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Abstract – Within the framework of evidence theory,
the construction of mass functions remains an impor-
tant problem which can considerably influence final re-
sults. Several propositions of construction are available
in literature but generally, these methods do not con-
sider the belief masses on compound hypotheses and do
not exploit all the strengths of the theory. In this article,
we propose two methods of grouping hypotheses allow-
ing to reduce the number of focal elements during the
construction of mass functions. The first one is based
on a well-known approach in cartography and geoinfor-
mation fields: Jenks’ method. The second one is based
on information criteria. We present and confront both
methods. Results in a forensic entomology application
are then presented.

Keywords: mass function construction, compound
hypotheses, belief theory, evidence theory, Jenks’
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1 Introduction
Representing and managing knowledge in complex

systems, where quantity and disparity of information
are important, generally requires the system designer
to set up a particular formalism of information pro-
cessing. The goal is to better reason with imperfect
information (imprecision, uncertainty, incompleteness
etc.) and to handle these imperfections to make a fi-
nal decision. Among the existing theories, the belief
function theory [1] could be well adapted to take into
account these different characteristics.

The transferable belief model (TBM) of Philippe
Smets [2] can be seen as a subjective and non proba-
bilistic interpretation of evidence theory. It is a flexible
and efficient tool to be applied in many areas such as
decision support, diagnosis etc. The TBM is all the
more interesting as it has a range of tools to handle
belief functions (discounting, conditioning operations
etc.). Despite the importance of the model foundations,
a significant problem remains: the construction (or es-
timation) of basic belief assignments.

Construction is a difficult step that is not universal
and which generally depends on the application and
the vision we have on it. We usually distinguish the
following methods of estimation: those based on the
calculations of distances [3, 4] and those based on like-
lihood inspirations [5, 6]. However, these two types of
estimation present various inconveniences: the first one
can supply very engaged mass functions but a solution
can always be obtained even if the frame of discernment
is large. The second method respects more the Mini-
mal Commitment Principle and seems better to make
a careful decision. But we are then confronted with
a computing problem when the frame of discernment
increases. This last method becomes thus unusable be-
cause of the number of focal elements, close to two to
the power of the cardinality of the frame of discern-
ment. Different works deal with the assignment of be-
lief masses on the disjunctions (compound hypotheses)
to better use the power of evidence theory and so to
reduce the space complexity. Affectations on the dis-
junctions can be classified in two axes: those where a
knowledge on the hypotheses is a priori known [7] and
those consisting in a learning of the compound focal
elements [8]. More recently, [9] also introduces impreci-
sion on mass functions by using dual fuzzy morphologi-
cal operators. Interested readers can find a good range
of methods of estimation in [10].

Within the framework of our works, consisting in re-
alizing a decision support system intended for forensic
medicine, we are confronted with this problem of con-
struction. According to experts’ observations, we try to
determine the time of death of a person with a possible
large frame of discernment (several hundred hours). In
this paper, we present two methods allowing to reduce
the number of focal elements and to affect our belief
masses on disjunctions.

After a display of the transferable belief model (sec-
tion 2), we propose two methods allowing to estimate
the belief masses on disjunctions of hypotheses (sec-
tion 3). The first one is based on a well-known method



in cartography and geoinformation fields: Jenks’ natu-
ral breaks classification [11]. The second one is based
on an approach of information criteria and originally
comes from the study of histograms [12]. We are go-
ing to detail these two methods of estimation, present
and compare their advantages and inconveniences in
the framework of belief functions. We apply them to
our forensic medicine problem and end on the interests
of such methods in the framework of the TBM.

2 Transferable belief model
The evidence theory was initially introduced by

Dempster [13] in relation to his work on lower and up-
per bounds of a distribution probability family. Using
this mathematical formalism, Shafer [1] shows the ben-
efits of belief functions to model uncertain knowledge.
The usefulness of belief functions, as an alternative to
subjective probabilities, was subsequently proved in an
axiomatic way by Smets [2] in the transferable belief
model thus giving a clear and coherent interpretation
of the subjacent concept of this theory. In this section,
the essential mathematical elements of the TBM will
be introduced.

2.1 Basic concepts

The transferable belief model is based on the assump-
tion that, from the beginning, a set Ω called the frame
of discernment is known and which is defined as follows:

Ω = {ω1, ω2, . . . ωN} (1)

This set is composed of N exclusive hypotheses. From
this frame of discernment, a power set noted 2Ω can be
built, including the 2N proposals A of Ω:

2Ω = {A|A ⊆ Ω} (2)

A belief function can be mathematically defined by a
mass function (or allocation 1), noted m defined by 2Ω

in [0, 1], and that verifies:∑
A⊆Ω

m(A) = 1 (3)

Each subset A ⊆ Ω such that m(A) 6= 0 is called a
focal element of Ω. Thus, mass m(A) represents the
degree of belief allocated to the proposal A and that
cannot, in the present state of knowledge, be attributed
to a more specific subset than A. The belief function
for which m(∅) = 0 is called normal. In the transferable
belief model, the condition

∑
∅6=A⊆Ωm(A) = 1 is not

imposed and it is possible to have m(∅) 6= 0. This can
introduce the notion of open world while assuming that
the belief cannot be attributed to a subset of Ω. In this
case, ∅ can be interpreted as a proposal which is not
in the frame of discernment Ω and that it is likely to
be the solution to the problem as opposed to the closed
world where the set Ω is assumed to be exhaustive.

1The term bba for basic belief assignment is often found in
literature

2.2 Discounting

When the information that results in the belief func-
tion is not totally reliable, it may be useful to dis-
count this belief. In order to do that, a coefficient α
is used, which represents knowledge of the source re-
liability. This coefficient will allow the transfer of the
belief to the set Ω when the information is not totally
reliable. The discounting belief function mα, defined
by a reliability coefficient α can then be deduced from
m by means of the following expression:{

mα(A) = αm(A)
mα(Ω) = 1− α+ αm(Ω). (4)

In literature several methods have been developed to
compute the discounting factor [14, 15].

2.3 Fusion of belief functions

In the transferable belief model, data from distinct
sources are fused using the conjunctive rule of combina-
tion. This rule, which is commutative and associative,
is defined by:

∀ A ∈ 2Ω m(A) = m1(A) ∩© . . . ∩©mQ(A) (5)

where ∩© represents the combination operator. In cases
of two sources noted Si and Sj , giving respectively be-
lief functions noted mi et mj , the combination can be
written as follows:

m(C) =
∑

A∩B=C

mi(A).mj(B) (6)

The value m(∅) = m1 ∩©m2(∅) reflects the existing
conflict between two sources Si and Sj . When this fac-
tor equals 1, the sources are in total conflict. Various
works deal anyway with the problem of the appear-
ance of conflict with this combination rule [16]. In a
more general way, within the framework of the evi-
dence theory, different combination rules, not defined
in the TBM, were proposed. Interested readers could
refer to [17, 18, 19] for more details about some of these
rules.

2.4 Pignistic transformation

Within the framework of the TBM, Smets [2] rec-
ommends to construct a probability function in order
to take an optimal decision allowing to make decision
on individual hypotheses. The transformation from a
mass function to a probability function is achieved by
the pignistic transformation and is given by:

∀ ωn ∈ Ω BetP (ωn) =
1

1−m(∅)
∑
A3ωn

m(A)
|A|

(7)

where |A| represents the cardinality of A ⊆ Ω.
Once the pignistic probability obtained, it is possible

to use classic tools of statistical decision theory.



Readers could find justifications and details of this
transformation in [20].

When comparing it to the probability theory, the
transferable belief model shows some advantages, the
most important of which is the possibility of expressing
the degree of uncertainty. In this model, the mass as-
signment on a subset does not mean that the remainder
automatically goes to the complement. After this in-
troduction to the basic concepts of the TBM, the next
section deals with the construction of mass functions.

3 Construction of mass functions
As mentioned in the introduction, the wealth and

flexibility of the TBM constitute an interesting frame
to represent and manage incomplete information. How-
ever, the problem of the construction of basic belief as-
signments persists and the modelling choice can have
important consequences on the final results and deci-
sions. In the next sections (3.2 and 3.3), we will present
two methods of automatic grouping of hypotheses to
construct mass functions (section 3.4).

3.1 Context and objectives

Let S = {S1, . . . , Sj , . . . , SJ} be a set of sources ex-
pressing themselves on the validity of the hypotheses
{ω1, . . . , ωn, . . . , ωN} = Ω with regard to a given ques-
tion Q. In a general way, each source Sj can answer:
”Is the hypothesis ωn a possible solution of the question
Q?”. The validity degree δQj,n associated to this answer
varies between the values 0 and 1. It takes the value 0
when the hypothesis is not a solution of the question Q
and the value 1 when the hypothesis is exactly a pos-
sible solution. So a source Sj supplies a distribution
of validity degrees defined by ∆Q

j,Ω : Ω 7→ [0, 1]. The
final objective in general is to find the hypothesis ωn
(or the set of hypotheses Zλ) according to the validity
degree(s) (function of a given criterion relating to the
application and the objectives for example).

When the number N is important (N > 15), it is gen-
erally difficult to work by means of belief functions be-
cause of the number of focal elements. And it is not easy
to estimate correctly the bbas with a good report com-
mitment/time calculations. So, the purpose is to obtain

an estimation ∆̂Q
j,Z of the distribution ∆Q

j,Ω to reduce
these focal elements afterwards. This estimate distribu-
tion is defined by ∆̂Q

j,Z : Z 7→ [0, 1] where Z corresponds
to the set of the disjunctions of hypotheses having been
grouped together in an ”intelligent” way according to
the validity degrees: Z = {z1, ..., zλ, ..., zΛ} ⊆ Ω, with
Λ < N .

In this article, two methods allowing to get an esti-
mation of the distribution ∆Q

j,Ω are presented. This
estimation will then be at the basis of the assign-
ment of belief masses. The first method is based on

a well-known method in cartography and geoinforma-
tion fields: Jenks’ natural breaks classification [21, 11].
The last one is based on an approach of information
criterion and originaly comes from the optimization of
histograms. Both methods also allow to reduce com-
plexity by keeping a satisfactory expressiveness to make
decisions. In the next sections, we present these two
methods and go on the comparison in the framework of
the forensic application.

3.2 Grouping of hypotheses based on
Jenks’ approach

Jenks’ algorithm is a much used empirical approach
within the geographical information systems (GIS) [22,
21]. It allows an optimal classification [11] of a popula-
tion in a certain number of classes (or partitions) and
minimizes the sum of absolute deviations about class
means. It starts with an arbitrary set of classes, calcu-
lates an error (also named GV F for Goodness of Vari-
ance Fit index), and attempts to maximise it by moving
observations between adjacent classes. The optimiza-
tion so minimizes within-class variance and maximize
between-class variance in an iterative series of calcula-
tions.

In short, Jenks’ algorithm can be broken down into
separate sequences:
1). the determination of the class number,
2). an iterative heuristics allowing to maximize the
GVF index.

3.2.1 Jenks’ optimized breaks algorithm

We consider the source Sj , the set of hypotheses Ω
and the relative ditribution of validity degrees ∆Q

j,Ω

with regard to a certain question Q (see the previous
section).

For a fixed number Λ of classes and a number
N of hypotheses, there is a number Γ, equaled to

N !
Λ!.(N−Λ)! , of possible combinations. Let us denote
ZΛ,N = {Z1, . . . , Zγ , . . . , ZΓ} the set of these possible
combinations. We try to get the best combination Z
which maximizes the GV F index. The GVF index is
given by the following equation:

GV F (Zγ) =
SDAM − SDCM(Zγ)

SDAM
(8)

where the SDAM index is the Squared Deviations from
the Array Mean. It is obtained by:

SDAM =
∑
ωn∈Ω

(δQj,n −Mean(Ω))2 (9)

with Mean(Ω), the mean of the validity degrees δQj,n.
In the equation (8), the SDCM value is the Squared
Deviations from the Class Means:

SDCM(Zγ) =
∑
zλ∈Zγ

∑
ωn∈zλ

(δQj,n −Mean(zλ))
2

(10)



In (10), Mean(zλ) is the mean of the validity degrees
of the class zλ with for the combination Zγ .

We notice that the GVF index so varies between 0
and 1 (its value is 1 when Λ = N). This index can
be viewed as an entropic index that we maximize for a
fixed number of classes. A heuristic has to be developed
to cross the set of ZΛ,N possible combinations. We do
not detail it in this article.

3.3 Grouping of hypotheses based on
the approach of information crite-
ria

The main idea is to sum up the information given
by each source Sj by means of an optimum histogram
in the sense of the maximum likelihood and of a mean
square cost. As previously, sources could supply degrees
of validity δQj,n on hypotheses ωn ∈ Ω. First, we get the
distribution of validity degrees given by each source and
then make the optimum histogram building which is
led by the use of an information criterion. We will see
that different information criteria initially designed for
model selection can be used.

3.3.1 Histogram approximation

We consider the source Sj , the set Ω of N hypothe-
ses and the relative distribution of validity degrees ∆Q

j,Ω

with regard to a question Q of interest (see the section
3.1). The aim is to approximate ∆Q

j,Ω with a histogram

∆̂Q
j,Z built on a subpartition Z = {z1, ..., zλ, ..., zΛ} ⊆ Ω

with Λ bins such as Λ < N . The distribution ∆̂Q
j,Z built

with Z is an optimum estimation of ∆Q
j,Ω according to

a cost function to define. Z results from an information
criterion called IC issued from the basic Akaike’s infor-
mation criterion (AIC) [12], AIC∗ or φ∗ [23] which are
respectively Hannan-Quinn’s criterion and Rissanen’s
criterion. These criteria have the following form:

IC(Λ) = g(Λ)− 2
∑
zλ∈Z

∆̂Q
j,Z(zλ) ln

∆̂Q
j,Z(zλ)

Card(zλ)
(11)

where g(Λ) is a penalty term which differs from one
criterion to another one. Card(zλ) is the number of

hypotheses ωk ∈ zλ. ∆̂Q
j,Z(zλ) is the maximum likeli-

hood estimator for the partition zλ which is given by
the following equation:

∆̂Q
j,Z(zλ) =

1∑
ωn∈Ω δ

Q
j,n

∑
ωk∈zλ

δQj,k (12)

An optimum histogram ∆̂Q
j,Z to approximate the dis-

tribution ∆Q
j,Ω is obtained in two steps. The first one

consists in merging two contiguous bins in a histogram
with Λ bins among the (Λ − 1) possible fusions of two

bins. This is made by minimizing the IC criterion. The
second one consists in finding the ”best” histogram with
Λ bins. The optimum histogram with Λ = Λopt bins is
the one which minimizes IC.

3.3.2 Selection of the bin number of a his-
togram

Obtaining the optimum histogram is based on the
use of an information criterion IC which gives the op-
timal number of bins thanks to a cost function based
on Kullback’s contrast or Hellinger’s distance. We do
not detail these cost functions but if the cost function
is expressed according to KullBack’s contrast [24], we
obtain the criterion such as :

AIC∗(Λ) =
Λ (1 + lnP )

P
−2

∑
zλ∈Z

∆̂Q
j,Z(zλ) ln

∆̂Q
j,Z(zλ)

Card(zλ)

(13)
where P =

∑
ωn∈Ω

δQj,n.

This criterion can be used to select the optimum his-
togram with Λ bins to approximate the distribution of
validity degrees. Other criteria exist (e.g. AIC or φ∗

criteria) but we do not detail them in this article, sim-
ply because the criterion AIC∗ gave us better results
in our application in term of time of calculations and fi-
nal decision obtained. Detailed demonstrations for this
section are available in [12, 23].

3.3.3 Optimum histogram building process

At first, an initial histogram with N bins is built
thanks to the distribution ∆Q

j,Ω. Then, a partition with
(N − 1) bins is considered. For each possible fusion of
two contiguous bins among (N−1) the criterion IC(N−
1) is computed. The choice of the best fusion is made
according to the minimization of IC(N − 1). When it
is done, we look for the best partition with (N − 2)
bins according to the same rule. Finally, the histogram
with Λ bins that minimize IC(Λ) for Λ ∈ {1, . . . , N} is
retained.

3.4 Mass function construction by af-
fecting masses on disjunctions

Having detailed the methods of grouping hypotheses,
we present in this part the method of mass assignments.
Whatever the previous method used, we obtain the set
Z = {z1, ..., zλ, ..., zΛ} ⊆ Ω of compound hypotheses.
For a source Sj , we propose to make the average of the
validity degrees of each zλ-class to affect the masses.
We create as many basic belief assignments as disjunc-
tions zλ:




mj,λ(zλ) = 0
mj,λ(zλ) = αj (1− Mean(zλ)∑

zλ∈Z
Mean(zλ)

)

mj,λ(Ω) = 1− αj + αj .
Mean(zλ)∑
zλ∈Z

Mean(zλ)

(14)

In (14), Mean(zλ) is the mean of validity degrees of
the class zλ and αj is the reliability coefficient of the
source Sj . This method of construction means that the
more the source Sj believes in a disjunction zλ, the less
it will allocate a belief mass to its opposite zλ.

When we have the Λ created bbas mj,λ, we can com-
bine them by means of the Dempster combination. The
bba mj from the source Sj is obtained by:

mj = ∩©Λ
λ=1mj,λ (15)

As in the method presented in [5], it is a careful way
to generate mass functions. We are going to study its
results in the following sections.

4 Applications
4.1 Confrontation of both methods

In this section, we confront mass functions given by
both methods. Figure 1 presents the validity degree
distribution given by a source Sj for a frame of dis-
cernment Ω = {ω0, ..., ω150}. As described in the sec-
tion 3.2, in order to use Jenks’ method, it is necessary
to know a priori the number of possible disjunctions.
Within the framework of this pratical case, we subjec-
tively consider that an expert would have classed hy-
potheses in three classes. So, the belief function cre-
ating process is detailed for Jenks’ method in tables 1
and 2. Figure 2 allows to compare the results obtained
by both methods. We can see that with Jenks’ method
(with only three classes), the two principal peaks are
eliminated. These peaks are always present with the
AIC∗-criterion based method.

4.2 Mass function construction in the
forensic entomology project

During a criminal investigation, it is essential to ob-
tain a maximum of information on the conditions of
the manslaughter. Many methods to exploit the indi-
cations on the murder scene are known but, for large
post-mortem intervals (PMI), only one of these tech-
niques is useful in practice: forensic entomology. It
consists in studying the insects found on a cadaver to
estimate the time of its death. The objective is then
to date the first layings by calculating the insects’ age.
Modern PMI estimation methods are based on insect
development models. These models consider that in-
sect development speed is temperature-dependent and
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Figure 1: Validity degree distribution given by a source
Sj . Between the hypotheses ω0 and ω70 and between
the hypotheses ω130 and ω150, the validity degrees are
null.

Table 1: The three mass functions obtained with the
grouping of hypotheses based on Jenks’ method from
data presented in figure 1.

mj,1

mj,1({ω0, . . . , ω80}) 0, 997
mj,1(Ω) 0, 003

mj,2

mj,2({ω81, . . . , ω114}) 0, 013
mj,2(Ω) 0, 987

mj,3

mj,3({ω115, . . . , ω150}) 0, 990
mj,3(Ω) 0, 010

has the next general form:

∆a =
∫ t2

t1

f(T (t))dt (16)

where T (t) represents the temperature T felt by an in-
sect at the time t, f is a development model and ∆a is
the accumulated rate of development of the insect. The
interested reader can refer to [25] for more details.

There are a lot of models in literature but they do not
take into account the entire ecosystemic context (ther-
mic inertia of the body, thermic behavior of the larvae
etc.). No current method takes into account these pa-
rameters, reported in numerous articles as an impor-
tant source of error in the estimating of the PMI [26].
Moreover, these models are based on different original
biological data that were not still verified in all the con-
texts, but are used by the experts because of the lack of
better information. Thus, estimations performed using
these methods are often overestimated and not as pre-
cise as they could be. To improve the decision-making



Table 2: The final mass function mj obtained from the
combination (eq. 15) of the mass functions mj,1, mj,2

and mj,3.
mj

mj({ω0, . . . , ω80}) 0.010
mj({ω0, . . . , ω114}) 1.4× 10−4

mj({ω81, . . . , ω114}) 3.2× 10−7

mj({ω81, . . . , ω150}) 3.0× 10−5

mj({ω115, . . . , ω150}) 0.002
mj({ω81, . . . , ω114}) 0.986

mj(Ω) 2.5× 10−5
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Figure 2: Pignistic probability distributions for both
methods. The Jenks’ curve is obtained from the pig-
nistic transformation of the mass function mj detailed
in table 2.

and assist the forensic scientists, a decision support sys-
tem has been developed. This project is based on a
predictive multiagent model of insect development and
cadaver decomposition in a complex ecosystem. It is
used to determine if a hypothesis - a possible time
of death - is coherent with the observations available
on the ecosystem of the crime scene and the entomo-
fauna found on the victim. More information about this
model and the validation process can be found in [27].

To sum up the notations of the section 3.1, there are
several sources (entomological models) Sj ∈ S supply-
ing distributions of validity degrees ∆Q

j,Ω : Ω 7→ [0, 1],
Ω is the set of the possible hours. Each distribution
indicates how the model thinks that the hypotheses of
the time interval are in accordance with the reality Q
observed by the forensic scientists.

In the figure 3, we present the distributions of va-
lidity degrees supplied by four entomological models on
an interval of 150 hours. For Jenks’ based construction,
the entomological expert recommends to use 3 disjunc-
tions/classes. This value corresponds to a ”normal” ex-
pected shape of a distribution supplied by the models.
For the method based on information criteria, we used
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Figure 3: Validity degree distributions given by four
entomological models. To make it simpler, we do not
print hypotheses between ω120 and ω150 where validity
degrees are null.

the AIC∗ criterion allowing to obtain a good number
of disjunctions.

We notice in figures 4 and 5 that the method based
on the AIC∗-criterion retranscribes in a better way the
reality of the information than Jenks’ method. An im-
portant loss of information is indeed observed during
the use of this last method: mass functions of S2 and
S4 contain no more information of the second observ-
able peak in figure 3 around the hypothesis ω90. This
loss of information related to Jenks’ method can be an-
noying during the final decision-making but could also
be handled by means of the value of the Jenks index
(see section 3.2). For the models S2 and S4, the Jenks’
calculated index is very low and a treatment a poste-
riori could be made for, either to discount the mass
functions proportionally in the index value, or to make
a treatment by considering a bigger number of classes.

However, fixing the number of classes to a weaker
value for Jenks’ method allows us to reduce the calcu-
lation time during the mass function combinations even
if we lose in precision, as we can see in figure 6.

5 Discussion
Methods of mass function construction allowing to

affect beliefs on compound hypotheses try to answer
problems linked to methods of estimation based on the
calculation of distances and those based on the calcula-
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Figure 4: The four pignistic probability distributions
obtained with Jenks’ method.
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Figure 5: The four pignistic probability distributions
obtained with the AIC∗-criterion based method.

tion of likelihoods. They allow a compromise between
”being less engaged” and ”being calculable”. Both
methods can be used in two different contexts: Jenks’
method can be used when the modeller knows a priori
the shape of the distributions ∆Q

j,Ω. It is also possible
to use the value of the GVF index to verify that the
number of classes was correct and to modify it if nec-
essary to generate other bbas with more disjunctions.
The method based on information criteria can lead to
a higher number of classes and thus obtain a bba closer
to raw information, while being less involved with meth-
ods based on the calculation of distances. It seems in-
teresting, but can lead to too important a number of
disjunctions and too expensive a computation time.

6 Conclusion
When the number of hypotheses of the frame of dis-

cernment is too large, it is generally difficult to man-
age belief functions because of the number of potential
focal elements. In this article, we propose two auto-
matic methods of grouping hypotheses to reason on
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Figure 6: Final pignistic probability distributions ob-
tained from the combination of the four models for both
methods.

compound hypotheses. Jenks’ method is particularly
useful if the modeller has the a priori knowledge of the
information provided by the sources to combine. The
second one, based on information criteria, is interest-
ing to group the closest hypotheses in a totally auto-
matic way. Both methods allow to reduce the calcula-
tion time and to improve the quality of our decisions in
comparison with the other existing construction meth-
ods. Afterwards, we shall work on the complexity of
the presented methods and possibly analyse previous
works from possibility distribution construction.

The results obtained within the framework of the
forensic medicine application are promising and allow
us to obtain less committed results while being explicit
enough to choose one or several hours of death. In
the future, we shall work on an iterative and interac-
tive method allowing to approach gradually hypotheses
supported by the majority of the models.
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