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A major challenge in statistical ecology consists of integrating knowledge from different datasets to produce robust ecological indicators. To estimate species distribution, occupancy models are a flexible framework that can accommodate several datasets obtained from different sampling methods. However, repeating visits at sampling sites is a prerequisite for using standard occupancy models. Occupancy models were recently developed to analyze detection/non-detection data collected during a single visit. To date, single-visit occupancy models have never been used to integrate several different datasets. Here, we showcase an approach that combines two datasets into an integrated single-visit occupancy model. As a case study, we estimated the distribution of common bottlenose dolphin (Tursiops truncatus) over the North-western Mediterranean Sea by combining 24,624 km of aerial surveys and 21,464 km of at-sea monitoring. We compared the outputs of single-vs. repeated-visit occupancy models into integrated occupancy models. Integrated models allowed a better sampling coverage of the targeted population, which provided a better precision for occupancy estimates than occupancy models using datasets in isolation. Overall, single-and repeated-visit integrated occupancy models produced similar inference about the distribution of bottlenose dolphins. We suggest that single-visit occupancy models open promising perspectives for the use of existing ecological datasets.

Introduction

In large-scale ecological analysis, several parallel monitoring programs are often carried out to collect ecological data [START_REF] Zipkin | Synthesizing multiple data types for biological conservation using integrated population models[END_REF]. Ecological monitoring programs are conducted by organizations operating across different time scales, geographic scales and funding initiatives [START_REF] Lindenmayer | The science and application of ecological monitoring[END_REF]. A major challenge is integrating knowledge from different monitoring programs to produce robust ecological indicators that may be used to inform decision-making [START_REF] Fletcher | A practical guide for combining data to model species distributions[END_REF][START_REF] Zipkin | Addressing data integration challenges to link ecological processes across scales[END_REF]. Recently, modelling tools have emerged to combine multiple data sources to estimate species distributions and Integrated models refer to the approaches that combine different data sources [START_REF] Miller | The recent past and promising future for data integration methods to estimate species' distributions[END_REF][START_REF] Isaac | Data Integration for Large-Scale Models of Species Distributions[END_REF]. The main purpose of integrated models is to improve the accuracy of ecological indicators [START_REF] Fletcher | A practical guide for combining data to model species distributions[END_REF][START_REF] Zipkin | Innovations in data integration for modeling populations[END_REF]. Species distributed over large areas could particularly benefit from integrated models because they allow for a global coverage of species occurrence by combining different data sources collected at different spatial scales [START_REF] Miller | The recent past and promising future for data integration methods to estimate species' distributions[END_REF]. To estimate species distribution in the face of uncertainties inherent to data collection, occupancy models are commonly used statistical tools [START_REF] Mackenzie | Estimating site occupancy rates when detection probabilities are less than one[END_REF]. Occupancy models have been developed to estimate species distribution while accounting for false negatives in the observation process [START_REF] Mackenzie | Estimating site occupancy rates when detection probabilities are less than one[END_REF]. Estimating occupancy when species detection is not perfect requires performing repeated visits to a set of sites to assess the detection probability [START_REF] Mackenzie | Occupancy estimation and modeling: inferring patterns and dynamics of species[END_REF]. However, repeating visits is sometimes unfeasible due to associated costs and logistical issues. In this context, two relevant developments of occupancy models have been recently proposed. First, integrated occupancy models combine data from different monitoring programs to improve the estimation of species distribution [START_REF] Nichols | Multi-scale occupancy estimation and modelling using multiple detection methods[END_REF][START_REF] Miller | The recent past and promising future for data integration methods to estimate species' distributions[END_REF][START_REF] Fletcher | A practical guide for combining data to model species distributions[END_REF]. Second, [START_REF] Lele | Dealing with detection error in site occupancy surveys: what can we do with a single survey[END_REF] used occupancy models to estimate species distribution and detectability while having only one visit at the sampling site, i.e. hereafter single-visit occupancy models. An increasing number of studies suggest that under certain conditions, single-visit models produce robust estimates of occupancy without repeating visits at the sampling sites [START_REF] Lele | Dealing with detection error in site occupancy surveys: what can we do with a single survey[END_REF][START_REF] Sólymos | Revisiting resource selection probability functions and single-visit methods: clarification and extensions[END_REF][START_REF] Peach | Single-visit dynamic occupancy models: an approach to account for imperfect detection with Atlas data[END_REF]. Besides, single-visit occupancy offers the possibility to work with existing datasets that did not carry out repeated visits, which is relevant to population biology and management. In this paper, we develop an integrated approach that combines two single-visit occupancy models and demonstrate that combining several datasets into integrated single-visit occupancy models leads to accurate ecological parameter estimation. We also investigate the performance of single-visit vs. repeated-visit occupancy models. As a case study, we focused on the distribution of Bottlenose dolphins (Tursiops truncatus) in the North-Western Mediterranean Sea. We combined aerial surveys and at-sea monitoring into integrated occupancy models and we compared the outputs of integrated occupancy models to occupancy models using each dataset in isolation. Last, we discuss the advantages of integrated singlevisit occupancy models to deal with existing ecological monitoring programs.

Methods

MODEL DESCRIPTION

Latent ecological process

Occupancy models estimate spatial distribution while accounting for imperfect species detection [START_REF] Mackenzie | Estimating site occupancy rates when detection probabilities are less than one[END_REF]. The formulation of occupancy models as state-space models allows distinguishing the latent ecological state process (i.e. species present or absent at a gridcell) from the detection process [START_REF] Royle | A Bayesian state-space formulation of dynamic occupancy models[END_REF]. We denote zi the latent occupancy of grid-cell i (z = 1, presence; z = 0, absence). We assume zi is drawn from a Bernoulli distribution with Ψi the probability that the species is present at grid-cell i:

zi ~ Bernoulli(Ψi)
We modelled Ψ as a function of some environmental covariate on a logit scale, say habitat. logit(Ψi) = b0 + b1 habitati where parameters b0, and b1 are to be estimated.

Repeated-visit observation process

In standard occupancy designs, each grid-cell is visited J times to estimate the detection probability. We denote yi,j (yi,j = 0, no detection ; yi,j = 1, detection) the observations corresponding to the data collected at grid-cell i during visit j (j =1,..,J). Repeating visits at a grid-cell allows estimating species detectability, with pi,j being the probability of detecting the species at visit j given it is present at grid-cell i: yi,j | zi ~ Bernoulli(zi pi,j)

Single-visit observation process

The difference with repeated-visit occupancy models lies in the number of sampling occasions which is J = 1 in single-visit occupancy models. The j subscript is dropped and we denoted yi the observation corresponding to the data collected at site i. Subsequently, pi is the probability of detecting the species during the single visit given it is present at site i: yi | zi ~ Bernoulli(zi pi). Single-visit occupancy models require certain conditions to be fulfilled for estimating detection probabilities reliably. First, different continuous covariates should be used to estimate detection and occupancy probabilities [START_REF] Lele | Dealing with detection error in site occupancy surveys: what can we do with a single survey[END_REF][START_REF] Peach | Single-visit dynamic occupancy models: an approach to account for imperfect detection with Atlas data[END_REF]. Second, the number of detections may affect the estimation of occupancy in the case of rare or ubiquitous species [START_REF] Peach | Single-visit dynamic occupancy models: an approach to account for imperfect detection with Atlas data[END_REF]. Third, the use of inappropriate link functions to model the detection process may lead to model misspecification and biased interpretation (e.g. loglink and scaled logit link function on detection, [START_REF] Knape | Estimates from non-replicated population surveys rely on critical assumptions[END_REF]. However, most often, the logit link function is used for detection, which makes the single-visit approach valid [START_REF] Sólymos | Revisiting resource selection probability functions and single-visit methods: clarification and extensions[END_REF]. Despite these concerns, simulation studies have showed that situations where single-visit occupancy models fail are rare (Sólymos andLele 2016, Peach et al. 2017) and, in practice, the conditions for a valid application of single-visit occupancy models are often fulfilled [START_REF] Sólymos | Revisiting resource selection probability functions and single-visit methods: clarification and extensions[END_REF]. We detailed the modeling assumptions of singlevisit occupancy models in Appendix S4. Because the number of detections is an important condition to accurately estimate single-visit occupancy parameters [START_REF] Peach | Single-visit dynamic occupancy models: an approach to account for imperfect detection with Atlas data[END_REF], we expect that integrated approaches will be beneficial to single-visit occupancy modelling by increasing the number of detections (true occupancy) available.

Integrated occupancy models

We developed an integrated occupancy model using data from two independent monitoring programs, say A and B. The state process driving the latent occupancy state of site i, zi, remains unchanged and is drawn from a Bernoulli distribution with probability y, which is modeled as a function of environmental covariates. The observation of the targeted species at site i during occasion j may take four values with yi,j = 0 for no detection, yi,j = 1 for detection in dataset A, yi,j = 2 for detection in dataset B, and yi,j = 3 for detection in both datasets A and B. For convenience, we drop the subscripts in the notation as the formulation of the integrated observation process is identical whether we consider single-visit occupancy (i.e. J = 1) or repeated-visit occupancy (J > 1). Assuming that detection methods are independent, the observation process can be written using detection probability by the monitoring program A (pA) and detection probability by the monitoring program B (pB):

𝑦|𝑧~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑧𝜋) with 𝜋 = [𝑝 ! , 𝑝 " , 𝑝 # , 𝑝 $ ] = [𝑝𝑟(𝑦 = 0), 𝑝𝑟(𝑦 = 1), 𝑝𝑟(𝑦 = 2), 𝑝𝑟(𝑦 = 3)] 𝜋 = [1 -𝑝 % -𝑝 & + 𝑝 % 𝑝 & , 𝑝 % (1 -𝑝 & ), 𝑝 & (1 -𝑝 % ), 𝑝 % 𝑝 & ]
We modeled monitoring-specific detection probabilities as functions of the sampling effort of each monitoring program:

logit(pA) = a0A + a1A log(SeffA) logit(pB) = a0B + a1B log(SeffB).
where the parameters a0A, a1A, a0B, and a1B are to be estimated. For example, if we assume that the detection history at site i is yi = {2,0,1,2} over J = 4 sampling occasions, i.e. the species was detected by monitoring program B only at sampling occasions j = 1 and j = 4, then went undetected at j = 2, and was detected by monitoring program A only at j = 3, then for singlevisit integrated occupancy we consider yi = {3} because both monitoring programs detected the species at site i. We ran a simulation study comparing the performance of single-vs. repeated-visit occupancy over different scenarios affecting occupancy, and detection probabilities (Appendix S1).

BOTTLENOSE DOLPHINS CASE STUDY

We aimed at estimating bottlenose dolphin (Tursiops truncatus) distribution in an area of 255,000 km 2 covering the North-Western Mediterranean. The protected status of this species within the French seas led to the development of specific programs to monitor Mediterranean bottlenose dolphins within the implementation of the European Marine Strategy Framework Directive (2008/56/EC; MSFD), which involve estimating common bottlenose dolphin distribution. We considered two large-scale monitoring programs about bottlenose dolphins.

We divided the study area in 4,356 contiguous pixel/grid-cells creating a 5'x5' Mardsen grid (WGS 84) that we used for all the occupancy models we considered. We used data from at-sea surveys over 21,464 km of the French continental shelf (456 grid-cells sampled, 10.46% of the total number of grid-cells). Observers performed monitoring aboard small sailing and motor boats to locate and photo-identify bottlenose dolphins all year long between 2013 and 2015 [START_REF] Labach | Distribution and abundance of bottlenose dolphin over the French Mediterranean continental shelf[END_REF]. At-sea surveys detected 129 distinct bottlenose dolphin groups located in 89 different grid-cells. At-sea surveys did not include planned repeated visits, some grid-cells have been visited once, and others have been visited 50 times. Then, using repeated-visits occupancy models to analyze the at-sea monitoring requires considering only the grid-cells sampled multiple times and hence to drop the data collected in grid-cells sampled only once.

Single-visit models enable us to include all data, even data collected in grid-cells that were surveyed only once, which make at-sea a relevant candidate for single-visit model implementation. Besides, we considered data collected during aerial line-transects covering 24,624 km of the French Exclusive Economic Zone (EEZ), targeting marine megafauna, and following a distance sampling protocol. The survey sampled 1336 grid-cells (i.e. 30.67% of the total number of grid-cells). Aerial surveys produced 130 distinct bottlenose dolphin detections located in 87 grid-cells. Sampling effort for aerial surveys was homogeneous over the study area with three or four replicates per line-transect between November 2011 and August 2012 [START_REF] Laran | Seasonal distribution and abundance of cetaceans within French waters-Part I: The North-Western Mediterranean, including the Pelagos sanctuary[END_REF]. Because we used occupancy models, we only considered detection/nodetection data, which lead to a binary 0/1 dataset. Hence, multiple sightings detected in the same groups were coded as 1. Thus, we obtain the two aerial and at-sea detection/no-detection datasets that we analyzed with occupancy models. An important assumption of single-season occupancy models is that the latent ecological state of a grid-cell (the zi's) remains unchanged between the repeated visits (MacKenzie 2006). When monitoring highly mobile species, such as cetaceans, the closure assumption is likely to be violated because individuals can move into and out of the sampling grid-cell. The size of the grid-cells is much lower than dolphins' range of activity. If individuals' movement in and out of the sampling units is random, then the occupancy estimator is unbiased [START_REF] Kendall | Relaxing the closure assumption in occupancy models: staggered arrival and departure times[END_REF]). However, it is unlikely the case for bottlenose dolphins because their use of space is driven by ecological and environmental factors, and occupied locations are used only temporarily by individuals (MacKenzie 2006; [START_REF] Neilson | Animal movement affects interpretation of occupancy models from camera-trap surveys of unmarked animals[END_REF]. Closure assumption is crucial to the interpretation of occupancy model's parameters. In cases where this assumption is known to be violated, the parameter is usually interpreted as the probability that a location is used by the species as opposed to probability of species presence. In this situation, the occupancy estimator Ψi represents the probability that grid-cell i is used by the target species [START_REF] Kendall | Relaxing the closure assumption in occupancy models: staggered arrival and departure times[END_REF], being interpreted as space-use by bottlenose dolphins. Occupancy and space-use refer to distinct ecological concepts. Occupancy describes the species home range that can be defined as the geographic range of occurrence, while space-use refers to the usage made by individuals of the different components of the home range (e.g. feeding locations, migratory routes, [START_REF] Johnson | The Comparison of Usage and Availability Measurements for Evaluating Resource Preference[END_REF]. Then, both single-visit and repeated-visits occupancy models infer the probability that a particular grid-cell is used by the species. The detection probability now accounts for both the probability of detecting the species given that the species is available for sampling, and the probability that the species is using the grid-cell during the sampling, reflecting that the species might occupy the grid-cell but not during the sampling occasion (MacKenzie 2006). As stated above, single-visit occupancy relaxed the closure assumption because the inference of the detection probability does not require site closure between the repeated visits. However, the interpretation of the occupancy parameter is still space-use in the case of bottlenose dolphins because our single-visit data is collected during multiple years and dolphin are expected to move in and out the sampling unit area during the sampling period.

Because at-sea and aerial surveys were performed during different years, we considered them as independent. In 2018, recent Mediterranean scale aerial monitoring program sampled French Mediterranean following the same line-transect protocol as the aerial dataset we analyzed (ACCOBAMS Survey Initative, 2018). Preliminary and unpublished results from the 2018 program estimated similar common bottlenose dolphin distribution to that of 2011-2012. Then, we assumed that space-use remained unchanged during the monitoring period (i.e. 2011 to 2015). Besides, we neglected the seasonal variation in the bottlenose dolphin space-use in this case study. Concerning the ecological process, we used two environmental covariates to estimate the space-use of bottlenose dolphins: i) bathymetry, which is expected to have a positive effect on bottlenose dolphins' occurrence [START_REF] Bearzi | Ecology and conservation of common bottlenose dolphins Tursiops truncatus in the Mediterranean Sea[END_REF][START_REF] Labach | Distribution and abundance of bottlenose dolphin over the French Mediterranean continental shelf[END_REF], and ii) sea surface temperature (SST, AQUA MODIS | NASA 2019, https://neo.sci.gsfc.nasa.gov/), which is locally related to dolphins' prey abundance and hence expected to affect local distribution of bottlenose dolphins [START_REF] Bearzi | Ecology and conservation of common bottlenose dolphins Tursiops truncatus in the Mediterranean Sea[END_REF]). We extracted average SST between 2011 and 2015 value in each grid-cell, making SST a cell-specific covariate. Similarly, bathymetry had a single value per grid-cell. We checked for correlation between the two covariates and the Pearson coefficient was < 0.3. Then, we modelled Ψ as a function of bathymetry, SST, and the interaction between bathymetry and SST on a logit scale:

logit(Ψi) = b0 + b1 bathymetryi + b2 SSTi + b3 bathymetryi SSTi
Regarding the observation process, we calculated the transect length (in km) prospected by each monitoring protocol within each grid-cell during a time period. Sampling effort was therefore a grid-cell-specific and time-specific covariate; SeffA refers to the sampling effort of the aerial monitoring program while SeffS refers to the sampling effort of the at-sea monitoring program.

We modeled monitoring-specific detection probabilities as functions of the relevant sampling effort: logit(pa) = a0 + a1 log(SeffA) logit(ps) = a0 + a1 log(SeffS).

Regarding the repeated-visit occupancy models, we divided the detection/non-detection datasets into four sampling occasions (J = 4): winter (January, February, March), spring (April, May, June), summer (July, August, September), autumn (October, November, December). For the single-visit occupancy models, we considered the entire monitoring program in a single occasion. For example, let us assume that the detection history at site i is yi= {0,1,1,0} in repeated-visit occupancy, i.e. the species was detected at sampling occasions j = 2 and j = 3, and went undetected at j = 1, and j = 4, then for single-visit occupancy we have yi= {1}. In addition, the single-visit sampling effort in a grid-cell was equal to the sum of the sampling effort over the 4 sampling occasions of the repeated-visit occupancy model.

Performances of integrated models

To assess the added value of combining aerial and at-sea datasets into integrated single-visit occupancy models, we analyzed 3 datasets: i) the aerial dataset, ii) the at-sea dataset, and iii) the two datasets together into an integrated occupancy model. For each of these datasets, we applied repeated-visit and single-visit occupancy models. Besides the case study, we also carried out a simulation study to test for the performances of integrated occupancy models (Appendix S2). In Appendix S5, we go through a worked example of the likelihood functions for single-visit, repeated-visit, integrated repeated-visit, and integrated single-visit occupancy models. In Appendix S4, we listed the modeling assumptions required to run the different occupancy models.

Bayesian implementation

We ran all models with three Markov Chain Monte Carlo chains with 100,000 iterations each in JAGS [START_REF] Plummer | JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling[END_REF] called from R (R Core Team, v 3.2.5 2019) using the r2jags package [START_REF] Su | R2jags: Using R to Run[END_REF]. We checked for convergence calculating the R-hat parameter [START_REF] Gelman | Bayesian data analysis[END_REF]) and reported posterior means and 95% credible intervals (CI) for each regression coefficient of covariates affecting space-use probability (Fig. 1). Hereafter, we considered effect size of a covariate as the estimate of its regression coefficient. We discussed the effect of a covariate whenever the 95% CI of its associated parameter did not include 0. From covariates' effect size, we calculated the predicted space-use by bottlenose dolphins (i.e. Ψ, Fig. 2). We reported maps of standard deviation of Ψ (Fig. 2B). On the maps, we displayed mean and standard deviation of Ψ for coastal and pelagic seas according to a 500m deep boundary that corresponds to the separation of continental shelf from the abysses. Data and codes are available on

Results

All models produced similar predictions of space used by bottlenose dolphins (Fig. 2).

The 95% CI of SST, and of the interaction between SST and bathymetry included 0 in all models (Fig. 1). The probability of space-use increased with decreasing bathymetry for all models (Fig. 1). Bathymetry ranges from altitude of 0 m to -3,488 m deep, hence a positive influence of bathymetry referred to a preference for a high seafloor (e.g. 0-200m depth).

Overall, maps showed greater probabilities of space-use on the continental shelf (mean Ψ = 0.76 SD ± 0.17) than on the high seas (mean Ψ = 0.40 SD ± 0.15), although magnitudes of Ψ were different between models (Fig. 2). Bathymetry posterior means were highest for at-sea occupancy (although the 95% CI of effect size included 0), which resulted in models using only at-sea survey data predicting the highest contrast between the continental shelf and the highseas. Bathymetry effect size was the lowest for aerial occupancy while maps from integrated occupancy models displayed moderate contrast of space-use between shelf and pelagic waters (Fig. 2). Single-visit occupancy models exhibited similar covariates estimates to those of repeated-visit occupancy models (Fig. 1). For aerial occupancy, we noticed similar space-use prediction between single-and repeated-visit (Fig. 2A). For at-sea, predicted space-use probabilities were different between single-visit and repeated-visit occupancy models (Fig. 2).

When considering the covariates' effect size (Fig. 1), the widths of the 95% CI were not smaller for integrated occupancy than for occupancy models using datasets in isolation.

However, when looking at the standard deviation of the predicted probability of space-use, integrated occupancy models had a better precision than aerial or at-sea occupancy models separately, (Fig. 2B). The use of integrated single-visit occupancy models also improved precision in predicted space-use compared to single-visit occupancy built from aerial and atsea datasets separately (Fig. 2B). Inspecting the simulation results, we found that 1) integrated occupancy models produced more precise estimates of covariates effect size than occupancy models fitted to a single dataset (Appendix S2), and 2) single-visit occupancy models produced similar results to repeated-visit occupancy models (Appendix S1).

Discussion

Integrated single-visit occupancy models provide reliable ecological inference

Ecological inference from integrated occupancy models lied within the range of the estimates obtained with each dataset separately (Fig. 1). Across all occupancy models, the effects of environmental covariates were similar and consistent with previous studies.

Bottlenose dolphins were more likely to use shallower seas [START_REF] Bearzi | Ecology and conservation of common bottlenose dolphins Tursiops truncatus in the Mediterranean Sea[END_REF][START_REF] Labach | Distribution and abundance of bottlenose dolphin over the French Mediterranean continental shelf[END_REF], and depth had a stronger effect than SST on the use of space by bottlenose dolphins [START_REF] Torres | Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity[END_REF]). However, we found variations among models in the estimation of the probability of space-use by dolphins (Fig. 1). In particular, at-sea occupancy models predicted that dolphins make little use of the pelagic seas compared to the continental shelf, while aerial occupancy models predict more homogeneous space-use between coasts and pelagic seas.

Aerial surveys detected several dolphin groups in the high depths while at-sea surveys detected none. Detecting offshores groups tempered the preference for low-depth seafloors in aerial occupancy models (Appendix S6). Besides, we recommend caution in interpreting predicted maps of space-use as predicted space-use was sensitive to the mean value of covariate effect size. Therefore, depth being the only covariate that affect space-use probability, maps of predicted space-use were mostly driven by bathymetry effect size, and did not account for precision associated with space-use prediction. Because depth posterior mean was similar between occupancy models, differences between predicted space-use maps do not provide a relevant illustration to compare occupancy models performances, nor they reflect the uncertainty associated with the occupancy models' estimates. To study the benefits of singlevisit and integrated occupancy models to accommodate existing ecological datasets, we emphasize standard deviation maps and the credible intervals of covariates effect size (Fig. 1-2B). Integrated occupancy models had a better precision in space-use than models using aerial or at-sea surveys separately (Fig. 2). This result was supported by our simulation study which demonstrates the better performance of integrated occupancy models at estimating covariate effect size compared to occupancy models from a single dataset (Appendix S2). Single-visit occupancy models gave similar estimates to those obtained with repeated-visit occupancy models, although repeated-visit occupancy models exhibited better precision (Fig. 1-2B), as well as in our simulations (Appendix S1). In the bottlenose dolphins case study, we considered two existing monitoring programs that were not initially designed for occupancy modeling. In the at-sea monitoring, repeated line-transects were not implemented, nor the high depths were sampled, which made at-sea occupancy unlikely to exhibit precise estimates at our spatial extent. The two datasets exhibit complementary characteristics. While aerial surveys covered a larger spatial scale than at-sea surveys, at-sea surveys exhibited a better detection rate.

Detection probability was greater for at-sea surveys (p = 0.18 SD ± 0.04) than for aerial surveys (p = 0.10 SD ± 0.03). Regarding the aerial dataset, the number of occurrences was low despite the important coverage of the monitoring design (i.e. bottlenose dolphins were detected in 6.5%

of sampled grid-cells), which might hinder the implementation of single-visit occupancy when the number of occurrences is less than 10% of the sampling units [START_REF] Peach | Single-visit dynamic occupancy models: an approach to account for imperfect detection with Atlas data[END_REF]. However, the at-sea dataset had occurrences in 19.5% of sampled units. Using integrated occupancy models enables to combine low-frequency occurrence data like the aerial dataset with another dataset to increase the amount of information about the ecological state process and helps mitigating the issue of low number of occurrences.

Ecological implications and perspectives

Overall, we illustrate that: i) Integrating datasets into occupancy models improves the precision of space-use estimates, and ii) Single-visit occupancy models can reliably accommodate the lack of repeated visits that occurs frequently. Integrated occupancy models produced more reliable estimates than occupancy models using datasets in isolation in both the bottlenose dolphin data analyzes and the simulations. Our finding on the bottlenose dolphins case study is a good illustration of the well-known benefit of combining datasets into integrated species distribution models to increase precision in ecological inference [START_REF] Fletcher | A practical guide for combining data to model species distributions[END_REF].

Some advanced developments of occupancy models allow combining datasets to estimate occupancy parameters at multiple spatial scales [START_REF] Nichols | Multi-scale occupancy estimation and modelling using multiple detection methods[END_REF][START_REF] Pavlacky | Hierarchical multi-scale occupancy estimation for monitoring wildlife populations[END_REF].

Besides, integrated occupancy modeling has also been used to evaluate ecological monitoring programs prior to their implementation (e.g., comparing capabilities of different detection devices, Otto & Roloff 2011;Haynes et al. 2013). Here, we emphasize the benefit of considering integrated methods combined with single-visit occupancy modeling after data collection. When the species of interest either occurs over a large spatial scale or is a highly mobile species (such as bottlenose dolphins), considering multiple sampling methods is effective to monitor the entire population making the most of each device [START_REF] Zipkin | Synthesizing multiple data types for biological conservation using integrated population models[END_REF]. In particular, integrating a large volume of data, such as those that can be leveraged through citizen-science programs or with dedicated NGOs over the years can make the most of ecological monitoring programs for the furthering of many applied situations [START_REF] Zipkin | Innovations in data integration for modeling populations[END_REF]). However, caution should be taken as integrating data is not always beneficial and requires additional modelling assumptions according to the particularity of each dataset ot include (Dupont et al., 2019;Farr et al., 2020;[START_REF] Fletcher | A practical guide for combining data to model species distributions[END_REF][START_REF] Simmonds | Is more data always better? A simulation study of benefits and limitations of integrated distribution models[END_REF].

Although repeated-visit occupancy models remain statistically more precise, there are benefits in using single-visit occupancy models. The ability of single-visit occupancy to relax the closure assumption is appealing, because this assumption is often incompatible with the behavior of mobile species and for numerous monitoring programs of animal populations [START_REF] Rota | Occupancy estimation and the closure assumption[END_REF][START_REF] Issaris | Occupancy estimation of marine species: dealing with imperfect detectability[END_REF][START_REF] Sólymos | Revisiting resource selection probability functions and single-visit methods: clarification and extensions[END_REF][START_REF] Lele | Dealing with detection error in site occupancy surveys: what can we do with a single survey[END_REF][START_REF] Kendall | Relaxing the closure assumption in occupancy models: staggered arrival and departure times[END_REF].

In this study, the closure assumption is unlikely to be valid for bottlenose dolphins over the time span of the two monitoring programs, because dolphins obviously would not remain into the same grid-cell. Besides, when financial or logistical costs are limited, implementing a single-visit monitoring design could provide robust ecological inference while explicitly accounting for imperfect species detection [START_REF] Lele | Dealing with detection error in site occupancy surveys: what can we do with a single survey[END_REF][START_REF] Dénes | Biome-scale signatures of land-use change on raptor abundance: insights from single-visit detectionbased models[END_REF]. Overall, increasing quantity and types of biodiversity data are becoming available [START_REF] Isaac | Data Integration for Large-Scale Models of Species Distributions[END_REF].

Numerous monitoring programs do not rely on protocols implementing repeated visits like, e.g., historical monitoring programs, or citizen science programs (Tingley andBeissinger 2009, Zipkin and[START_REF] Zipkin | Synthesizing multiple data types for biological conservation using integrated population models[END_REF]. Then, using single-visit occupancy models helps making efficient use of available data, which is of great interest in many ecological applications [START_REF] Nichols | Monitoring for conservation[END_REF]Williams 2006, Sólymos and[START_REF] Sólymos | Revisiting resource selection probability functions and single-visit methods: clarification and extensions[END_REF]. In this context, [START_REF] Miller | The recent past and promising future for data integration methods to estimate species' distributions[END_REF] encouraged further developments of methods mixing standardized and non-standardized datasets. To illustrate, we built an integrated occupancy model mixing repeated-visit occupancy models for aerial surveys and single-visit occupancy models for at-sea surveys (Appendix S3). One could also extend integrated occupancy models to more than two datasets. However, caution should be taken when integrating datasets, as combining different sources of information does not always outperform the analysis of single datasets in isolation (Lele andAllen 2006, Simmonds et al. 2020). The flexibility of occupancy models provided a relevant framework to combine monitoring programs and to accommodate different types of data collection. Integrated and single-visit occupancy models contribute to widen the scope of possibilities. We emphasize the usefulness of both integrated and single-visit approaches to deal with existing datasets. We anticipate that their combination into integrated single-visit approaches will be of most interest for many parties in ecological research.

Figure captions

Figure 1: Effect size of bathymetry, sea surface temperature (SST), and interaction between SST and bathymetry on the probability Ψ that a site is used by Bottlenose dolphins (Tursiops truncatus). The posterior mean is provided with the associated 95% credible interval. "SV" refers to single-visit occupancy models, "RV" to repeated visit occupancy models, and "IOM" stands for integrated occupancy models, in which aerial surveys and at-sea surveys are combined. Estimates are given on the logit scale. 
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data will be stored on the following permanent repository https://github.com/valentinlauret/IntegratedSingleVisitOccupancy

Data S1, and on GitHub at https://github.com/valentinlauret/IntegratedSingleVisitOccupancy.