ⊂ V
of foreground values and a setB ⊂ V of background values such that F ∩B = ∅. Given the
sets F and B, the mapping ρ is expected to satisfy the inequality ρ(f) > ρ(b) for f ∈ F
and b ∈ B. Considering V ⊂ Rd and L ⊂ R, the decision function of a SVM can be used
to accomplish this goal [27,32,34]. Precisely, consider sets F = {f1, . . . , fK} ⊂ Rd and
B = {b1, . . . , bM} ⊂ Rd of foreground and background values, respectively. An SVM-
based morphological approach is obtained by considering the mapping ρS : Rd → R given
by

ρS(x) =
∑
f∈F

αiκ(x, f)−
∑
b∈B

βjκ(x, b), ∀x ∈ Rd, (33)

where κ : Rd × Rd → R is a Mercer kernel [27]. For example, Gaussian radial basis
function kernel is given by

κ(x,y) = e−
1
2σ
‖x−y‖22 , ∀x,y ∈ Rd, (34)
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where σ > 0 is a parameter. Moreover, α1, . . . , αK and β1, . . . , βM solve the quadratic
optimization problem

maximize
K∑
i=1

αi +
M∑
j=1

βj −
1

2

K∑
i,l=1

αiαlκ(f i, f l)−
1

2

M∑
j,l=1

βjβlκ(bj , bl)

+
1

2

K∑
i=1

M∑
j=1

αiβjκ(f i, bj)

subject to
K∑
i=1

αi −
M∑
j=1

βj = 0,

0 ≤ αi, βj ≤ C,

(35)

where the parameter C > 0 controls the trade-off between the classification error and the
margin of separation between background and foreground values [13,27].

In an unsupervised morphological approach, the mapping ρ : V → L is determined
using a set of unlabeled values. The statistical depth projection-based approach, for example,
determines the mapping ρ based on “anomalies” with respect to a background composed of
the majority of pixel values of an image [35]. Formally, suppose V ⊂ Rd and L ⊂ R. Given
a training sample represented by a matrix X = [x1, . . . ,xn] ∈ Rd×n, the projection depth
function ρ∗P : Rd → R is defined by

ρ∗P (x) = sup
u∈Sd−1

|uTx−MED(uTX)|
MAD(uTX)

, ∀x ∈ Rd, (36)

where Sd−1 = {x ∈ Rd : ||x||2 = 1}, MED : Rn → R is the median operator, and
MAD : Rn → R is the median absolute deviation from the median operator. Recall that the
median absolute deviation from the median is given by

MAD(t) = MED(|t− 1nMED(t)|), (37)

where 1n ∈ Rn denotes the vector of ones and the absolute value | · | is computed in a
component-wise manner. In practice, we compute the depth projection function by replac-
ing the supremum with the maximum on a finite set of elements in the hypersphere Sd−1.
Formally, the function ρP : Rd → R given by

ρP (x) = max
u∈U

|uTx−MED(uTX)|
MAD(uTX)

, ∀x ∈ Rd, (38)

where U = {u1,u2, . . . ,uk} ⊂ Sd−1, is taken as an approximation of the theoretical
depth projection function ρ∗P . The projection depth morphological approach is defined by
ranking the vector-values according to the mapping ρP : Rd → R given by (38) together
with a look-up table.
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