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Abstract 20 

 A major challenge in statistical ecology consists of integrating knowledge from different 21 

datasets to produce robust ecological indicators. To estimate species distribution, occupancy 22 

models are a flexible framework that can accommodate several datasets obtained from different 23 

sampling methods. However, repeating visits at sampling sites is a prerequisite for using 24 

standard occupancy models. Occupancy models were recently developed to analyze 25 

detection/non-detection data collected during a single visit. To date, single-visit occupancy 26 

models have never been used to integrate several different datasets. Here, we showcase an 27 

approach that combines two datasets into an integrated single-visit occupancy model. As a case 28 

study, we estimated the distribution of common bottlenose dolphin (Tursiops truncatus) over 29 

the North-western Mediterranean Sea by combining 24,624 km of aerial surveys and 21,464 30 

km of at-sea monitoring. We compared the outputs of single- vs. repeated-visit occupancy 31 

models into integrated occupancy models. Integrated models allowed a better sampling 32 

coverage of the targeted population, which provided a better precision for occupancy estimates 33 

than occupancy models using datasets in isolation. Overall, single- and repeated-visit integrated 34 

occupancy models produced similar inference about the distribution of bottlenose dolphins. We 35 

suggest that single-visit occupancy models open promising perspectives for the use of existing 36 

ecological datasets. 37 

Keywords 38 

Bottlenose dolphins, Ecological monitoring, Integrated species distribution models, Multi-39 

method, Occupancy models, Single-visit 40 

Introduction 41 

 In large-scale ecological analysis, several parallel monitoring programs are often carried 42 

out to collect ecological data (Zipkin and Saunders 2018). Ecological monitoring programs are 43 

conducted by organizations operating across different time scales, geographic scales and 44 
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funding initiatives (Lindenmayer and Likens 2010). A major challenge is integrating 45 

knowledge from different monitoring programs to produce robust ecological indicators that 46 

may be used to inform decision-making (Fletcher et al. 2019, Zipkin et al. 2021). Recently, 47 

modelling tools have emerged to combine multiple data sources to estimate species 48 

distributions and Integrated models refer to the approaches that combine different data sources 49 

(Miller et al. 2019, Isaac et al. 2019). The main purpose of integrated models is to improve the 50 

accuracy of ecological indicators (Fletcher et al. 2019, Zipkin et al. 2019). Species distributed 51 

over large areas could particularly benefit from integrated models because they allow for a 52 

global coverage of species occurrence by combining different data sources collected at different 53 

spatial scales (Miller et al. 2019). To estimate species distribution in the face of uncertainties 54 

inherent to data collection, occupancy models are commonly used statistical tools (Mackenzie 55 

et al., 2002). Occupancy models have been developed to estimate species distribution while 56 

accounting for false negatives in the observation process (Mackenzie et al. 2002). Estimating 57 

occupancy when species detection is not perfect requires performing repeated visits to a set of 58 

sites to assess the detection probability (MacKenzie 2006). However, repeating visits is 59 

sometimes unfeasible due to associated costs and logistical issues. In this context, two relevant 60 

developments of occupancy models have been recently proposed. First, integrated occupancy 61 

models combine data from different monitoring programs to improve the estimation of species 62 

distribution (Nichols et al. 2008, Miller et al. 2019, Fletcher et al. 2019). Second, Lele et al., 63 

(2012) used occupancy models to estimate species distribution and detectability while having 64 

only one visit at the sampling site, i.e. hereafter single-visit occupancy models. An increasing 65 

number of studies suggest that under certain conditions, single-visit models produce robust 66 

estimates of occupancy without repeating visits at the sampling sites (Lele et al. 2012, Sólymos 67 

and Lele 2016, Peach et al. 2017). Besides, single-visit occupancy offers the possibility to work 68 

with existing datasets that did not carry out repeated visits, which is relevant to population 69 
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biology and management. In this paper, we develop an integrated approach that combines two 70 

single-visit occupancy models and demonstrate that combining several datasets into integrated 71 

single-visit occupancy models leads to accurate ecological parameter estimation. We also 72 

investigate the performance of single-visit vs. repeated-visit occupancy models. As a case 73 

study, we focused on the distribution of Bottlenose dolphins (Tursiops truncatus) in the North-74 

Western Mediterranean Sea. We combined aerial surveys and at-sea monitoring into integrated 75 

occupancy models and we compared the outputs of integrated occupancy models to occupancy 76 

models using each dataset in isolation. Last, we discuss the advantages of integrated single-77 

visit occupancy models to deal with existing ecological monitoring programs. 78 

Methods 79 

MODEL DESCRIPTION 80 

Latent ecological process 81 

Occupancy models estimate spatial distribution while accounting for imperfect species 82 

detection (Mackenzie et al. 2002). The formulation of occupancy models as state-space models 83 

allows distinguishing the latent ecological state process (i.e. species present or absent at a grid-84 

cell) from the detection process (Royle and Kéry 2007). We denote zi the latent occupancy of 85 

grid-cell i (z = 1, presence; z = 0, absence). We assume zi is drawn from a Bernoulli distribution 86 

with Ψi the probability that the species is present at grid-cell i:  87 

zi ~ Bernoulli(Ψi) 88 

We modelled Ψ as a function of some environmental covariate on a logit scale, say habitat. 89 

logit(Ψi) = b0 + b1 habitati where parameters b0, and b1 are to be estimated. 90 

Repeated-visit observation process 91 

  In standard occupancy designs, each grid-cell is visited J times to estimate the detection 92 

probability. We denote yi,j (yi,j = 0, no detection ; yi,j = 1, detection) the observations 93 

corresponding to the data collected at grid-cell i during visit j (j =1,..,J). Repeating visits at a 94 
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grid-cell allows estimating species detectability, with pi,j being the probability of detecting the 95 

species at visit j given it is present at grid-cell i:  96 

yi,j | zi  ~ Bernoulli(zi pi,j) 97 

 Single-visit observation process 98 

 The difference with repeated-visit occupancy models lies in the number of sampling 99 

occasions which is J = 1 in single-visit occupancy models. The j subscript is dropped and we 100 

denoted yi the observation corresponding to the data collected at site i. Subsequently, pi is the 101 

probability of detecting the species during the single visit given it is present at site i: yi | zi  ~ 102 

Bernoulli(zi pi). Single-visit occupancy models require certain conditions to be fulfilled for 103 

estimating detection probabilities reliably. First, different continuous covariates should be used 104 

to estimate detection and occupancy probabilities (Lele et al. 2012, Peach et al. 2017). Second, 105 

the number of detections may affect the estimation of occupancy in the case of rare or 106 

ubiquitous species (Peach et al. 2017). Third, the use of inappropriate link functions to model 107 

the detection process may lead to model misspecification and biased interpretation (e.g. log-108 

link and scaled logit link function on detection, Knape & Korner‐Nievergelt, 2015). However, 109 

most often, the logit link function is used for detection, which makes the single-visit approach 110 

valid (Sólymos and Lele 2016). Despite these concerns, simulation studies have showed that 111 

situations where single-visit occupancy models fail are rare (Sólymos and Lele 2016, Peach et 112 

al. 2017) and, in practice, the conditions for a valid application of single-visit occupancy models 113 

are often fulfilled (Sólymos and Lele 2016). We detailed the modeling assumptions of single-114 

visit occupancy models in Appendix S4. Because the number of detections is an important 115 

condition to accurately estimate single-visit occupancy parameters (Peach et al. 2017), we 116 

expect that integrated approaches will be beneficial to single-visit occupancy modelling by 117 

increasing the number of detections (true occupancy) available. 118 

Integrated occupancy models 119 
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 We developed an integrated occupancy model using data from two independent 120 

monitoring programs, say A and B. The state process driving the latent occupancy state of site 121 

i, zi, remains unchanged and is drawn from a Bernoulli distribution with probability y, which 122 

is modeled as a function of environmental covariates. The observation of the targeted species 123 

at site i during occasion j may take four values with yi,j = 0 for no detection, yi,j = 1 for detection 124 

in dataset A, yi,j  = 2 for detection in dataset B, and yi,j = 3 for detection in both datasets A and 125 

B. For convenience, we drop the subscripts in the notation as the formulation of the integrated 126 

observation process is identical whether we consider single-visit occupancy (i.e. J = 1) or 127 

repeated-visit occupancy (J > 1). Assuming that detection methods are independent, the 128 

observation process can be written using detection probability by the monitoring program A 129 

(pA) and detection probability by the monitoring program B (pB): 130 

𝑦|𝑧~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑧𝜋) with 131 

𝜋 = [𝑝!, 𝑝", 𝑝#, 𝑝$] = [𝑝𝑟(𝑦 = 0), 𝑝𝑟(𝑦 = 1), 𝑝𝑟(𝑦 = 2), 𝑝𝑟(𝑦 = 3)] 132 

𝜋 = [1 − 𝑝% − 𝑝& + 𝑝%𝑝& , 𝑝%(1 − 𝑝&), 𝑝&(1 − 𝑝%), 𝑝%𝑝&] 133 

We modeled monitoring-specific detection probabilities as functions of the sampling effort of 134 

each monitoring program: 135 

logit(pA) = a0A + a1A  log(SeffA) 136 

logit(pB) = a0B + a1B  log(SeffB). 137 

where the parameters a0A, a1A, a0B, and a1B are to be estimated. For example, if we assume 138 

that the detection history at site i is yi = {2,0,1,2} over J = 4 sampling occasions, i.e. the species 139 

was detected by monitoring program B only at sampling occasions j = 1 and j = 4, then went 140 

undetected at j = 2, and was detected by monitoring program A only at j = 3, then for single-141 

visit integrated occupancy we consider yi = {3} because both monitoring programs detected the 142 

species at site i.  We ran a simulation study comparing the performance of single- vs. repeated-143 
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visit occupancy over different scenarios affecting occupancy, and detection probabilities 144 

(Appendix S1). 145 

BOTTLENOSE DOLPHINS CASE STUDY 146 

 We aimed at estimating bottlenose dolphin (Tursiops truncatus) distribution in an area 147 

of 255,000 km2 covering the North-Western Mediterranean. The protected status of this species 148 

within the French seas led to the development of specific programs to monitor Mediterranean 149 

bottlenose dolphins within the implementation of the European Marine Strategy Framework 150 

Directive (2008/56/EC; MSFD), which involve estimating common bottlenose dolphin 151 

distribution. We considered two large-scale monitoring programs about bottlenose dolphins. 152 

We divided the study area in 4,356 contiguous pixel/grid-cells creating a 5’x5’ Mardsen grid 153 

(WGS 84) that we used for all the occupancy models we considered. We used data from at-sea 154 

surveys over 21,464 km of the French continental shelf (456 grid-cells sampled, 10.46% of the 155 

total number of grid-cells). Observers performed monitoring aboard small sailing and motor 156 

boats to locate and photo-identify bottlenose dolphins all year long between 2013 and 2015 157 

(Labach et al. 2019). At-sea surveys detected 129 distinct bottlenose dolphin groups located in 158 

89 different grid-cells. At-sea surveys did not include planned repeated visits, some grid-cells 159 

have been visited once, and others have been visited 50 times. Then, using repeated-visits 160 

occupancy models to analyze the at-sea monitoring requires considering only the grid-cells 161 

sampled multiple times and hence to drop the data collected in grid-cells sampled only once. 162 

Single-visit models enable us to include all data, even data collected in grid-cells that were 163 

surveyed only once, which make at-sea a relevant candidate for single-visit model 164 

implementation. Besides, we considered data collected during aerial line-transects covering 165 

24,624 km of the French Exclusive Economic Zone (EEZ), targeting marine megafauna, and 166 

following a distance sampling protocol. The survey sampled 1336 grid-cells (i.e. 30.67% of the 167 

total number of grid-cells). Aerial surveys produced 130 distinct bottlenose dolphin detections 168 



 8 

located in 87 grid-cells. Sampling effort for aerial surveys was homogeneous over the study 169 

area with three or four replicates per line-transect between November 2011 and August 2012 170 

(Laran et al., 2017). Because we used occupancy models, we only considered detection/no-171 

detection data, which lead to a binary 0/1 dataset. Hence, multiple sightings detected in the 172 

same groups were coded as 1. Thus, we obtain the two aerial and at-sea detection/no-detection 173 

datasets that we analyzed with occupancy models. An important assumption of single-season 174 

occupancy models is that the latent ecological state of a grid-cell (the zi’s) remains unchanged 175 

between the repeated visits (MacKenzie 2006). When monitoring highly mobile species, such 176 

as cetaceans, the closure assumption is likely to be violated because individuals can move into 177 

and out of the sampling grid-cell. The size of the grid-cells is much lower than dolphins’ range 178 

of activity. If individuals’ movement in and out of the sampling units is random, then the 179 

occupancy estimator is unbiased (Kendall et al. 2013). However, it is unlikely the case for 180 

bottlenose dolphins because their use of space is driven by ecological and environmental 181 

factors, and occupied locations are used only temporarily by individuals (MacKenzie 2006; 182 

Neilson et al. 2018). Closure assumption is crucial to the interpretation of occupancy model’s 183 

parameters. In cases where this assumption is known to be violated, the parameter is usually 184 

interpreted as the probability that a location is used by the species as opposed to probability of 185 

species presence. In this situation, the occupancy estimator Ψi represents the probability that 186 

grid-cell i is used by the target species (Kendall et al. 2013), being interpreted as space-use by 187 

bottlenose dolphins. Occupancy and space-use refer to distinct ecological concepts. Occupancy 188 

describes the species home range that can be defined as the geographic range of occurrence, 189 

while space-use refers to the usage made by individuals of the different components of the home 190 

range (e.g. feeding locations, migratory routes, Johnson 1980). Then, both single-visit and 191 

repeated-visits occupancy models infer the probability that a particular grid-cell is used by the 192 

species. The detection probability now accounts for both the probability of detecting the species 193 
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given that the species is available for sampling, and the probability that the species is using the 194 

grid-cell during the sampling, reflecting that the species might occupy the grid-cell but not 195 

during the sampling occasion (MacKenzie 2006). As stated above, single-visit occupancy 196 

relaxed the closure assumption because the inference of the detection probability does not 197 

require site closure between the repeated visits. However, the interpretation of the occupancy 198 

parameter is still space-use in the case of bottlenose dolphins because our single-visit data is 199 

collected during multiple years and dolphin are expected to move in and out the sampling unit 200 

area during the sampling period. 201 

Because at-sea and aerial surveys were performed during different years, we considered them 202 

as independent. In 2018, recent Mediterranean scale aerial monitoring program sampled French 203 

Mediterranean following the same line-transect protocol as the aerial dataset we analyzed 204 

(ACCOBAMS Survey Initative, 2018). Preliminary and unpublished results from the 2018 205 

program estimated similar common bottlenose dolphin distribution to that of 2011-2012. Then, 206 

we assumed that space-use remained unchanged during the monitoring period (i.e. 2011 to 207 

2015). Besides, we neglected the seasonal variation in the bottlenose dolphin space-use in this 208 

case study. Concerning the ecological process, we used two environmental covariates to 209 

estimate the space-use of bottlenose dolphins: i) bathymetry, which is expected to have a 210 

positive effect on bottlenose dolphins’ occurrence (Bearzi et al. 2009, Labach et al. 2019), and 211 

ii) sea surface temperature (SST, AQUA MODIS | NASA 2019, https://neo.sci.gsfc.nasa.gov/), 212 

which is locally related to dolphins’ prey abundance and hence expected to affect local 213 

distribution of bottlenose dolphins (Bearzi et al. 2009). We extracted average SST between 214 

2011 and 2015 value in each grid-cell, making SST a cell-specific covariate. Similarly, 215 

bathymetry had a single value per grid-cell. We checked for correlation between the two 216 

covariates and the Pearson coefficient was < 0.3. Then, we modelled Ψ as a function of 217 

bathymetry, SST, and the interaction between bathymetry and SST on a logit scale: 218 
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logit(Ψi) = b0 + b1 bathymetryi + b2 SSTi + b3 bathymetryi SSTi 219 

Regarding the observation process, we calculated the transect length (in km) prospected by each 220 

monitoring protocol within each grid-cell during a time period. Sampling effort was therefore 221 

a grid-cell-specific and time-specific covariate; SeffA refers to the sampling effort of the aerial 222 

monitoring program while SeffS  refers to the  sampling effort of the at-sea monitoring program. 223 

We modeled monitoring-specific detection probabilities as functions of the relevant sampling 224 

effort:  225 

logit(pa) = a0 + a1  log(SeffA) 226 

logit(ps) = a0 + a1  log(SeffS). 227 

Regarding the repeated-visit occupancy models, we divided the detection/non-detection 228 

datasets into four sampling occasions (J = 4): winter (January, February, March), spring (April, 229 

May, June), summer (July, August, September), autumn (October, November, December). For 230 

the single-visit occupancy models, we considered the entire monitoring program in a single 231 

occasion. For example, let us assume that the detection history at site i is yi= {0,1,1,0} in 232 

repeated-visit occupancy, i.e. the species was detected at sampling occasions j = 2 and j = 3, 233 

and went undetected at j = 1, and j = 4, then for single-visit occupancy we have yi= {1}. In 234 

addition, the single-visit sampling effort in a grid-cell was equal to the sum of the sampling 235 

effort over the 4 sampling occasions of the repeated-visit occupancy model. 236 

 Performances of integrated models 237 

To assess the added value of combining aerial and at-sea datasets into integrated single-visit 238 

occupancy models, we analyzed 3 datasets: i) the aerial dataset, ii) the at-sea dataset, and iii) 239 

the two datasets together into an integrated occupancy model. For each of these datasets, we 240 

applied repeated-visit and single-visit occupancy models. Besides the case study, we also 241 

carried out a simulation study to test for the performances of integrated occupancy models 242 

(Appendix S2). In Appendix S5, we go through a worked example of the likelihood functions 243 
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for single-visit, repeated-visit, integrated repeated-visit, and integrated single-visit occupancy 244 

models. In Appendix S4, we listed the modeling assumptions required to run the different 245 

occupancy models. 246 

 Bayesian implementation  247 

 We ran all models with three Markov Chain Monte Carlo chains with 100,000 iterations 248 

each in JAGS (Plummer and others 2003) called from R (R Core Team, v 3.2.5 2019) using the 249 

r2jags package (Su and Yajima 2015). We checked for convergence calculating the R-hat 250 

parameter (Gelman et al. 2013) and reported posterior means and 95% credible intervals (CI) 251 

for each regression coefficient of covariates affecting space-use probability (Fig. 1). Hereafter, 252 

we considered effect size of a covariate as the estimate of its regression coefficient. We 253 

discussed the effect of a covariate whenever the 95% CI of its associated parameter did not 254 

include 0. From covariates’ effect size, we calculated the predicted space-use by bottlenose 255 

dolphins (i.e. Ψ, Fig. 2). We reported maps of standard deviation of Ψ (Fig. 2B). On the maps, 256 

we displayed mean and standard deviation of Ψ for coastal and pelagic seas according to a 500m 257 

deep boundary that corresponds to the separation of continental shelf from the abysses. Data 258 

and codes are available on Data S1, and on GitHub at 259 

https://github.com/valentinlauret/IntegratedSingleVisitOccupancy. 260 

Results 261 

All models produced similar predictions of space used by bottlenose dolphins (Fig. 2). 262 

The 95% CI of SST, and of the interaction between SST and bathymetry included 0 in all 263 

models (Fig. 1). The probability of space-use increased with decreasing bathymetry for all 264 

models (Fig. 1). Bathymetry ranges from altitude of 0 m to -3,488 m deep, hence a positive 265 

influence of bathymetry referred to a preference for a high seafloor (e.g. 0-200m depth). 266 

Overall, maps showed greater probabilities of space-use on the continental shelf (mean Ψ = 267 

0.76 SD ± 0.17) than on the high seas (mean Ψ = 0.40 SD ± 0.15), although magnitudes of Ψ 268 
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were different between models (Fig. 2). Bathymetry posterior means were highest for at-sea 269 

occupancy (although the 95% CI of effect size included 0), which resulted in models using only 270 

at-sea survey data predicting the highest contrast between the continental shelf and the high-271 

seas. Bathymetry effect size was the lowest for aerial occupancy while maps from integrated 272 

occupancy models displayed moderate contrast of space-use between shelf and pelagic waters 273 

(Fig. 2). Single-visit occupancy models exhibited similar covariates estimates to those of 274 

repeated-visit occupancy models (Fig. 1). For aerial occupancy, we noticed similar space-use 275 

prediction between single- and repeated-visit (Fig. 2A). For at-sea, predicted space-use 276 

probabilities were different between single-visit and repeated-visit occupancy models (Fig. 2).  277 

When considering the covariates’ effect size (Fig. 1), the widths of the 95% CI were not 278 

smaller for integrated occupancy than for occupancy models using datasets in isolation. 279 

However, when looking at the standard deviation of the predicted probability of space-use, 280 

integrated occupancy models had a better precision than aerial or at-sea occupancy models 281 

separately, (Fig. 2B). The use of integrated single-visit occupancy models also improved 282 

precision in predicted space-use compared to single-visit occupancy built from aerial and at-283 

sea datasets separately (Fig.2B). Inspecting the simulation results, we found that 1) integrated 284 

occupancy models produced more precise estimates of covariates effect size than occupancy 285 

models fitted to a single dataset (Appendix S2), and 2) single-visit occupancy models produced 286 

similar results to repeated-visit occupancy models (Appendix S1). 287 

Discussion  288 

Integrated single-visit occupancy models provide reliable ecological inference  289 

 Ecological inference from integrated occupancy models lied within the range of the 290 

estimates obtained with each dataset separately (Fig. 1). Across all occupancy models, the 291 

effects of environmental covariates were similar and consistent with previous studies. 292 

Bottlenose dolphins were more likely to use shallower seas (Bearzi et al. 2009, Labach et al. 293 
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2019), and depth had a stronger effect than SST on the use of space by bottlenose dolphins 294 

(Torres et al. 2008). However, we found variations among models in the estimation of the 295 

probability of space-use by dolphins (Fig. 1). In particular, at-sea occupancy models predicted 296 

that dolphins make little use of the pelagic seas compared to the continental shelf, while aerial 297 

occupancy models predict more homogeneous space-use between coasts and pelagic seas. 298 

Aerial surveys detected several dolphin groups in the high depths while at-sea surveys detected 299 

none. Detecting offshores groups tempered the preference for low-depth seafloors in aerial 300 

occupancy models (Appendix S6). Besides, we recommend caution in interpreting predicted 301 

maps of space-use as predicted space-use was sensitive to the mean value of covariate effect 302 

size. Therefore, depth being the only covariate that affect space-use probability, maps of 303 

predicted space-use were mostly driven by bathymetry effect size, and did not account for 304 

precision associated with space-use prediction. Because depth posterior mean was similar 305 

between occupancy models, differences between predicted space-use maps do not provide a 306 

relevant illustration to compare occupancy models performances, nor they reflect the 307 

uncertainty associated with the occupancy models’ estimates. To study the benefits of single-308 

visit and integrated occupancy models to accommodate existing ecological datasets, we 309 

emphasize standard deviation maps and the credible intervals of covariates effect size (Fig. 1-310 

2B). Integrated occupancy models had a better precision in space-use than models using aerial 311 

or at-sea surveys separately (Fig. 2). This result was supported by our simulation study which 312 

demonstrates the better performance of integrated occupancy models at estimating covariate 313 

effect size compared to occupancy models from a single dataset (Appendix S2). Single-visit 314 

occupancy models gave similar estimates to those obtained with repeated-visit occupancy 315 

models, although repeated-visit occupancy models exhibited better precision (Fig. 1-2B), as 316 

well as in our simulations (Appendix S1). In the bottlenose dolphins case study, we considered 317 

two existing monitoring programs that were not initially designed for occupancy modeling. In 318 
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the at-sea monitoring, repeated line-transects were not implemented, nor the high depths were 319 

sampled, which made at-sea occupancy unlikely to exhibit precise estimates at our spatial 320 

extent. The two datasets exhibit complementary characteristics. While aerial surveys covered a 321 

larger spatial scale than at-sea surveys, at-sea surveys exhibited a better detection rate. 322 

Detection probability was greater for at-sea surveys (p = 0.18 SD ± 0.04) than for aerial surveys 323 

(p = 0.10 SD ± 0.03). Regarding the aerial dataset, the number of occurrences was low despite 324 

the important coverage of the monitoring design (i.e. bottlenose dolphins were detected in 6.5% 325 

of sampled grid-cells), which might hinder the implementation of single-visit occupancy when 326 

the number of occurrences is less than 10% of the sampling units (Peach et al. 2017). However, 327 

the at-sea dataset had occurrences in 19.5% of sampled units. Using integrated occupancy 328 

models enables to combine low-frequency occurrence data like the aerial dataset with another 329 

dataset to increase the amount of information about the ecological state process and helps 330 

mitigating the issue of low number of occurrences. 331 

Ecological implications and perspectives 332 

Overall, we illustrate that: i) Integrating datasets into occupancy models improves the 333 

precision of space-use estimates, and ii) Single-visit occupancy models can reliably 334 

accommodate the lack of repeated visits that occurs frequently. Integrated occupancy models 335 

produced more reliable estimates than occupancy models using datasets in isolation in both the 336 

bottlenose dolphin data analyzes and the simulations. Our finding on the bottlenose dolphins 337 

case study is a good illustration of the well-known benefit of combining datasets into integrated 338 

species distribution models to increase precision in ecological inference (Fletcher et al. 2019). 339 

Some advanced developments of occupancy models allow combining datasets to estimate 340 

occupancy parameters at multiple spatial scales (Nichols et al. 2008, Pavlacky et al. 2012). 341 

Besides, integrated occupancy modeling has also been used to evaluate ecological monitoring 342 

programs prior to their implementation (e.g., comparing capabilities of different detection 343 
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devices, Otto & Roloff 2011; Haynes et al. 2013). Here, we emphasize the benefit of 344 

considering integrated methods combined with single-visit occupancy modeling after data 345 

collection. When the species of interest either occurs over a large spatial scale or is a highly 346 

mobile species (such as bottlenose dolphins), considering multiple sampling methods is 347 

effective to monitor the entire population making the most of each device (Zipkin and Saunders 348 

2018).  In particular, integrating a large volume of data, such as those that can be leveraged 349 

through citizen-science programs or with dedicated NGOs over the years can make the most of 350 

ecological monitoring programs for the furthering of many applied situations (Zipkin et al. 351 

2019). However, caution should be taken as integrating data is not always beneficial and 352 

requires additional modelling assumptions according to the particularity of each dataset ot 353 

include (Dupont et al., 2019; Farr et al., 2020; Fletcher et al., 2019; Simmonds et al., 2020). 354 

Although repeated-visit occupancy models remain statistically more precise, there are benefits 355 

in using single-visit occupancy models. The ability of single-visit occupancy to relax the 356 

closure assumption is appealing, because this assumption is often incompatible with the 357 

behavior of mobile species and for numerous monitoring programs of animal populations (Rota 358 

et al. 2009, Issaris et al. 2012, Sólymos and Lele 2016, Lele et al. 2012, Kendall et al. 2013). 359 

In this study, the closure assumption is unlikely to be valid for bottlenose dolphins over the 360 

time span of the two monitoring programs, because dolphins obviously would not remain into 361 

the same grid-cell. Besides, when financial or logistical costs are limited, implementing a 362 

single-visit monitoring design could provide robust ecological inference while explicitly 363 

accounting for imperfect species detection (Lele et al. 2012, Dénes et al. 2017). Overall, 364 

increasing quantity and types of biodiversity data are becoming available (Isaac et al. 2019). 365 

Numerous monitoring programs do not rely on protocols implementing repeated visits like, e.g., 366 

historical monitoring programs, or citizen science programs (Tingley and Beissinger 2009, 367 

Zipkin and Saunders 2018). Then, using single-visit occupancy models helps making efficient 368 
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use of available data, which is of great interest in many ecological applications (Nichols and 369 

Williams 2006, Sólymos and Lele 2016). In this context, Miller et al. (2019) encouraged further 370 

developments of methods mixing standardized and non-standardized datasets. To illustrate, we 371 

built an integrated occupancy model mixing repeated-visit occupancy models for aerial surveys 372 

and single-visit occupancy models for at-sea surveys (Appendix S3). One could also extend 373 

integrated occupancy models to more than two datasets. However, caution should be taken 374 

when integrating datasets, as combining different sources of information does not always 375 

outperform the analysis of single datasets in isolation (Lele and Allen 2006, Simmonds et al. 376 

2020). The flexibility of occupancy models provided a relevant framework to combine 377 

monitoring programs and to accommodate different types of data collection. Integrated and 378 

single-visit occupancy models contribute to widen the scope of possibilities. We emphasize the 379 

usefulness of both integrated and single-visit approaches to deal with existing datasets. We 380 

anticipate that their combination into integrated single-visit approaches will be of most interest 381 

for many parties in ecological research.  382 
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 488 

Figure captions 489 

Figure 1: Effect size of bathymetry, sea surface temperature (SST), and interaction between 490 

SST and bathymetry on the probability Ψ that a site is used by Bottlenose dolphins (Tursiops 491 

truncatus). The posterior mean is provided with the associated 95% credible interval. “SV” 492 

refers to single-visit occupancy models, “RV” to repeated visit occupancy models, and “IOM” 493 

stands for integrated occupancy models, in which aerial surveys and at-sea surveys are 494 

combined. Estimates are given on the logit scale.  495 

 496 

Figure 2: A. Probability of predicted space-use by Bottlenose dolphins (Tursiops 497 

truncatus) over the NW Mediterranean Sea. Using the posterior mean of covariates effect 498 

size, we estimated the probability that a grid-cell was used by bottlenose dolphins. For each 499 

occupancy model, we added the mean space-use probability (Ψ) for coasts (bathymetry < 500 500 

m) and pelagic seas (bathymetry > 500 m) 501 

B. Standard deviation of predicted space-use. Using the posterior standard deviation of 502 

covariates effect size, we estimated the standard deviation associated with the space-use 503 

probability. For each occupancy model, we added the mean standard-deviation (sd) associated 504 

with Ψ for coasts (bathymetry < 500 m) and pelagic seas (bathymetry > 500 m). 505 

“IOM” stands for integrated occupancy models, in which aerial surveys and at-sea surveys are 506 

combined. Repeated-visit occupancy maps refer to occupancy models with 4 sampling 507 

occasions. Single-visit maps refer to occupancy models considering 1 sampling occasion. 508 

 509 
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