Strongly Aperiodic SFTs on Generalized Baumslag-Solitar groups - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Strongly Aperiodic SFTs on Generalized Baumslag-Solitar groups

Résumé

We look at constructions of aperiodic SFTs on fundamental groups of graph of groups. In particular, we prove that all generalized Baumslag-Solitar groups (GBS) admit a strongly aperiodic SFT. Our proof is based on first a structural theorem by Whyte and second two constructions of strongly aperiodic SFTs on $\mathbb{F}_n\times \mathbb{Z}$ and $BS(m,n)$ of our own. Our two constructions rely on a path-folding technique that lifts an SFT on $\mathbb{Z}^2$ inside an SFT on $\mathbb{F}_n\times \mathbb{Z}$ or an SFT on the hyperbolic plane inside an SFT on $BS(m,n)$. In the case of $ \mathbb{F}_n\times \mathbb{Z}$ the path folding technique also preserves minimality, so that we get minimal strongly aperiodic SFTs on unimodular GBS.
Fichier principal
Vignette du fichier
article.pdf (334.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03649781 , version 1 (22-04-2022)

Identifiants

  • HAL Id : hal-03649781 , version 1

Citer

Nathalie Aubrun, Nicolás Bitar, Sacha Huriot-Tattegrain. Strongly Aperiodic SFTs on Generalized Baumslag-Solitar groups. 2022. ⟨hal-03649781⟩
101 Consultations
94 Téléchargements

Partager

More