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Abstract 11 

This study introduces the concept of portfolios of distribution maps, which consist of the reduced set of empirical 12 

orthogonal maps that best explain spatial biomass distributions of a given species over time. The approach is 13 

demonstrated for the distributions of common octopus (Octupus vulgaris) off Mauritania over the last thirty years. The 14 

maps in the portfolio are the subset of empirical orthogonal maps that allowed to recover 60% of the spatiotemporal 15 

biomass distribution variance and whose temporal weights were significantly correlated with abundance. For octopus 16 

during the hot season, one single map explained half of the overall variance of the distribution data, while during the 17 

cold season, the portfolio of octopus distribution maps consisted of four maps, with the temporal weights of the second 18 

map being negatively correlated with upwelling intensity six months before. The size of each portfolio represents the 19 

number of distinct spatial patterns describing octopus spatial distributions. Assuming that specific but hidden processes 20 
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explain each biomass spatial distribution of the portfolio, the size of a map portfolio might be interpreted as a proxy 21 

for system resilience. A small portfolio could reflect systems that are more fragile.  22 

Keywords: Spatiotemporal distribution data, Maps portfolio, temporal dynamics, Octopus vulgaris.  23 
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Introduction 24 

Ecological monitoring and information systems are increasing worldwide. They are key to providing long-term 25 

observations, which are particularly important for reference point determination and investigating tipping points and 26 

regime shifts. Aside from their maintenance, one of the main challenges associated with these monitoring systems is 27 

how to extract scientific knowledge. For example, how to detect spatial patterns that are persistent in time from large 28 

sets of georeferenced observations and how to evaluate their temporal stability in conjunction with abundance 29 

variability. 30 

This study aimed to develop a generic approach for summarizing the overall spatiotemporal information of a long time 31 

series of spatial distributions into a portfolio of distribution maps with two elements, one time-dependent and the other, 32 

possibly low dimensional, space-dependent. The approach is based on min-max autocorrelation factors (MAF) 33 

(Switzer and Green, 1984) that can be seen as an extension of empirical orthogonal functions (EOFs, Lorenz, 1956; 34 

Wikle et al., 2019) to deal with the presence of spatial structure in the data. MAF have been widely applied in ecology 35 

(e.g. Petitgas et al., 2020; Solow, 1994; Woillez et al., 2009). However, MAF were initially designed to filter out small-36 

scale noise from a set of images. The percentage of variance explained by the selected factors is thus unknown. A 37 

recent paper by Bez et al. (2022) suggested that MAF can be appropriately reformulated into Empirical Orthogonal 38 

Maps (EOMs) that order the factors according to the percentage of variance explained. The aim of the study by Bez et 39 

al. (2022) was to identify the main spatial patterns that shape the dynamics of a stock. The present work defines how 40 

the EOMs are formulated and selected to construct a portfolio of maps consisting of a set of maps describing the main 41 

spatial patterns governing the biomass distribution of a species. It then investigates the mutual temporal fluctuations 42 

of the elements of the portfolio. 43 

The ideas developed in this paper are illustrated for common octopus (Octopus vulgaris) off Mauritania over the past 44 

thirty years. Octopus represents a key species of the Mauritanian marine ecosystem both in ecological terms (Boyle & 45 

Boletzky, 1996; Caddy, 1983) and in economic terms. It accounts for more than 70% of cephalopod landings and one 46 

third of demersal catches (Khallahi et al., 2020). In 2019, octopus generated 71% of total export value ($360 million) 47 

of fishery products (Société Mauritanienne de Commercialisation Des Poissons “SMCP”, 2020).  48 

The current management and conservation of octopus is based on biological and ecological knowledge, in particular 49 

its short lifespan of 12 to 14 months (Guerra, 1979; Hernández-López et al., 2001; Mangold and von Boletzky, 1973), 50 
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its rapid growth (Domain et al., 2000; Mangold, 1983; Sanchez et al., 1998), its high fecundity of 100,000 and 500,000 51 

eggs laid by female (O'dor et al., 1978) and its sedentary lifestyle (Hatanaka, 1979; Caverivière et al., 1999). Octopus 52 

reproduce only once; males die after mating and females after hatching of offsprings. Therefore, it is essential to ensure 53 

a sufficient proportion of the stock has the chance to reproduce to ensure stock renewal. The sedentary nature of the 54 

species implies the need for spatialized management to limit the effects local depletion by fishing and thus creates the 55 

need for a good knowledge of its spatiotemporal distribution. In Mauritanian waters, two biological rest periods of 1-56 

2 months each have been implemented each year for all demersal fisheries since 2008. These two rest periods reflect 57 

the existence of two annual octopus cohorts with distinct spawning seasons (Hatanaka, 1979; Bez et al., 2022). The 58 

variability in abundance of this species is mainly a consequence of recruitment fluctuations that are partly dependent 59 

on environmental conditions, especially the intensity of upwelling (Caverivière et al., 1999; Otero et al., 2008) and on 60 

the two spawning periods taking place under distinct environmental conditions (Faure et al., 2008).  61 

Since 1982, a dedicated monitoring system has been developed to support scientific advice to octopus management 62 

bodies (Gascuel et al., 2007). It is based on regular scientific surveys with standardized sampling protocols providing 63 

information on octopus spatial distributions through time. Using these data, persistent spatial patterns or tipping points 64 

of change in spatial distribution can then be tracked. In this study, the portfolio of octopus distribution maps in 65 

Mauritanian waters was characterized using data from 63 scientific surveys covering the period 1987- 2019. The size 66 

of the portfolio is discussed as a potential proxy for ecosystem resilience. 67 

Materials and methods 68 

Scientific monitoring surveys 69 

Between 1987 and 2019, the Mauritanian Institute of Oceanographic Research and Fisheries (IMROP) performed 97 70 

scientific demersal bottom trawl surveys on the continental shelf. However, only 63 surveys covered the entire 71 

continental slope and were therefore kept for analysis in this study (Figure 1a). The sampling protocol was standardized 72 

over the entire period and followed a stratified random protocol based on three latitudinal strata (Figure 1). The mean 73 

number of hauls was 102 hauls per survey (min = 57, max = 205, but only four exceed 121 hauls), equally distributed 74 

in each strata. The survey area was divided into five bathymetric strata (<30m, 30-80m, 80-200m, 200-400m and 400-75 

600m). The sampling covered very coastal areas due to the probable presence of coastal demersal species. The depth 76 

covered ranged from 10m to around 600m. The area of the Banc d'Arguin National Park (PNBA) was not covered by 77 
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the sampling because it is a marine protected area closed to motorized fishing. The observations consisted of the 78 

octopus densities expressed in terms of number of individuals per square meter obtained by dividing the catches by 79 

the surface of the area swept by the trawl.  These were considered as indicator of abundance assuming that gear 80 

catchability remained constant. More details on these data are available in Gascuel et al. (2007), Meissa et al. (2013) 81 

and Meissa and Gascuel (2015). 82 

For each survey, haul positions were randomly selected and mutually independent. The hauls were thus not performed 83 

at the same locations each year. However, the method used in this study required that the observations are located at 84 

the same positions (regular or not in space) during the entire time series. In order to fulfill this requirement, the data 85 

were kriged on a 0.1° x 0.1° grid covering the sampling area before analysis (341 grid cells). Kriging allows estimating 86 

the mean octopus density within each grid cell (Chilès and Delfiner, 2000), provided that there were enough hauls in 87 

the vicinity. Variogram models were fitted, survey by survey, to the empirical variograms (for the sake of parsimony 88 

they are not shown). The input data for the analyses were thus 63 kriging maps and the corresponding abundance 89 

indices.  90 

A time series of upwelling strength over the same period was built from a monthly dataset of the meridian component 91 

(North-South) of composite wind speeds over the Mauritanian zone, 50 to 100 km from the coast. This proxy is 92 

considered the best proxy linearly linked to the upwelling index for a North-South oriented coast (Demarcq and Faure, 93 

2000), which is the case for the study area. 94 

A spatialized time series of seasonal average sea surface temperature (two maps per year, one for the hot season and 95 

one for the cold season) on the same spatiotemporal grid as the survey data was built from the National Oceanic and 96 

Atmospheric Administration (NOAA) database (NOAA, 2020). 97 

Four climatic seasons are generally distinguished in the Mauritanian zone (Dobrovine et al., 1991). A cold season from 98 

January to May, a cold-warm transition season from June to July, a hot season from August to October, and a hot-cold 99 

transition season from November to December. For this study, these four seasons were aggregated into two main 100 

seasons of five and seven months respectively: a hot season from June to October, including 28 of the 63 available 101 

surveys and a cold season for the rest of the year (November-May), including the remaining 35 surveys (Figure 1). 102 

The precise timing of the surveys within each season was opportunist rather than following a predefined sampling 103 

protocol. The temporal spreading of the surveys was however of the same level in each season (similar coefficients of 104 
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variation; Figure 1). A portfolio of maps was considered for each season. All the calculations were performed in R 105 

using the package RGeostats (MINES ParisTech / ARMINES (2022)).  106 

Setting up the portfolio 107 

A portfolio is defined as a selection of relevant empirical orthogonal maps (EOMs). Below the definition of EOMs is 108 

recalled and the method to select those included in the portfolio is explained. 109 

Building EOMs 110 

The workflow for creating empirical orthogonal maps (Bez et al., 2022) is depicted in Figure 2. EOMs are a variation 111 

of min-max autocorrelation factors (Switzer & Green, 1984), where the factors are ordered according to their 112 

percentage of contribution to the total input variance. The first EOM explains most of the input variance, and so on 113 

down to the last EOM that explains little of the input variance.  114 

We denote 𝑥𝑖 , 𝑖 = 1, … , 𝑆 the geographical positions of the 𝑆 grid nodes that were systematically informed (isotopy) 115 

at time 𝑡𝑗, 𝑗 = 1, … , 𝑇, with 𝑇 being the number of input maps(𝑆 = 341, 𝑇 = 63). Input data can be formatted as an 116 

𝑆 × 𝑇 matrix denoted by 𝑍 = 𝑍[𝑖, 𝑗] = 𝑧(𝑥𝑖 , 𝑡𝑗) where each line in Z corresponds to the time series of the value of a 117 

given grid cell. Computing EOMs consists of two sequential PCAs. The first PCA, which is nothing but an EOF based 118 

on 𝑍, produces an 𝑆 × 𝑇 matrix, denoted 𝑌, with 𝑇 uncorrelated columns 𝑦(∙, 𝑡𝑗): 119 

∑ 𝑦𝑆
𝑖=1 (𝑥𝑖 , 𝑡𝑗) ∙ 𝑦(𝑥𝑖 , 𝑡𝑗′) = 0 ∀𝑗 ≠ 𝑗′     (1) 120 

In the spatio-temporal context, each column of Y is a set of georeferenced points, i.e. a map, uncorrelated to each other. 121 

The absence of correlation refers to pointwise correlations, therefore, to the absence of correlation between map values 122 

for the same geographical point.  123 

The second PCA aims at building 𝑇 new factors 𝐹𝑗(xi) = 𝐹(xi, 𝑡𝑗), 𝑗 = 1, … , 𝑇, without mutual spatial correlation for 124 

a given spatial distance 𝑟 (the unit spatial lag corresponds to the grid cell size of the input maps), that is, with the 125 

following null scalar products: 126 

∑ [𝐹(𝑥𝑖 , 𝑡𝑗), 𝐹(𝑥𝑖 + 𝑟, 𝑡𝑗′)]𝑆
𝑖=1 = 0 ∀𝑗 ≠ 𝑗′    (2) 127 
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This second PCA is based on the eigen-decomposition of the matrix of variogram and cross-variogram values between 128 

standardized EOFs from the first PCA. Finally, we obtain a set of 𝑇 new maps called empirical orthogonal maps 129 

(EOMs) ordered by decreasing percentage of explained variance. This realizes the decomposition of the initial spatio-130 

temporal variables 𝑧(𝑥𝑖 , 𝑡𝑗) into a product of two elements, one element purely spatial made up of the EOMs 𝐹𝑘(𝑥𝑖) 131 

and the other element made up of their temporal weights 𝜓𝑘(𝑡𝑗).  132 

𝑧(𝑥𝑖 , 𝑡𝑗) = 𝑚(𝑡𝑗) + ∑ 𝜓𝑘
𝑇
𝑘=1 (𝑡𝑗) ∙ 𝐹𝑘(𝑥𝑖)    (3) 133 

where 𝑚(𝑡𝑗) is the average abundance of the input map for time tj. The weights measure the importance of a given 134 

EOM for explaining the survey time series. In other words, the initial set of maps is decomposed into a weighted linear 135 

combination of maps without correlation at short scale (blue box in Figure 2). At this stage, the decomposition is 136 

performed with no loss of information. EOMs can be computed for raw or standardized maps. The pseudo-algorithm 137 

provided in supplementary material highlights the main steps for computing EOMs when the first PCA is applied to 138 

standardized maps. 139 

The signs of the values of the EOMs and their weights are conventional. Therefore, the interpretation of EOMs and 140 

their weights must be established jointly. For example, the interpretation of an EOM whose weights are all negative in 141 

the decomposition is strictly equivalent to its symmetry with respect to 0 when taking the symmetry of both the EOM 142 

and its weights.  143 

By construction, EOMs are mutually uncorrelated for distance 0 and distance r. Assuming that they are also orthogonal 144 

for all distances implies that they are fully spatially orthogonal, and that they can be considered as basis for map 145 

decomposition. This assumption could be of concern if we were interpolating (i.e. kriging) several EOMs obtained 146 

from irregular points in space. In such a case, rigorous interpolation should be done by cokriging the different EOMs. 147 

In this study, interpolation was done before the decomposition and we were simply taking linear combinations of the 148 

interpolated input maps. Thus, two contrasting situations can be considered: “interpolate first and decompose then” (as 149 

in the present case study) where the assumption has no consequence, and “decompose first and interpolate then”, in 150 

which case, co-kriging should be recommended to provide a spatially interpolated version of the EOM. 151 

Building the portfolio 152 
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The selection of EOMs for the portfolio is based on two nested steps (dashed orange box in Figure 2).  In step one, as 153 

it is standard practice in PCA analyses, the number of selected EOM is set to ensure a sufficient part of the variance of 154 

the input maps is retained. In the present work, we selected the Q EOMs explaining at least 60% of the input variance. 155 

The 60% threshold is arbitrary. It is a compromise between complexity (i.e. the number of EOMs) and explained 156 

variance. In our case study, beyond 60% the number of factors increased considerably without a significant gain in 157 

explained variance. 158 

In step two, among the Q EOMs from step 1 only those are retained whose spatial patterns are connected to the 159 

population dynamics of the stock, that is their temporal weights 𝜓𝑘(𝑡𝑗) are correlated with abundance. This is achieved 160 

using three complementary criteria. The first criterion is a statistically significant linear correlation between the EOMs’ 161 

weights and abundance (test level 5%). The second criterion is based on a multivariate time series analysis using auto- 162 

and cross-correlograms to identify EOMs whose weights vary smoothly over time (auto-correlogram of weights) and 163 

in a consistent manner with regards to the temporal variation of abundance (cross-correlogram between weights and 164 

abundances). For this, a linear model of co-regionalization (Chilés and Delfiner, 2000; Goulard and Voltz, 1992) 165 

consisting of a nugget effect and a linear part is fitted to the empirical correlograms. This allows modeling and 166 

quantifying in a consistent manner the random part and the temporally structured part of the correlations. EOMs to be 167 

retained have a small random part (small percentage of nugget effect in the respective auto-correlograms). The third 168 

criterion is based on maximizing the covariation in time between abundance and EOM weights. This criterion is 169 

evaluated using the slopes of the cross-correlograms between weights and abundance. In linear models of co-170 

regionalization, the (absolute) value of the slope of the cross-correlogram must be smaller than the square root of the 171 

product of the slopes of the two auto-correlograms (Chilès and Delfiner, 2009). Thus, the third criterion is that the ratio 172 

between the slope of the cross-correlograms and this upper limit is near one. The final selected set of P EOMs (P≤Q) 173 

constitute the portfolio of maps summarizing the spatial dynamics of the species for a given season (Figure 2). Note 174 

that when a portfolio is made up of several maps, their temporal joint dynamic is accessible through the auto- and the 175 

cross-correlograms that were used for the selection of the EOMs entering the portfolio.  176 

For each of the two seasons, this methodology is used to build portfolio for octopus and for SST separately. 177 

Climatology 178 
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A climatological spatial distribution pattern can be obtained computing weighted averages of the P maps in the 179 

portfolio: 180 

𝑧‾𝑃(𝑥𝑖) = 𝑚‾ +
∑ 𝜓‾ 𝑘

𝑃
𝑘=1 ∙𝐹𝑘(𝑥𝑖)

∑ 𝜓‾ 𝑘
𝑃
𝑘=1

     (4) 181 

where 𝜓‾𝑘 is the mean temporal weight of the P selected EOMs such that: 182 

𝜓‾𝑘 =
1

𝑇
∑ 𝜓𝑘

𝑇
𝑖=1 (𝑡𝑗),  𝑘 = 1, . . . , 𝑃    (5) 183 

and where 𝑚‾  is the mean abundance: 184 

𝑚‾ =
1

𝑇
∑ 𝑚𝑇

𝑖=1 (𝑡𝑗)      (6) 185 

 186 

Results 187 

Portfolio of distribution maps for the hot season 188 

The hot season is the main octopus breeding period (June to October). The first EOM alone restored 47% of the 189 

variance of the observed abundance data (Figure 3), and the first three EOMs recover 60% of the initial variance. 190 

Amongst them, only the first one was finally selected, the two others ones being not sufficiently correlated with 191 

abundance, both statistically and temporally (small coordinate values in Figure 3), and having poorly organized 192 

temporal evolutions (small feature size in Figure 3).  193 

The hot season’s portfolio thus consists only of the first EOM, which is characterized by a north-south gradient, with 194 

a high-density area in the north (especially in its wide part), a moderately dense area in the center, and a low density 195 

area in the south (Figure 4 , left). The temporal evolution of the weights of the first EOM shows three different phases. 196 

There is a sharp decrease over the first five years followed by stability at low level for about 15 years and then a slightly 197 

higher level. Most of the signal describing the spatial distribution of octopus abundance is represented by this pattern. 198 

This distribution pattern provides information on space occupancy of octopus during this season. It summarizes the 199 

historically known pattern of octopus distribution with decreasing abundance from north to south. The years where 200 

this pattern had a large weight were years of high octopus abundance during the hot season such as the beginning of 201 

the study period. The spatial distribution represented by this EOM is linked to the main breeding season of the species, 202 
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which takes place at the end of the hot season (September-October). During reproduction, octopus seems to display an 203 

affinity to milder water temperatures, which occur to the North of the study area (Figure 5, left). 204 

Portfolio of distribution maps for the cold season 205 

During the cold season the spatio-temporal complexity and thus the size of the portfolio was larger than during the hot 206 

season (Figure 3, right). No single EOF spatial pattern was found to be dominant. Indeed, the first EOM explained 207 

only 14.7% of the variance of the input distribution data, while the first nine EOMs restored 60% of the variance. Four 208 

of these top nine EOMs, respectively the 1st, 3th, 4th and 5th, were linked to the spatiotemporal dynamic of the 209 

observed mean gridded survey abundance (density). Their weights depicted significant temporal cross correlation with 210 

mean abundance. Together, the four finally selected EOMs to build up the portfolio represented 35.4 % of the initial 211 

spatiotemporal variance. 212 

The spatial pattern of the first EOM for the cold season was similar to that of the hot season, characterized by an overall 213 

north/south gradient with a slightly different temporal evolution (Figure 4, left). However, this EOM showed a denser 214 

abundance off the northern area with a more pronounced southward expansion of moderately dense areas. The second 215 

EOM of the portfolio (EOM3) indicated a higher abundance in the center with a concentration of abundance south of 216 

Nouakchott and two lower density areas in the far south and off the Banc d’Arguin. The EOM4 displayed across-shelf 217 

gradient patterns, opposing low density coastal areas to denser offshore areas, particularly in the north and center but 218 

also, to a lesser extent, in the south. The last EOM in the portfolio (EOM5) showed two hot spot areas in the north and 219 

center. This spatial pattern reinforced, in the north, the spatial pattern of the first EOM but complemented it in the 220 

central and southern zones.  221 

Given the criteria used for their selection, i.e. correlation with abundance, the EOMs selected for the portfolio had 222 

similar long-term temporal variations in their weights (Figure 4, right). The weights decreased at the beginning of the 223 

period, then flattened and slightly increased during 2010-2015. This pattern was reflected in the slope of the respective 224 

correlograms (Figure 6). However, as indicated by the (quasi systematic) absence of nugget effects in the cross-225 

correlograms, their fluctuations at short temporal scales were not correlated (Figure 6). A noticeable exception 226 

concerned the short term negative cross-correlation between EOM1 and EOM3. This reflected the opposite fluctuations 227 

of the empirical time series in the middle of the period. 228 
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The model used in this study quantified the joint temporal dynamics of the EOMs of the portfolio and mean seasonal 229 

abundance. It decomposed their mutual temporal correlation into two parts: a nugget effect and a slope. The nugget 230 

effect quantified short-term joint fluctuations (e.g. the average variations between two consecutive cold seasons). The 231 

slope characterized long-term (multi-annual) joint evolutions. In this context, a change in the overall correlation can 232 

be due to either short or long-term processes, or both. However, by construction, the EOMs of the portfolio have been 233 

selected because they shared long-term dynamics with that of abundance. By consequence, it remains that within the 234 

portfolio the various levels of correlation between EOM weights and abundance rely strongly on the short term. This 235 

was consistent with the strong correlation found between EOM’ weights and abundance and the value of the nugget 236 

effect (Figure 6). In particular during the cold season, the weights of EOM3 were the most strongly correlated to 237 

abundance of octopus specifically because, in addition to the fact that they shared similar long-term variations, their 238 

short-term fluctuations were also correlated. The cross-correlogram between EOM3 and abundance was indeed 239 

proportional to the auto correlogram of abundance (Figure 6). This means that the residual from the regression of the 240 

weights of EOM3 against abundance was pure noise, i.e., residuals with no temporal auto-correlation (self-krigeability; 241 

Chilès and Delfiner, 2012). In practice, this means that the weights of EOM3 were proportional to abundance over 242 

time with some uncorrelated noise (Figure 7). The third EOM represents thus a central spatial pattern of the spatio-243 

temporal dynamic of octopus. It explained around 7 % of the spatial distribution of octopus that is density dependent. 244 

The climatological spatial pattern associated with the cold season was characterized by two dense areas rather offshore 245 

in the northern zone and coastal in the central zone (Erreur ! Source du renvoi introuvable.). A northern zone off 246 

Cape Blanc had its epicenter located between the bathymetric lines of 80 and 200m. A second zone was found south 247 

of the Cap Timiris (in the middle of the central zone) with an extension to a bathymetric level close to that of the 248 

northern zone. 249 

The weights of the EOMs that were part of the portfolio were not statistically different (Student p-value = 0.008) for 250 

surveys carried out in December and in March (Figure 9). The ranges of fluctuation and the mean densities appeared 251 

smaller for December surveys. However, for the two instances where a December survey was followed by a March 252 

surveys the following year, the evolutions of the weights were mixed up (increasing for EOM5, decreasing for EOM3, 253 

one increasing and the other one decreasing for EOM1 and EOM4). 254 
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During the cold season, the two months with the largest number of surveys were December and March (Figure 1b). 255 

Although not significant, the temporal weights for EOM 1 to 5 were larger in March compared to December (Figure 256 

9). March was the month used for analyzing relationships with the upwelling intensity index. Correlations with the 257 

upwelling index for the same month (i.e. considering EOM weights during the months of the surveys and the 258 

upwelling indices for the same month during the period 1987-2019) and with a time lag of one to seven months 259 

before showed similar behavior for each of the EOMs of the portfolio. The correlation is significantly negative only 260 

for EOM3 for a 6 months delay (5% level test; Figure 10 left). The upwelling indices in September belonged to the 261 

lower part of the interval of fluctuation and corresponded to low upwelling intensity (Balguerías et al., 2002). The 262 

eight instances available for this study (octopus survey in March and upwelling index available six months before) 263 

covered the full range of possible values observed in September from 1988 to 2019. In particular, they were not 264 

distributed in the tails and hence did not represent a particular situation. 265 

Discussion 266 

The approach of portfolios of distribution maps proposed in this paper relies on a set of criteria to select the empirical 267 

orthogonal maps to be included in the portfolio. These criteria may be case specific and it is hard to avoid subjective 268 

choices. First, similarly to any PCA analysis, one has to choose a threshold for the variance to be explained by the set 269 

of selected maps. For a target value of 60% of explained variance, it can happen, as in our case that three and nine 270 

maps can be enough for summarizing spatial distributions of octopus in two seasons. The aim of the study being to 271 

identify the spatial patterns which were correlated with abundance, we then selected those EOMs whose weights had 272 

significant temporal cross-correlations with abundance. This resulted respectively in one and four spatial patterns in 273 

each seasonal portfolio explaining 47% and 35 % of the overall variance observed over the past thirty years. In other 274 

words, this analysis demonstrated for the first time that half of the information brought by the initial twenty-eight maps 275 

recorded between 1987 and 2019 during the hot season could be summarized by a single distribution map whose 276 

temporal evolution increased and decreased with octopus abundance. During the cold season, the situation was more 277 

complex and the variability could be less easily reduced. Four maps madee up the portfolio for that season and their 278 

recombination based on their respective weights allowed recovering only a third (35%) of the initial variance. There 279 

was thus a more clear and persistent signal for connecting spatial pattern and stock abundance during the hot season, 280 

and thus more possibilities for efficient spatial planning during this season.  281 
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Despites its importance for explaining the overall variance of the distribution maps observed during the cold season, 282 

EOM2 was not selected for the portfolio. Its weights were too variable over time and not sufficiently correlated with 283 

abundance, both in the short and in the long term (Figure 3). In other words, EOM2 represented a spatial pattern that 284 

was important for explaining the variance of the original set of distributions (hence its rank in the decomposition) but 285 

without temporal coherence and without connection to abundance. EOM2 was symptomatic of a coastal hotspot of 286 

abundance south of Cap Timiris (Figure 11) that pulses at random from time to time without contributing much to the 287 

abundance. The portfolio of the cold season explained not more than a third of the overall variance, which indicates 288 

that the spatial distribution of octopus during the cold season were highly variable and poorly linked to abundance 289 

variations. 290 

 291 

The derived climatology aimed at representing the average spatial distribution of octopus over the study period 292 

accounting for the effects of abundance variations on the spatial distribution. The two seasonal climatologies based on 293 

one map for the hot season and on the average of four maps weighted by their average weights for the cold season, 294 

showed similar spatial patterns (not shown). This confirms the known yearlong persistence of a gradient of octopus 295 

density from north to south (Pease, 1973) whose intensity is related to abundance (stronger in years with higher 296 

densities). However, during the cold season, abundance tended to be more offshore with a secondary area of 297 

distribution in the middle of the Mauritanian EEZ. The fact that the portfolio was larger during the cold season could 298 

be linked to an affinity to optimal water temperatures. 299 

 300 

The spatio-temporal decomposition of the time series of thirty-four SST maps covering the period 1986-2020 for each 301 

season provided interesting insights on the spatial distribution of octopus and on the two portfolios generated in the 302 

present study. First, during the hot season, 88% of the variance of the SST input maps was represented by a single 303 

map. During the cold season, the signal was more blurred. Four maps were needed to recover 67% of the variance (the 304 

first one incorporating 38%). This difference in number of maps was similar to the difference between the two 305 

portfolios obtained for octopus even though the levels of variance explained by the portfolio (48% and 35%) were 306 

notably smaller than the percentage of variance explained by the first x EOMs of SST (? %). Second, the main spatial 307 
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patterns in both seasons was a north-south gradient. However, the gradient did not mean the same thing in both seasons. 308 

According to the literature, an optimal window for octopus would likely be centered on 21°C (Villanueva, 1995). The 309 

observed mean SST was around 24°C and 19.5°C during the hot and the cold seasons respectively so that the optimal 310 

window is respectively below and above the mean during the two seasons. Values around 21°C corresponded to 311 

negative areas in SST EOM1 for the hot season (Figure 5). More precisely, the SST in the northern area of EOM1 312 

during the hot season represented an area that was -2°C below the seasonal average. Weighted by 1.5 in the 313 

decomposition of the true SST distributions, this area was thus precisely where one finds systematically SST values 314 

around 21°C during the hot season. There was thus a very strong match between octopus densities and SST main 315 

spatial patterns during the hot season. In the cold season, this gradient was complemented by other patterns accounting 316 

for more than 10% each, that were consistent with the patterns observed in the octopus portfolio (more southern, more 317 

offshore).  Indeed, given the mean SST, the optimal window, if relevant, corresponded to positive areas in the main 318 

maps. In particular, the fourth most important pattern presented in the cold season time series corresponded to a clear 319 

and strong westwards cross-shelf gradient that can be connected to a similar medium signal found in the octopus 320 

portfolio.     321 

The fact that the arrangement of maps in terms of the percentage of variance explained (EOM) strongly matched the 322 

arrangement based on the strength of their spatial structures (MAF) is worth mentioning (Erreur ! Source du renvoi 323 

introuvable.).  The situation could be that the EOMs explaining most of the variance could be maps without spatial 324 

structure, i.e. with hot spots appearing here and there from EOM to EOM. This would be the case for systems with 325 

strong spatiotemporal fluctuations and poor persistence of their spatial distribution over time. In this study, the maps 326 

explaining the most of the variance of octopus spatial patterns are indeed also those with the strongest spatial structures.  327 

In an ideal situation, one would work with a regular spread of scientific surveys over time. This was not the case in the 328 

present study as the timing of the surveys was somewhat opportunistic. For instance, during the cold season, surveys 329 

took place mainly in December (N=10) or in March (N=10) and April (N=8). However, the weights of the EOMs were 330 

not associated with specific months and their differences were not statistically significant. Therefore, the four EOMs 331 

selected for the portfolio of the cold season (November-May) were considered together as the set of principal spatial 332 

patterns that best summarized octopus spatiotemporal distributions during that season. However, the analysis of the 333 

joint temporal dynamics of the weights of the different EOMs highlighted the particular characteristics of EOM3. 334 

While all EOMs of the portfolio shared their long-term trends with that of abundance, the short-term (i.e. year-to-year) 335 
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variations of the weights of EOM3 were also correlated with abundance. EOM3 represented thus a major spatial pattern 336 

of the spatiotemporal dynamics of octopus. It captured a part of the spatial distribution of octopus that is density 337 

dependent. The particular role played by EOM3 was reinforced by the analysis of the correlation with the upwelling 338 

intensity index. Amongst the four EOMs making up the portfolio of the cold season, this was the only one whose 339 

temporal weights showed significant correlation with the upwelling index when considered six months before. Even 340 

though to be interpreted with care given it was based on only eight observations, this result is interesting. While the 341 

phenology between upwelling and primary and secondary productions is well documented, the demonstration of a 342 

delayed impact on octopus distribution is new. The March surveys caught individuals that weight on average one 343 

kilogram (data not shown). These individuals mostly correspond to pre-spawning adults of 9-10 months. They come 344 

from the spawning that took place around May the year before. Given the duration of larvae and para-larvae 345 

developments (Otero et al., 2007, Domain et al., 2000), the end of the pelagic phase for these individuals falls around 346 

August-September. Thus September during which upwelling is usually not intense (Figure 10), coincides with the 347 

period of settlement for the individuals spawned in May. Our results suggest that the less intense the upwelling is in 348 

September, the more spatially concentrated the octopus recruitment is in the following March, with highest occurrence 349 

of octopus off the coast in the central Mauritanian ZEE as indicated by the spatial pattern of EOM3 (Erreur ! Source 350 

du renvoi introuvable.). 351 

The present study suggested that a portfolio of distribution maps and in particular its size can provide novel insights. 352 

During the hot season, only one EOM was needed to summarize the set of observations for octopus compared to four 353 

EOMs for the cold season. The two seasons are of similar durations (five and seven months respectively) and surveys 354 

data were spread across both. Thus, the difference in portfolio size between the two seasons is not attributable to 355 

variations in the timing of the monitoring. Instead, the difference in map portfolio size could be considered a 356 

consequence of a real difference in the spatial dynamics of octopus during the two seasons. The portfolio size quantified 357 

the effective number of spatial patterns of octopus seasonal distributions. It was reduced to a single spatial pattern 358 

during the hot season in the present study. In contrast, the spatial distribution of octopus during the cold season was a 359 

mixture of four principal maps, with the importance (weight) of one being strongly related to the fluctuation of 360 

abundance. 361 

Ecological considerations arising from portfolio size can be of two kinds. Portfolio size measures the complexity of 362 

spatial occupancy patterns and the associated complexity of possible external parameters governing them over time. 363 
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On the one hand, a large portfolio can characterize systems where one process governing biomass distribution can 364 

decrease without impacting the overall system if other processes offset it. On the other hand, systems associated with 365 

a small portfolio size have fewer buffer effects and could be more sensitive to external changes (putting all the eggs in 366 

one basket is risky). Following these lines, a general perspective of this work could be to quantify the size of many 367 

species distribution portfolios and relate them to knowledge about the resilience of the ecosystem the species belong 368 

to. 369 
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 461 

Figure 1 (a) Spatial distribution of sampling stations during the study period. PNBA = Parc National du Banc 462 

d’Arguin. The three latitudinal strata (North, 20°36N-19°15N; Central, 19°15N-17°45N; and South, 17°45N-16°03N) 463 

are represented by dashed lines. (b) Timing of the surveys (month) for each of the hot and cold seasons. The mean and 464 

coefficient of variation of the timing of the surveys by season are given in blue. (c) Number of surveys per year. 465 
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 466 

 467 

Figure 2 Workflow of the method. Upper blue block: building T different EOMs from a set of T maps. Lower orange 468 

block: selecting the P EOM entering the portfolio. In this case, the Q-first EOMs explain a given percent of the overall 469 

variance. Amongst them, the second EOM is not retained as its weights are not sufficiently correlated to the temporal 470 

fluctuations of abundance.   471 
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 472 

Figure 3 Criterion used to define the distribution map portfolio for octopus in Mauritanian waters for the hot (left) 473 

and the cold (right) season. The inset panels represent the percentage of variance explained when including 474 

progressively more and more EOMs. The threshold of 60% was used for selecting the candidate EOMs for building 475 

the portfolio. The main graph shows the position of EOMS with respect to their relationship with octopus abundance. 476 

The x-axis corresponds to the correlation between EOM weights and abundance (the closer to +/- 1, the better). The 477 

y-axis represents the relative values of the slopes of the cross-correlograms between each EOM weights and 478 

abundance, with respect to the maximum possible value (the closer to +/- 1, the better). The size of EOF numbers is 479 

inversely proportional to the percentages of nugget effect in the auto-correlograms of the EOMs’ weights (the larger 480 

the better). The EOMs that allow recovering 60% of the input variance are indicated in red and connected for better 481 

visibility. 482 
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Figure 4 Portfolio of octopus during the hot (left - red) and the cold (right - blue) seasons over the entire study period. 484 

Each plot is made of an EOM with the temporal evolution of its weights, smoothed by a loess method with a span 485 

parameter value of 0.5 and associated 95%-confidence interval. Pie chart indicate the percentage of variance 486 

explained by the EOM (arrows represent the cumulative percentage of variance explained by the current EOM and 487 

the previous ones and the percentage of variance explained by the portfolio). The EOMs that were not selected for the 488 

portfolio are represented in grey.  489 

 490 
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Figure 5. Portfolio of SST during the hot (left - red) and the cold (right - blue) seasons over the entire study period. 491 

Each plot is made of an EOM with its weights (smoothed by nonparametric loess with a span parameter value of 0.5 492 

and associated 95%-confidence interval) and a pie indicating the percentage of variance explained by the EOM 493 

(arrows represent the cumulative percentage of variance explained by the current EOM and the previous ones). 494 

 495 
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 496 

 497 

Figure 6 Analysis of the temporal dynamics of the principal spatial patterns (EOM 1, 3, 4, 5) and of the abundance 498 

for the cold season. Diagonal panels: auto-correlograms; Lower triangle panels: cross-correlograms. For all panels, 499 

the x-axis represents time lags in years (from 0 to 30 years) and the y-axis represents correlations. The horizontal 500 

black dashed line is at 1. For off diagonal panels, the horizontal dotted lines represent the correlations. The panels of 501 

the last line concerns the cross-correlograms of EOM weights with abundance and the auto correlogram for 502 

abundance (last panel). The horizontal red dashed lines represents the correlation between EOM weights and 503 

abundance. The linear model of coregionalisation is represented as a continuous line (nugget effect + slope). The 504 
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isolated panel represents the correlation between abundance and EOM weights as a function of the nugget effect in 505 

the model. 506 

 507 

Figure 7 Cold season. Time series of the abundance (black) and temporal weights of EOM3 (red). 508 

 509 
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 510 

Figure 8. Climatology for the cold season. This corresponds to the mean of the EOMs selected in the portfolio 511 

weighted by their mean weights. The scale is consistent with the input octopus densities (i.e. nb of individual per m2). 512 

 513 
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 514 

Figure 9 Portfolio for the cold season. Distribution of the EOMs’ weights as a function of the EOM numbers for March 515 

and December surveys. The weights for the surveys carried out in March (N=10) are represented in black. The weights 516 

for surveys performed in December (N=10) are given in red. The average values are superimposed. For the two 517 

instances where a December survey is followed by a March surveys three months later, the evolutions of the weights 518 

are represented by doted segments. 519 
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 520 

Figure 10 Portfolio of the cold season. Correlation between the weights of EOM3 and the upwelling index. Left: lagged 521 

correlations between EOM3 weights in March and the upwelling index 6 months earlier. Right: boxplot of upwelling 522 

indices for all months expect September versus upwelling indices in September (i.e. 6 months before March). In red 523 

the values for the nine years when a survey was performed in March with concomitant upwelling observations. 524 

 525 

Figure 11. Left: Empirical Orthogonal Map EOM2 of octopus for the cold season. This EOM was not selected for the 526 

portfolio. Right: temporal evolution of its weights smoothed by a loess method with a span parameter value of 0.5 and 527 

associated 95%-confidence interval. 528 



30 
 

 529 

Figure 12 Comparison between the MAF and the EOM arrangements for the hot (left) and the cold (right) season for 530 

octopus in Mauritanian waters. The green connections concern the Q first EOMs explaining 60% of total variance. 531 
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