TEAMAero

Towards Effective Flow Control and Mitigation of Shock Effects In Aeronautical Applications

Workshops/Training schools: Turbulence Modelling for Unsteady Aerodynamic Flows with SBLI (SC4) Unsteady CFD simulations for Active Flow Control

<u>A. Marouf</u>, H. Truong, J. B. Vos, D. Charbonnier, A. Gehri, Y, Hoarau and M. Braza ICUBE laboratory, University of Strasbourg, France CFS Engineering, EPFL, Lausanne, Switzerland IMFT, Toulouse, France 08 March 2022

Towards Effective Flow Control and Mitigation of Shock Effects in Aeronautical Applications

Introduction

Numerical methods

> NSMB solver, Chimera grid

Results

- Steady blowing
- Pulsed blowing
- > 2D/3D Blowing-suction (ZNMF)
- > Next Civil Generation Tilt-Rotor aircraft

2

Unsteady CFD simulations for Active Flow Control

Introduction

- Numerical methods
 - > NSMB solver, Chimera grid

Results

- > Steady blowing
- Pulsed blowing
- > 2D/3D Blowing-suction (ZNMF)
- Next Civil Generation Tilt-Rotor aircraft

ICUBE

Introduction

 Experimental research of the synthetic jet generator designs based on actuation of diaphragm with piezoelectric actuator

R. Rimasauskiene et al. 2014

Fig. 5. Experimental equipment: (a) piezoelectric diaphragm fixed in the chamber of the synthetic jet generator; (b) synthetic jet generator with 1 orifice; (c) synthetic jet generator with 3 orifices.

Introduction

Design and Optimization of Piezoceramic Zero-Net Mass-Flux Actuators Matias A. Oyarzun1 and Louis Cattafesta2 Lumped element modeling

Oscillating Piezoelectric Diaphragm

Figure 1: Schematic and equivalent circuit representation of typical ZNMF actuator.¹¹

5 Figure 3: Schematic of dual-cavity actuator and equivalent circuit representation.

Figure 22: Exploded view of dual-cavity actuator

Introduction

Piezo actuators used in Active Flow Control

Synthetic jets by piezoelectric actuators

- orifice shape: slots with dimensions 0.67mm*30mm;
- blowing angle: 45° with respect to local wall tangent;
- Peak velocity: 80 m/s;
- Frequency bandwidth: 200 Hz.

Fluidic actuator characterization

• Supersonic jet up 300m/s

6

Figure 12 - Pulsed jet actuator (global view, leftt: detailed view of the orifices)

Figure 15 - Excitation voltage signal (in black) and hot-wire velocity signals for various frequencies at a supply pressure of 2.7 bars (red: 100 Hz, green: 300 Hz, blue: 500 Hz, purple: 700 Hz)

Figure 22 - Hot-wire velocity signal for three voltages at f=200 Hz

Introduction

ASPIC synthetic jet actuator

Slot dimensions: **1x150** mm² Peak exit velocity during suction: 135m.s -1 Peak exit velocity during blowing: **150m.s -1** Optimal actuation frequency bandwidth: between **200 and 300Hz** Actuator volume: **164x94x57**mm3

Active Flow Control 4 TiltRotor aircraft

Computational Fluids & Structures Engineering

Unsteady CFD simulations for Active Flow Control

Introduction

Numerical methods

> NSMB solver, Chimera grid

Results

- Steady blowing
- Pulsed blowing
- > 2D/3D Blowing-suction (ZNMF)
- Next Civil Generation Tilt-Rotor aircraft

9

Numerical methods

Turbulence models: URANS (SA)

Unsteady CFD simulations for Active Flow Control

Introduction

Numerical methods
NSMB solver, Chimera grid

Results

- Steady blowing
- Pulsed blowing
- > 2D/3D Blowing-suction (ZNMF)
- > Next Civil Generation Tilt-Rotor aircraft

11

Results

Baseline and morphing with cambering (10cm)

Results

Baseline and morphing with cambering (10cm)

Active Flow Control

Active Flow Control (Steady blowing)

Active Flow Control (multiple-pulse blowing)

16

Active Flow Control (blowing-suction ZNMF)

Active Flow Control (blowing-suction ZNMF)

Morphing with only cambering

AFC blowing - suction + morphing (cambering)

 Fixed jet dimensions 45°, 5mm

Velocity [m/s]	Frequency [Hz]					
velocity [III/s]	20	50	100	150	200	
70	•	•	•	•	•	
100	•	•	•	•	•	
150	•	•	•	•	•	
200	•	•	•	•	•	

 Fixed jet dimensions 45°, 1mm

Location (%c)	
50	•
55	•
65	•
70	•

frequency (Hz)		
150		
200		
250		
300		F Color
	Active Flow	Control for Two

• Fixed jet dimensions 45°, 5mm

Cases	C_l	C_d	Lift-to-Drag
70m/s			
20Hz	-5.2%	-5.7%	-7.6 %
50Hz	-4.9%	-5.6%	-7.4 %
100Hz	-5.7%	-6.03%	-7,74 %
150Hz	-6.19%	-5.7%	-8.5%
200Hz	6.187%	-5.45%	-8.9%
100m/s			
20Hz	-4.75%	-13.7%	1.4%
50 Hz	-4.61%	-13.65%	1.41%
100Hz	-4.79%	-14.32%	2.16%
150Hz	-3.4%	-13%	2.15%
200Hz	-3.8%	-12.83%	1.46%
150m/s			
20Hz	-1%	-21.53%	15.9%
50Hz	-0.93%	-22.2%	17.1%
100Hz	-2.27%	-24.7%	19.39%
150Hz	-1.01%	-23.35%	18.73%
200Hz	-2.67%	-24.48%	18.49 %
200m/s			
20Hz	2.55%	-24.15%	24.95%
50Hz	3.2%	-25.26%	26.95%
100Hz	2.63%	-26.9%	29.2%
150Hz	2.23%	-27.45%	29.54%
200Hz	2.85%	-26.7%	29.05%

Different locations

Fixed jet dimensions 45°, 1mm

Jet velocity=200m/s

frequency (Hz)	C_l	C_d	Lift-to-Drag	_	Location (%c)	C_l	C_d	Lift-to-Drag
150	-0.61%	-21.02%	15.69 %	-	50	-1.96%	-15.63%	6.83 %
200	-1.21 %	-21.68%	15.9 %		55	-1.33 %	-18.31%	11.04 %
250	-0,87%	-21.57%	16.19 %	Separation point —	65	-0,46%	-19.22%	13.2 %
300	-0.64%	-21.46%	16.23%		70	-0.02%	-23.17%	19.56%

Shape optimisation

NEW CASES : _

|1|60|1.0|15|0.2584000164180948|V=Q/D=***176,7244375/***0,2584000164180948=683,918 m/s

RUN 4 60 3.0 15 0.7809431719217895 V=Q/D= 176,7244375/0,7809431719217895 = 226,296

RUN 7 60 5.0 15 1.30165528528316 V=Q/D= 176,7244375/1,30165528528316 135,769

RUN 2 60 1.0 30 0.4997186801380233 V=Q/D=176,7244375/0,4997186801380233 = 353,64785

RUN 5 60 3.0 30 1.504052613272536 V=Q/D= 176,7244375/1,504052613272536 = 117,49884

8 60 5.0 30 2.506799708017016 V=Q/D= 176,7244375/2,506799708017016=70,498

| 3 | 60 | 1.0 | 45 | 0.7068977552277825 | Q=VxD =250 x 0,7068977552277825 = 176,724 m²/s (REFERENCE)

6 6 60 3.0 45 2.124637415255685 V=Q/D= 176,7244375 /2,124637415255685 83,1786337899601

9 60 5.0 45 3.541139370040709 V=Q/D= 176,7244375 /3,541139370040709 49,9060

3D configurations

3D with a fixed span

ZNMF (1mm x 150mm x 45deg)

24

3D configurations

• 3D DDES-SA

2D configuration

26

3D configurations

• RANS (SA)

3D configurations

Next Generation of Tilt-Rotor aircraft NCGTR

Leonardo Helicopters

Structured grids are designed following the gridding guidelines of AIAA CFD HighLift/Drag Prediction Workshops

• Farfield boundary > 100*Cref

All grid components are merged together (within ICEMCFD or externally with Python scripts)

- Base (fuselage, wing, nacelle) 10'200'000 cells
- Aileron 620'000 cells
- Engine cover 370'000 cells
- Engine 450'000 cells
- Hub 340'000 cells
- Blades 770'000 cells/blade

NGCTR baseline grid

- 900 structured blocks
- 14'300'00 cells
- 7 movable parts using Chimera overlapping technique

Ζ

CFS Engineering

Computational Fluids & Structures Engineering

• Aileron deflection +/- 35°

• Engine deflection from 0° to 90°

 Engine deflection foreseen in the project from 0° to 30°

Brief summary of the separated flow around NCGTR aircraft

• NCGTR configuration - K $-\omega$ - SST

Skin friction CFx component contours with streamlines of CF (CFx, CFy, CFz), **angle of attack high**, nacelle 0°, closed gap and no fence

CFS Engineering

Brief summary of the separated flow around NCGTR aircraft

Skin friction CFx component contours with streamlines of CF (CFx, CFy, CFz), angle of attack high, **nacelle**, closed gap and no fence

CFS Engineering

Brief summary of the separated flow around NCGTR aircraft

Skin friction CFx component contours with streamlines of CF (CFx, CFy, CFz), angle of attack high, **aileron deflection deflected**, rotation of blades and no fence

CFS Engineering

• STEADY STATE • STATIC ROTORS • STEADY JET V_jet 39

NCGTR

•

Validation of unsteady simulations

Time step & tolerance effects

• UNSTEADY STATE (6ZNMF)

42

• UNSTEADY STATE (6ZNMF)

CASE 3

- UNSTEADY STATE (6ZNMF) ٠
 - 6 ZNMF integrated in the Aileron for different positions regarding the separation ligne

Acknowledgements

The AFC4TR project has received funding from the European Union's H2020 - CleanSky2 research and innovation framework programme under grant agreement No 886718

Presentation Title | Speaker/Authors | Meeting/Place, Date

This project has received funding from the European Union's H2020 - CleanSky2 research and innovation framework programme under grant agreement No 886718