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Aim: This study aims to identify the octopus’s main recurrent spatial patterns, a cornerstone 
stock of the Mauritanian ecosystem, during each spawning season. Furthermore, it coins the 
map portfolio concept and shows how it can be developed in real case studies. 

Location: Mauritania 

Taxon: Octopus vulgaris 

Methods: The principal spatial maps are a subset of the empirical orthogonal maps of the full 
dataset. Maps are first selected so as to recover 60% of the input variability. Amongst them, 
maps whose amplitude through time were significantly correlated with abundance are 
subselected. 

Results: During the hot season, one single principal map explains half (48%) of the overall 
variability of the initial data. Its amplitude is strongly correlated with the abundance of 
octopus. During the cold season, the biogeography of octopus is more composite. Ten spatial 
patterns are needed to explain 62% of the initial variability. Five of these are correlated with 
abundance and have strong spatial structures. One map shows a significant correlation with 
the upwelling index six months before and represents the part of the spatial patterns 
connected with this key environmental factor. 

Main conclusions: Based on octopus case study, the concept of a map portfolio is put 
forward. In the present case, its size represents the number of spatial patterns from which 
the octopus mainly composed its distribution over the past three decades. Assuming that 
specific but hidden processes explain each biomass distributions of the portfolio, its size 
could be a proxy for the systems’ resilience. For a large portfolio, a process could decrease 
without damaging the overall system if compensated by an other process. Small portfolio 
could be symptomatic of more fragile systems. One perspective of this work could be to 
quantify the sizes of many portfolios and connect them to knowledge about the resilience of 
the system they characterize. 

  



Introduction 

In ecology, monitoring and information systems are more and more numerous worldwide. 
They are key to providing long-term and sometimes very long-term observations. They 
contribute to drawing perspective, which is particularly important when dealing with 
reference points, tipping points, or regime shifts. Aside from their maintenance, one of the 
main challenges associated with the monitoring system is making the best out of them in 
terms of scientific knowledge. A recurrent challenge, for instance, is to evaluate whether we 
can define the main spatial patterns that emerge from large sets of georeferenced 
observations; and, if so, to evaluate how stable or variable these main spatial patterns are 
through time. 

In marine ecosystems, numerous case studies exist with standardized and constant protocols 
in the long run (the list of regular scientific surveys performed on a routine base is quite long, 
and giving references would be either too long or restrictive). Amongst all, the ideas 
developed in this paper are illustrated in a specific case study devoted to octopus (Octopus 
vulgaris) off Mauritania over the past thirty years. Octopus represents a key species of the 
marine ecosystem both in ecological and economic terms, which fluctuates over large spatial 
and temporal scales (Boyle & Boletzky, 1996; Caddy, 1983). This variability in abundance is 
mainly a consequence of fluctuations in recruitment that are partly dependent on 
environmental conditions, especially the intensity of upwelling (Caverivière et al., 1999; 
Otero et al., 2008) and of the existence of two spawning periods that take place under distinct 
environmental conditions (Faure et al., 2008). 

Since 1982, a dedicated monitoring system has been developed to feed the scientific process 
of providing advice to octopus management bodies (Gascuel et al., 2007). At its heart, the 
Mauritanian scientific community has performed a large time series of scientific surveys 
providing information on octopus spatial distributions through time, of which recurrent 
spatial patterns and/or tipping points of change in spatial distribution would be important 
to track. Revealing the mechanisms that shape the spatial distribution of the Octopus vulgaris 
through time requires that we can identify if they exist, some spatial patterns that best 
characterize the spatial distribution of the Octopus. 

 This study aims to develop a generic framework for simplifying the overall spatio-temporal 
information contained in a substantial time series of spatial distributions into a product of 
two simple and independent signals, one time-dependent and the other, possibly low-
dimensional, space-dependent. This framework is based on empirical orthogonal functions 
(EOFs) (Lorenz, 1956). The number of output factors is often reduced to a few key factors 
that are represented as spatial distributions. However, EOFs are not, per se, spatial. The 
results are not sensitive to the geographic location of the input data. The min-max 
autocorrelation factor (MAF) (Switzer & Green, 1984) can be seen as an extension of EOFs to 
deal with the presence of spatial structure in the data and has led to some relevant 
applications in ecology (Petitgas et al., 2020; Solow, 1994; Woillez et al., 2009). However, 
MAF was initially designed to filter out small-scale noise from a set of images. So the 
percentage of variance explained by the selected factors is unknown. 



In a recent paper, (Bez et al., 2022) suggested that MAF could be appropriately reformulated 
into Empirical Orthogonal Maps (EOMs) that order the factors according to the percentage of 
variance they explained. Therefore, the initial set of distribution maps can be reduced to a 
small number of principal orthogonal maps, primarily losing as less as possible information 
and, secondly, promoting as much as possible maps having the strongest spatial 
autocorrelation. The present work first defines how the empirical orthogonal maps are 
formulated and selected, and then indicates a possible way to analyze their mutual temporal 
variations. Based on this well-established methodology, we characterize the biogeography of 
octopus in Mauritanian waters by exhibiting empirical orthogonal maps of a large time series 
of sixty-one different scientific surveys over the period 1987- 2017. In conclusion, we 
address the possibility of formalizing the map portfolio concept. In particular, the size of the 
map portfolio, i.e., the number of principal spatial distributions needed to summarize each 
spawning season, is presented as an interesting concept to explore further. 

 

Materials and methods 

Scientific monitoring surveys 

Between 1987 and 2018, the Mauritanian Institute of Oceanographic Research and Fisheries 
(IMROP) performed sixty-one scientific bottom trawl demersal surveys over its continental 
shelf (Figure 1a). The sampling protocol was standardized over the entire period and 
followed a stratified random protocol based on three latitudinal strata (Figure 1). The target 
was to record between 100 and 120 samples per survey, equally distributed over strata. The 
observations consisted of the octopus density expressed in the number of individuals per 
square meter obtained by dividing the catches by the surface of the area swept by the 
trawl.  These were considered an indicator of abundance under the assumption that the 
catchability of the gear remains constant. More details on these data are available in (Gascuel 
et al., 2007), (Meissa et al., 2013), (Meissa & Gascuel, 2015). 

For each survey, the positions of the stations were randomly selected and mutually 
independent. The observations were thus not collected at the same points every time (full 
heterotopy;(Wackernagel, 2003)). Data were kriged on a 0.1° x 0.1° grid covering the 
sampling area before analysis to generate isotopy.  A block kriging was performed to estimate 
the mean octopus density by grid cell. The input data of the analyses were thus the sixty-one 
kriging maps.  

Upwelling strength over the same period was built from a monthly dataset of the meridian 
component (North-South) of composite wind speeds over the Mauritanian zone, 50 to 100 
km from the coast. This proxy was considered the best proxy linearly linked to the upwelling 
index for a North-South oriented coast (Demarcq & Faure, 2000), which is the case for the 
study area. 



 

Figure 1 (a) Spatial distribution of sampling stations during the study period. PNBA = Parc 
National du Banc d’Arguin. The three latitudinal strata (North, 20°36N-19°15N; Central, 
19°15N-17°45N; and South, 17°45N-16°03N) are represented by dashed lines. (b) Timing of the 
surveys for each of the hot and the cold seasons. The mean and the coefficient of variation of the 
timing by season are given in blue. 

 

Four unequal climatic seasons are generally distinguished in the Mauritanian zonev 
(Dobrovine et al., 1991). A cold season from January to May, a cold-warm transition season 
from June to July, a hot season from August to October and a hot-cold transition season from 
November to December. These four seasons were aggregated into two main seasons of five 
and seven months respectively: the hot season from June to October including 27 of the 61 
available surveys, and the cold season for the rest of the year (November-December and 
January-May) including the remaining 34 surveys (Figure 1b). The precise timing of the 
surveys within each season was opportunist rather than following a predefined sampling 
protocol. This led to irregular spreading of the surveys which was of the same level in each 
season (same coefficients of variation; Figure 1b). 

 

 



Empirical orthogonal maps 

The concept of empirical orthogonal maps (Bez et al., 2022), see graphical abstract (Figure 
2), was recently coined as a declination of the Min-max autocorrelation factor (Switzer & 
Green, 1984) where the factors are ordered according to their contribution to the input 
variance. The first EOM corresponds to the principal map explaining most of the input 
variance, and so on down to the last EOM.  This approach also attributes coordinates to each 
observed spatial distribution into an orthogonal space whose axes correspond to EOMs.   

Building EOMs 

Notations used in this study allow switching between matrix writing (upper case) used in the 
supporting information (see Appendix), and spatio-temporal writing (lower case) that makes 
the spatio-temporal factorization more explicit. We denote 𝑥𝑖 , 𝑖 = 1, … , 𝑆 the geographical 
positions of the 𝑆 grid nodes that were systematically informed (isotopy) at time 𝑡𝑗 , 𝑗 =

1, … , 𝑇, 𝑇 being the number of input maps(𝑆 = 533, 𝑇 = 61). The matrix of all observations 

is an 𝑆 × 𝑇 matrix denoted 𝑍[𝑖, 𝑗] = 𝑧(𝑥𝑖 , 𝑡𝑗). The rows 𝑧𝑖 = 𝑍[𝑖,⋅] are vectors with size 𝑇 

(called 𝑇-vectors) corresponding to the observations at a given position 𝑥𝑖  over time. The 
columns 𝑧𝑗 = 𝑍[⋅, 𝑗] are 𝑆-vectors corresponding to the observations for the input map that 

took place at time 𝑡𝑗 . Computing EOMs consists of two sequential PCAs. The first PCA, which 

is nothing but an EOF, produces an 𝑆 × 𝑇 matrix, denoted 𝑌, with 𝑇 uncorrelated variables 

usually called factors, 𝑦𝑗 = 𝑦(⋅, 𝑡𝑗): 

𝜌𝑦𝑗,𝑦𝑗′(0) =< 𝑦𝑗 , 𝑦𝑗′ >= ∑ 𝑦

𝑆

𝑖=1

(𝑥𝑖 , 𝑡𝑗)𝑦(𝑥𝑖, 𝑡𝑗′) = 0 ∀𝑗 ≠ 𝑗′ 

In the spatio-temporal context, each factor is a set of georeferenced point, i.e. a map, that is 
uncorrelated to the others. The absence of correlation between factors refers to pointwise 
correlation, therefore, to the absence of correlation between factors’ values at the same 
geographical points. However, these factors may exhibit spatial correlations because the 
covariance between columns of 𝑌 for different points (i.e. rows) may not be zero. The second 

PCA aims at building 𝑇new factors 𝜓𝑗 = 𝜓(⋅, 𝑡𝑗) without mutual spatial correlation for a given 

spatial distance 𝜎 (a trivial spatial lag corresponds to the pixel size of the input maps), that is 
with the following null scalar products: 

𝜌𝜓𝑗,𝜓𝑗′(𝜎) = ∑[𝜓𝑗(𝑥𝑖), 𝜓𝑗′(𝑥𝑖 + 𝜎)]

𝑆

𝑖=1

= 0 ∀𝑗 ≠ 𝑗′ 

Finally, we obtain a set of new maps called empirical orthogonal maps – EOMs which are 
mutually uncorrelated for distance 0 and distance 𝜎. Assuming that they are also orthogonal 
for all distances, allowed considering that they are fully spatially orthogonal.  This leads to 

the following factorization of the initial spatio-temporal variables 𝑧(𝑥𝑖 , 𝑡𝑗) into a product of 



two components, one component made of a set of spatially uncorrelated maps denoted 

𝜓𝑘(𝑥𝑖), and the other component made of their temporal scores or amplitudes 𝑐𝑘(𝑡𝑗). 

𝑧(𝑥𝑖 , 𝑡𝑗) = 𝑚(𝑡𝑗) + ∑ 𝑐𝑘

𝑇

𝑘=1

(𝑡𝑗) × 𝜓𝑘(𝑥𝑖) 

where 𝑚(𝑡𝑗) is the average of each input map. At this stage, the decomposition is performed 

without losing any information. The two writings are fully equivalent. EOMs can be computed 
for raw or standardized map sets in their full genericity. The pseudo-algorithm provided in 
the supplementary material highlights the main steps in computing EOMs when the first PCA 
is applied to standardized ones. 

The signs of the values of the EOMs and their scores are conventional. Therefore, their 
interpretation must be established jointly. For example, the interpretation of an EOM whose 
scores are all negative in the decomposition is strictly equivalent its symmetry with respect 
to 0 when taking the symmetry of both the EOM and its scores. Therefore, the EOM values 
must be interpreted in conjunction with their scores. 

Selection of the most relevant EOMs 

Being a PCA type of approach, one can reduce the number of principal maps down to a small 
enough number to capture a significant part of the variability of the original maps without 
losing too much of the input information. The approximation of the input maps by the first 𝑄 
EOMs writes: 

𝑧̂(𝑥𝑖 , 𝑡𝑗) = 𝑚(𝑡𝑗) + ∑ 𝑐𝑘

𝑄

𝑘=1

(𝑡𝑗)𝜓𝑘(𝑥𝑖) 

The selection of the EOMs kept for the analysis was based on the following three 
embedded  criteria:  the percentage of variability they explained, with a target of explaining 
at least 60% of the input variability, the strength of their spatial structure, with a target to 
get small percentage of nugget effect and, the statistical significance of their linear 
relationship with abundance (p-value of the linear regression slope between abundance and 
their coefficients smaller than 5%). 

Temporal joint dynamic of the principal distributions 

When several principal spatial patterns were selected, their temporal joint dynamic was 
investigated through simple and cross-variograms (Chilès & Delfiner, 2012) of the EOMs’ 
temporal scores. To facilitate the interpretations, the cross-variograms were scaled to cross-
correlations. A linear model of coregionalization (Wackernagel, 2003) was inferred 
according to (Goulard & Voltz, 1992) and was used to diagnose the mutual temporal 
dependencies between time series of EOM’s scores. Temporal cross correlations with 
abundance wer also investigated. 



Climatology 

When several principal spatial patterns were selected, a climatological spatial pattern was 
also computed by an average of the selected EOMs weighted by their average coefficients: 

𝑧‾𝑄(𝑥𝑖) = 𝑚‾ +
∑ 𝑐‾𝑘

𝑄
𝑘=1 × 𝜓𝑘(𝑥𝑖)

∑ 𝑐‾𝑘
𝑄
𝑘=1

 

where 𝑐‾𝑘 is the mean amplitude of a given selected EOM over time: 

𝑐‾𝑘 =
1

𝑇
∑ 𝑐𝑘

𝑇

𝑖=1

(𝑡𝑗),  𝑘 = 1, . . . , 𝑄 

and where𝑚‾ is the mean abundance over time: 

𝑚‾ =
1

𝑇
∑ 𝑚

𝑇

𝑖=1

(𝑡𝑗) 

 

Figure 2. Graphical abstract of the method. 

 



Results 

In the Mauritanian zone, the existence of two annual cohorts of octopus with two distinct 
spawning seasons ((Hatanaka, 1979); (Bez et al., 2022)) justifies the implementation, 
separately, of this approach for each of the two seasons. 

 

Figure 3. Descriptive statistics of the EOM. Percentage of variance explained by increasing 
nested sets of EOMs and percentage of nugget effect in the EOM spatial structure. Hot season 
(left) and cold season (right). Black features correspond to EOMs whose coefficients are 
significantly correlated to abundance over time (p-value < 0.05). 

 

Maps portfolio of the hot season 

The main octopus breeding season is during the hot season in Mauritanian waters (from June 
to October). The results indicate that the first EOM alone restores 48% of the variability of 
the observed data (Figure 3), and the first three recover 60% of the initial variability and 
have well defined spatial structures without local heterogeneity (no nugget effect). The 
scores of the first principal map (EOM1) show a strong correlation with the abundance 
(correlation = 0.79; p-value = 7.4e-07; Figure 4) while the second (EOM2) does not show 
significant linear relationships. Although the third shows a significant correlation with 
abundance, it is not spatially structured. Thus, the hot season portfolio was only made of the 
first principal map. It is characterized by a north-south gradient, with a rich area in the north 
(especially in its wide part), a moderately rich area in the center and a poor area in the south 
(Figure 4). The temporal evolution of the scores of the first principal map shows three 
different phases. There is a sharp decrease over the first five years followed by a flat behavior 
and a positive recovering trend over the past twenty years. 

 



 

Figure 4. First EOM (left), and the temporal evolution of its coefficients smoothed by a 
polynomial of degree 4. The correlation plot (top right) crosses mean abundance and EOMs’ 
scores. 

 

Maps portfolio of the cold season    

The results indicate that the spatio-temporal complexity is more pronounced during the cold 
season than during the hot season (Figure 3). No spatial pattern was predominant on its own. 
Indeed, the first EOM explains only 18% of the variability of the input spatial data and the 
first ten EOMs restore 62% of the variability. Five of these top ten EOMs, respectively the 1st, 
2nd, 4th, 5th and 9th , show significant correlations with the observed mean abundance, 
however with a different order (𝜌2,𝐴𝑏 = 0.76 > 𝜌4,𝐴𝑏 = 0.62 > 𝜌5,𝐴𝑏 = 0.58 > 𝜌1,𝐴𝑏 =
0.49 and 𝜌9,𝐴𝑏 = 0.55 for the EOM9 that was put aside for reasons explained below). 

The spatial pattern of the first EOM is similar to that of the hot season, characterized by an 
overall north / south gradient with a slightly different temporal evolution. The 2nd EOM 
represents a rich area south of Nouakchott, offshore, and a poor area in the extreme south. 
The 4th EOM highlights two rich zones, the north and the central zones, that correspond to 
the main zones of the presence of the population in general (Faure et al., 2008). This spatial 
pattern reinforces, to the north, the spatial pattern of the first EOM1, but complements it in 
the central zone. The last two EOMs correlated with abundance, namely the 5th and the 9th, 
display across-shelf gradient patterns, opposing poor coastal areas to rich offshore areas. 

The selected EOMs have similar long term temporal variations of their scores (Figure 5). They 
decrease at the beginning of the period, then flatten and slightly increase during 2010-2015. 
At short temporal scales, in the late 90s, a substitution effect is noticeable between EOM 1 
and 2 whose scores show opposite values regarding the trend (EOM 2 grows while EOM 1 
diminishes). 



The climatological spatial pattern associated with the cold season is characterized by two 
rich areas rather offshore (Figure 5, Right). A northern zone off Cape Blanc whose epicenter 
is located between the bathymetric lines of 80 and 200m. A second zone, south of the Cap 
Timiris (in the middle of the central zone), with an extension to a bathymetric level close to 
that of the northern zone. 

 

Figure 5. Left: principal maps (maps’ portfolio) of the cold season and their temporal evolution. 
A smoothing by a polynomial of degree 4 is superimposed (solid lines). Right: average spatial 
patterns of the cold season (climatology). 

 

The scores of the selected EOMs are not statistically different for surveys carried out in 
December and in March or April (Figure 6), except for EOM9 whose scores are larger in 
March-April than in December (Student p-value = 0.008).   

 



 

Figure 6. Distribution of the EOMs’ scores as a function of the timing of the input surveys. The 
scores for the surveys carried out in March and April (N=17) are represented in black. The scores 
for surveys performed in December (N=10) are given in red. The polygons delineate the average 
+/- the standard deviations. 

The joint temporal variations of the EOMs’ scores and abundance was explored by analyzing 
their temporal simple and cross-correlograms. One EOM, namely EOM9, shows clear periodic 
variations of 6 years (Figure 7a). Its analysis is summarized to the next section dedicated to 
correlation with the upwelling intensity. The four other scores time series are composed of 
two temporal processes with contrasting temporal scales: a pure noise called the nugget 
effect (intercept) and long term linear trends (Figure 8, diagonal panels). It can be noticed 
that the two processes are well balanced except for EOM2 for which the part of the pure 
random noise is predominant (72%). The intercept corresponds to the part of the spatial 
pattern that varies from year to year without any memory. The linear part corresponds to 
long-term memory similar to that of a random walks process. 

The cross-correlograms (Figure 8, lower triangle black boxes) indicate no nugget effects 
(except the cross-correlogramm between EOM1 and 2 which shows small negative short-
term temporal correlation). This result indicates that temporal variations of the principal 
maps are correlated in the long term but that their year-to-year fluctuations are independent. 

The analysis of the temporal cross-correlograms between the EOMs’ scores and the 
abundance shows that the fluctuations of the temporal correlations are due to the nugget 
effect only (Figure 8, lower triangle red boxes). In other words, EOM2 is more correlated over 
time to abundance than EOM1 because the year-to-year fluctuations of EOM2 are more 
correlated with abundance than those of EOM1. However, the medium to long term parts of 



the different signals are shared similarly (linear parts of the model). The cross-variogram 
between EOM2 and abundance is proportional to the simple variogram of abundance (but 
not to the variogram of EOM2). In geostatistical terms, this means that abundance is self-
krigeable regarding EOM2 (Chilès & Delfiner, 2012). Thus, the residual from the regression 
of the EOM2’s scores against abundance is a temporal white noise, i.e. a residual with no 
temporal auto-correlation (Figure 7). In practice, the reverse would have been more 
interesting, i.e. the possibility of inferring abundance from the score of the second principal 
map. However, this point is not supported by the observations. 

 

Figure 7. Analysis of the coefficients of EOM9 (cold season). Left: simple temporal variogram. 
Right: shifted correlation with upwelling index, one to eleven months before. Black rounds 
indicate shifts for which the correlation was significantly non-zero at the 5% level. 



 

Figure 8. Analysis of the dynamic of the non-periodic principal spatial patterns (EOM 2, 4, 5, 1) 
for the cold season. EOMs are ordered by decreasing levels of correlation with abundance. The 
simple variograms are on the diagonal and the cross variograms on the lower triangles. Figures 
in black boxes correspond to the EOM between them. Figures in red boxes correspond to the 
analysis of the relationships with abundance. The linear model of coregionalization for the 
EOMs’ coefficient and the abundance is superimposed on the empirical outputs. 



 

Figure 9. Time series of the abundance (grey) and the coefficient of the second EOM (black). 

 

Relationship between the pseudo-periodic EOM and coastal upwelling index 

EOM9’s scores show an inter-annual periodic behavior and deserved analysis of its 
correlation with (a proxy of the monthly mean) upwelling indices in the area. This aim is to 
identify a possible link between the biogeography of the species described by EOM9 and the 
variability of some environmental conditions. While the octopus is a sedentary species during 
its adult phase, the para-larvae and planktonic phase, which lasts around three months, is 
likely influenced by the upwelling intensity. A delay in the correlation between the two was 
thus expected. It appears to be significantly different from 0 and negative, at the 5% null 
hypothesis threshold, with lags of 6 and 7 months (Figure 7 b). 

 

Discussion 

The fact that the arrangement of principal maps in terms of the percentage of variance they 
explained (EOM) strongly matches the arrangement based on the strength of their spatial 
structures (MAF) is worth mentioning. It may be that the most important principal maps are 
the maps without spatial structure, with hot spots appearing here and there from survey to 
survey. In this study, spatial patterns are recurrent, and looking for climatologies was an 
appropriate step. 



In an ideal situation, one would obtain a regular spread of the scientific surveys over time. 
This was not the case in the present study. For instance, during the cold season, surveys took 
place mainly in December (N=10) or in March (N=9) and April (N=8). However, the EOMs are 
not associated with specific months or a couple of months. For instance, EOM5 is not 
dominant for restoring distribution maps observed in March and April, while EOM4 can 
explain those of December. Therefore, the five EOMs selected for the cold season (November-
May) were considered, as a whole, as the set of principal spatial patterns that best 
summarized the octopus spatio-temporal distribution during that season. The analysis of the 
joint temporal dynamics of the different EOMs highlighted possible underlying processes 
explaining their mutual correlations. In particular, EOM1, 2, 4, and 5 share the long-term 
trends while year-to-year variations are independent. In other words, during the cold season, 
the importances of the four principal maps fluctuate jointly and smoothly on the scale of 
several years, but not from year to year, where one could gain in importance while the others 
diminish. 

The results indicate that the amplitude of EOM9 is periodic and significantly correlated to the 
upwelling activity six or seven months before. Meanwhile, the coefficients of EOM9 
contributed significantly more to the March-April surveys than to those that took place in 
December. Thus, if we consider that EOM9 represents part of the spatial pattern that 
occurred in March-April, the six-seven-month delay in the correlation indicates upwelling 
conditions in August-September. Indeed, this is when it is at its minimum in terms of mixing 
energy and at its maximum in terms of water temperature (Arfi, 1987; Demarcq & Faure, 
2000). The upwelling also demonstrates clear seasonal periodicities of six and twelve 
months. These different results suggest that the spatial pattern described by EOM9, with 
areas of high abundance offshore, occurred in spring when upwelling intensity is particularly 
low in late summer, i.e., when Ekman transport is low. This could be explained by a better 
settlement of octopus paralarvae that rise after spawning, which usually peaks earlier in 
summer (Balguerías et al., 2002). 

The present study and the results suggest that a map portfolio’s concept, particularly its size, 
can be of interest. During the hot season, the effective number of maps needed to summarize 
the set of observations is one, while it increases to five for the cold season. These two seasons 
achieved relatively identical temporal windows (five and seven months respectively) with a 
similar spread of survey dates within seasons. Thus, the difference in map portfolio size 
between the two seasons is not attributable to variations in the timing of the monitoring 
protocol. Instead, the difference in map portfolio size could be considered a consequence of 
a real difference in the spatial dynamics of octopus between the two seasons. The portfolio 
size quantifies the effective number of spatial patterns among which the octopus mainly 
composes its distribution. This was reduced to a single spatial pattern during the warm 
season in the present study. In contrast, the spatial distribution of octopus during the cold 
season was a mixture of five possible principal maps, one of which was related to the strength 
of the upwelling. 

Ecological considerations arising from portfolio size can be of two kinds. Portfolio size 
measures the complexity and variability of spatial occupancy patterns and, the associated 
complexity and variability of possible external parameters governing them over time. On the 
one hand, large portfolio can characterize resilient systems: one process governing biomass 



distribution can decrease without damaging the overall system if it is offset by other 
processes. On the other hand, systems associated with a small portfolio have less buffer 
effects and could be more fragile to external changes. Putting all the eggs in one basket is 
risky. Following these lines, a general perspective of this work could be to quantify the sizes 
of many portfolios and relate them to knowledge about the resilience of the system they 
characterize. 

  



Appendix 

The following pseudo-algorithm highlights the main steps for calculating EOMs when the first 
PCA applies on standardised data (the meaning of the various superscript notations are the 
following: 𝑠 means standardised, 𝑡 means transposed and −1 means inverse): 

1. Subtract the mean of each input map. Mean abundances over the study area were 
estimated by averaging each kriging map and were expressed in numbers of 
individual per square meter. Build 𝑍𝑠 = 𝑍𝐷𝑠−1  their standardized version (centred 
and reduced) where 𝐷𝑠−1 is a 𝑇 × 𝑇 diagonal matrix with the inverse of the standard 
deviation of the input maps on the diagonal. This step is often implicit in principal 
component analyses. 

2. Calculate 𝜌 the 𝑇 × 𝑇 correlation matrix of 𝑍, that is the variance matrix of 𝑍𝑠 . 

3. Diagonalize 𝜌 = 𝑉𝐷𝜆𝑉𝑡 to obtain the diagonal matrix 𝐷𝜆 of the eigenvalues and the 
matrix𝑉of the corresponding eigenvectors. 

4. Calculate 𝑌 = 𝑍𝑠𝑉 the projection of 𝑍𝑠  in the space formed by the eigenvectors. 

5. Reduce 𝑌 into 𝑌𝑠 = 𝑌𝐷1/√𝜆 = 𝑍𝑠𝑉𝐷1/√𝜆. 

6. Calculate the matrix 𝛾𝜎  equals to twice the values of the simple and cross variograms 
of  𝑌𝑠  (for a chosen distance lag 𝜎). 

7. Find the eigen-elements 𝜆𝜎 and 𝑉𝜎 of 𝛾𝜎  and rearrange them according to the variance 
explained in descending order (Bez et al., 2022). The rearrangement makes the 
difference between MAF (Switzer & Green, 1984) and EOM (Bez et al., 2022) 
decompositions. 

8. Compute the EOM factors as 𝜓 = 𝑌𝑠𝑉𝜎 = 𝑍𝑠𝑉𝐷1/√𝜎𝑉𝜎 = 𝑍𝑠𝑃 where 𝑃 represents the 

linear operator that transforms the set of standardized input maps into a set of 
mutually uncorrelated standardized maps. 

9. Calculate the temporal coefficients also referred to as amplitude of the decomposition 
𝐶 = 𝑃−1𝐷𝑠. Matrix 𝐶reads horizontally the time evolution of the importance of a given 
EOM, and matrix 𝐶 reads vertically the linear combination of EOM required to recover 

a given input maps. In particular: 𝐶[𝑘, 𝑗] = 𝑐𝑘(𝑡𝑗). 

  



Bibliography 

Arfi, R. (1987). Variabilité interannuelle de l’hydrologie d’une région d’upwelling (bouée 

Bayadère, Cap Blanc, Mauritanie). Oceanologica acta, 10(2), 151-159. 

Balguerías, E., Hernández-González, C., & Perales-Raya, C. (2002). On the identity of Octopus 

vulgaris Cuvier, 1797 stocks in the Saharan Bank (Northwest Africa) and their spatio-

temporal variations in abundance in relation to some environmental factors. Bulletin of 

Marine Science, 71(1), 147-163. 

Baudrier, J., Lefebvre, A., Galgani, F., Saraux, C., & Doray, M. (2018). Optimising French fisheries 

surveys for marine strategy framework directive integrated ecosystem monitoring. Marine 

Policy, 94, 10-19. https://doi.org/10.1016/j.marpol.2018.04.024 

Bez, N., Renard, D., & Ahmed-Babou, D. (2022). Empirical Orthogonal Maps (EOM) and distance 

between empirical spatial distributions. Application to Mauritanian octopus distribution over 

the period 1987-2017. https://hal.archives-ouvertes.fr/hal-03338408 

Blangiardo, M., Cameletti, M., Baio, G., & Rue, H. (2013). Spatial and spatio-temporal models with 

R-INLA. Spatial and Spatio-Temporal Epidemiology, 4, 33-49. 

https://doi.org/10.1016/j.sste.2012.12.001 

Boyle, P. R. (1996). Cephalopod populations : Definition and dynamics. Philosophical 

Transactions of the Royal Society of London, 351(1343), 985-1002. 

Caddy, J. F. (1983). The cephalopods : Factors relevant to their population dynamics and to the 

assessment and management of stocks. Advances in assessment of world cephalopod 

resources, 231, 416-449. 

Caverivière, A., Domain, F., & Diallo, A. (1999). Observations on the influence of temperature on 

the length of embryonic development in Octopus vulgaris (Senegal). Aquatic Living 

Resources, 12(2), 151-154. 

Chiles, J. P., & Delfiner, P. (2009). Geostatistics : Modeling Spatial Uncertainty (Vol. 497). John 

Wiley & Sons. 

Demarcq, H., & Faure, V. (2000). Coastal upwelling and associated retention indices derived 

from satellite SST. Application to Octopus vulgaris recruitment. Oceanologica Acta, 23(4), 

391-408. https://doi.org/10.1016/S0399-1784(00)01113-0 

Diallo, M., Jouffre, D., Caverivière, A., & Thiam, M. (2002). The demographic explosion of Octopus 

vulgaris in Senegal during the summer 1999. Bulletin of marine science, 71(2), 1063-1065. 

https://doi.org/10.1016/j.marpol.2018.04.024
https://hal.archives-ouvertes.fr/hal-03338408
https://doi.org/10.1016/j.sste.2012.12.001
https://doi.org/10.1016/S0399-1784(00)01113-0


Dobrovine, B., Ould Mohamed Mahfoud, M., & Ould Sidina, D. (1991). La ZEE mauritanienne et 

son environnement géographique géomorphologique et hydroclimatique. Bulletin Scientifique 

du CNROP. https://aquadocs.org/handle/1834/518 

Faure, V., Inejih, C., Demarcq, H., & Cury, P. (2008). The importance of retention processes in 

upwelling areas for recruitment of Octopus vulgaris : The example of the Arguin Bank 

(Mauritania). Fisheries Oceanography, 9, 343-355. https://doi.org/10.1046/j.1365-

2419.2000.00149.x 

Gascuel, D., Labrosse, P., Meissa, B., Taleb Sidi, M. O., & Guénette, S. (2007). Decline of demersal 

resources in North-West Africa : An analysis of Mauritanian trawl-survey data over the past 

25 years. African Journal of Marine Science, 29(3), 331-345. 

Girardin, M. (1990). Evaluation par chalutage des stocks démersaux du plateau continental 

mauritanien en 1987 et 1988. Bulletin Scientifique du CNROP, 21. 

http://hdl.handle.net/1834/807 

Goulard, M., & Voltz, M. (1992). Linear coregionalization model : Tools for estimation and choice 

of cross-variogram matrix. Mathematical Geology, 24(3), 269-286. 

Hatanaka, H. (1979). Studies on the fisheries biology of common octopus off the northwest coast 

of Africa. Bull. Far Seas Fish. Res. Lab., 17, 13-124. 

Katsanevakis, S., & Verriopoulos, G. (2006). Seasonal population dynamics of Octopus vulgaris in 

the eastern Mediterranean. ICES Journal of Marine Science, 63(1), 151-160. 

https://doi.org/10.1016/j.icesjms.2005.07.004 

Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between Gaussian fields and 

Gaussian Markov random fields : The stochastic partial differential equation approach. 

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), 423-498. 

https://doi.org/10.1111/j.1467-9868.2011.00777.x 

Lorenz, E. N. (1956). Empirical orthogonal functions and statistical weather prediction (Vol. 1). 

Massachusetts Institute of Technology, Department of Meteorology Cambridge. 

Meissa, B., & Gascuel, D. (2015). Overfishing of marine resources : Some lessons from the 

assessment of demersal stocks off Mauritania. ICES Journal of Marine Science, 72(2), 

414-427. 

Meissa, B., Gascuel, D., & Rivot, E. (2013). Assessing stocks in data-poor African fisheries : A case 

study on the white grouper Epinephelus aeneus of Mauritania. African Journal of Marine 

Science, 35(2), 253-267. 

https://aquadocs.org/handle/1834/518
https://doi.org/10.1046/j.1365-2419.2000.00149.x
https://doi.org/10.1046/j.1365-2419.2000.00149.x
http://hdl.handle.net/1834/807
https://doi.org/10.1016/j.icesjms.2005.07.004
https://doi.org/10.1111/j.1467-9868.2011.00777.x


Morfin, M., Fromentin, J.-M., Jadaud, A., & Bez, N. (2012). Spatio-Temporal Patterns of Key 

Exploited Marine Species in the Northwestern Mediterranean Sea. PLoS ONE, 7(5), e37907. 

https://doi.org/10.1371/journal.pone.0037907 

Otero, J., Álvarez-Salgado, X. A., González, Á. F., Miranda, A., Groom, S. B., Cabanas, J. M., Casas, G., 

Wheatley, B., & Guerra, Á. (2008). Bottom-up control of common octopus Octopus vulgaris 

in the Galician upwelling system, northeast Atlantic Ocean. Marine Ecology Progress Series, 

362, 181-192. 

Petitgas, P., Renard, D., Desassis, N., Huret, M., Romagnan, J.-B., Doray, M., Woillez, M., & 

Rivoirard, J. (2020). Analysing Temporal Variability in Spatial Distributions Using Min–Max 

Autocorrelation Factors : Sardine Eggs in the Bay of Biscay. Mathematical Geosciences, 

52(3), 337-354. https://doi.org/10.1007/s11004-019-09845-1 

RGeostats : The Geostatistical R Package. Version : 12.0.0. Free download from : 

Http://rgeostats.free.fr/. (s. d.). 

Semmens, J. M., Pecl, G. T., Villanueva, R., Jouffre, D., Sobrino, I., Wood, J. B., & Rigby, P. R. (2004). 

Understanding octopus growth : Patterns, variability and physiology. Marine and 

Freshwater Research, 55(4), 367-377. 

Solow, A. R. (1994). Detecting change in the composition of a multispecies community. 

Biometrics, 50(2), 556-565. 

Switzer, P., & Green, A. A. (1984). Min/max autocorrelation factors for multivariate spatial 

imagery (6) [Technical report]. 

Thorson, J. T., Scheuerell, M. D., Shelton, A. O., See, K. E., Skaug, H. J., & Kristensen, K. (2015). 

Spatial factor analysis : A new tool for estimating joint species distributions and 

correlations in species range. Methods in Ecology and Evolution, 6(6), 627-637. 

https://doi.org/10.1111/2041-210X.12359 

Wackernagel, H. (2003). Multivariate geostatistics (Vol. 388). Springer Science & Business Media. 

Woillez, M., Rivoirard, J., & Petitgas, P. (2009). Using min/max autocorrelation factors of survey-

based indicators to follow the evolution of fish stocks in time. Aquatic living resources, 

22(2), 193-200. 

 

https://doi.org/10.1371/journal.pone.0037907
https://doi.org/10.1007/s11004-019-09845-1
https://doi.org/10.1111/2041-210X.12359

