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This work presents a stabilized formulation for phase-field fracture of hyperelastic materials near the limit of incompressibility. At this limit, traditional mixed displacement and pressure formulations must satisfy the inf-sup condition for solution stability. The mixed formulation coupled with the damage field can lead to an inhibition of crack opening as volumetric changes are severely penalized effectively creating a pressure-bubble. To overcome this bottleneck, we utilize a mixed formulation with a perturbed Lagrangian formulation which enforces the incompressibility constraint in the undamaged material and reduces the pressure effect in the damaged material. A mesh-dependent stabilization technique based on the residuals of the Euler-Lagrange equations multiplied with a differential operator acting on the weight space is used, allowing for linear interpolation of all field variables of the elastic sub-problem. This formulation was validated with three examples at finite deformations: a plane-stress pure-shear test, a two-dimensional geometry in plane-stress, and a threedimensional notched sample. In the last example, we incorporate a hybrid formulation with an additive strain energy decomposition to account for different behaviors in tension and compression. The results show close agreement with analytical solutions for crack tip opening displacements and performs well at the limit of incompressibility.

Introduction

Soft materials such as elastomers, hydrogels and biological tissues often exhibit large deformations and can be modeled through incompressible or nearly incompressible hyperelasticity when rate-dependent phenomena are negligible. The complexity of the microstructure of soft materials ranges from macroscopically isotropic networks of cross-linked polymer chains to highly structured hierarchical organization in biological tissues. The structural integrity of soft materials can be compromised by damage and fracture, leading to total failure, severely limiting the application of soft materials for engineering [START_REF] Creton | Fracture and adhesion of soft materials: a review[END_REF] or biomedical purposes [START_REF] Sun | Highly stretchable and tough hydrogels[END_REF][START_REF] Bai | Fatigue fracture of tough hydrogels[END_REF]. Therefore, understanding the progression of damage and fracture in soft materials can inform industrial and cutting edge engineering applications in not only the soft robotics [START_REF] Cianchetti | Biomedical applications of soft robotics[END_REF] and flexible electronics [START_REF] Richter | Review on hydrogel-based ph sensors and microsensors[END_REF] fields, but also in translational clinical research. These biomedical applications can include wound healing, tissue scaffolding, repair and reconstruction strategies, as well as drug delivery methods [START_REF] Peppas | Hydrogels in biology and medicine: From molecular principles to bionanotechnology[END_REF][START_REF] Slaughter | Hydrogels in regenerative medicine[END_REF].

In a mixed finite element formulation, the choice of finite element space must be carefully considered in order to yield a stable numerical solution without pressure oscillations [START_REF] Gavagnin | Stabilized mixed formulation for phase-field computation of deviatoric fracture in elastic and poroelastic materials[END_REF]. The most commonly employed space is the lowest order Taylor-Hood space [START_REF] Mang | A phase-field model for fractures in nearly incompressible solids[END_REF][START_REF] Alessi | Phase-field numerical strategies for deviatoric driven fractures[END_REF][START_REF] Suh | A phase field model for cohesive fracture in micropolar continua[END_REF][START_REF] Cajuhi | Phase-field modeling of fracture in variably saturated porous media[END_REF] where displacement is discretized with quadratic shape functions (P2) and pressure with linear shape functions (P1) so that the discrete Ladyshenskaya-Babuška-Brezzi (LBB) condition or inf-sup condition is not violated (similar to the the Stokes flow problem in the fluid mechanics context). Allowing for equal and low order of interpolation functions for the mixed finite element formulation can increase computational efficiency while producing sufficiently accurate results. A non-comprehensive list of these methods (see [START_REF] Cisloiu | A stabilized mixed formulation for finite strain deformation for low-order tetrahedral solid elements[END_REF] for a more comprehensive review) include finite element approximations enriched with "bubble" functions [START_REF] Arnold | A stable finite element for the stokes equations[END_REF], mixed-enhanced strain stabilization techniques [START_REF] Taylor | A mixed-enhanced formulation tetrahedral finite elements[END_REF], finite increment calculus methods [START_REF] Oñate | Finite calculus formulation for incompressible solids using linear triangles and tetrahedra[END_REF], stabilized formulation based on polynomial pressure projections [START_REF] Dohrmann | A stabilized finite element method for the stokes problem based on polynomial pressure projections[END_REF][START_REF] Gavagnin | Stabilized mixed formulation for phase-field computation of deviatoric fracture in elastic and poroelastic materials[END_REF], and addition of mesh-dependent perturbation terms for stabilization [START_REF] Klaas | A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation[END_REF][START_REF] Maniatty | Higher order stabilized finite element method for hyperelastic finite deformation[END_REF]. A range of these stabilization strategies have been proposed and adapted in the solid mechanics field for implementations in both small and finite deformations allowing to approach the incompressibility limit.

During the last decade, fracture modeling using the phase-field formulation for brittle fracture has gained significant popularity. The variational formulation of brittle fracture based on energy minimization was first proposed by [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] and regularized by [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF] [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF]. Through the introduction of a scalar damage field which transits smoothly between a damaged and undamaged state and approximates the sharp crack discontinuity through a user-defined length-scale, this method overcomes the difficulties that classical Griffith's theory has in predicting complex fracture processes such as crack initiation and propagation, crack kinking, merging, and branching. Phase-field modeling avoids explicit handling of discontinuities and allows for accurate crack growth without re-meshing if the intrinsic length-scale of the model is resolved by the finite element mesh.

The phase-field fracture method has been well established within the context of linear elasticity [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF][START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Ambati | A review on phase-field models of brittle fracture and a new fast hybrid formulation[END_REF]. The extension of this method to soft materials involves considering how microstructure contributes to material behavior such as large deformations, incompressibility, self-healing properties [START_REF] Taylor | in het Panhuis, Self-healing hydrogels[END_REF][START_REF] Kumar | The phase-field approach to self-healable fracture of elastomers: A model accounting for fracture nucleation at large, with application to a class of conspicuous experiments[END_REF], or viscoelastic or poroelastic effects [START_REF] Vernerey | Transient response of nonlinear polymer networks: A kinetic theory[END_REF][START_REF] Mao | A theory for fracture of polymeric gels[END_REF]. Ongoing work in soft materials extended the use of the phase-field model from linear to finite elasticity in a compressible setting where the Poisson's ratio, ν, ranged from 0.3 to 0.45 [START_REF] Miehe | Phase field modeling of fracture in rubbery polymers. part i: Finite elasticity coupled with brittle failure[END_REF][START_REF] Raina | A phase-field model for fracture in biological tissues[END_REF][START_REF] Wu | Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method[END_REF][START_REF] Mao | A theory for fracture of polymeric gels[END_REF][START_REF] Tang | Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition[END_REF][START_REF] Mandal | A length scale insensitive anisotropic phase field fracture model for hyperelastic composites[END_REF]. Staying within a compressible setting allows for pure displacement formulations to be used. In the context of mixed formulations for phase-field fracture for soft materials [START_REF] Brighenti | Phase field approach for simulating failure of viscoelastic elastomers[END_REF], algorithm efficiency is significantly impeded as the bulk to shear modulus ratio reaches κ/µ = 100. These mixed formulatons often employ non-equal order interpolations and are numerically expensive. Furthermore, using the pressure as a Lagrange multiplier to enforce incompressibility can lead to the development of a pressure bubble acting as a traction boundary condition on the newly created fracture surface, reminiscent of pressure-loaded cracks [START_REF] Singh | Finite element simulation of pressure-loaded phase-field fractures[END_REF]. For plane stress conditions the incompressibility can be introduced by substitution [START_REF] Loew | Accelerating fatigue simulations of a phase-field damage model for rubber[END_REF], avoiding the complexities of mixed formulations. Models for brittle phase-field fracture of soft materials at the limit of incompressibility have been developed following penalty formulations for rubbers [START_REF] Ye | Large strained fracture of nearly incompressible hyperelastic materials: enhanced assumed strain methods and energy decomposition[END_REF] and biological tissues [START_REF] Gültekin | Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack phase-field model[END_REF][START_REF] Nagaraja | On a phase-field approach to model fracture of small intestine walls[END_REF]. Penalty formulations in the context of phase field modeling, as they attempt to enforce near incompressibility, inadvertently impact crack initiation and propagation as they limit the ability of cracks (represented in a diffuse manner) to open. Crack opening requires elimination of near incompressibility to accommodate for the additional free volume in the crack which is now represented in a diffuse way. In a previous paper, the authors present a micromechanically motivated model for crack propagation in nearly incompressible elastomers with polydisperse polymer chain populations, where a damage dependent relaxation of the incompressibility constraint is introduced to facilitate crack opening [START_REF] Li | A variational phase-field model for brittle fracture in polydisperse elastomer networks[END_REF]. This phase-field formulation was later employed by a different group, in the context of dissection of the aorta [START_REF] Ban | Differential propensity of dissection along the aorta, Biomechanics and Modeling in[END_REF].

In this paper, we utilize a stabilization technique for the elastic sub-problem using meshdependent terms which are functions of the residuals of the Euler-Lagrange equations multiplied with a differential operator acting on the weight space evaluated elementwise [START_REF] Klaas | A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation[END_REF][START_REF] Maniatty | Higher order stabilized finite element method for hyperelastic finite deformation[END_REF]. This stabilization of the mixed finite element method allows for linear interpolation of all field variables, which is beneficial to large simulations. Additionally, we follow recent work of the authors [START_REF] Li | A variational phase-field model for brittle fracture in polydisperse elastomer networks[END_REF], but employ a tension-compression split of the strain energy function following the work of [START_REF] Ambati | A review on phase-field models of brittle fracture and a new fast hybrid formulation[END_REF]. Referred to as the hybrid formulation, this methodology is variationally inconsistent but considers the decomposition of the strain energy function to prevent fracture in compression. A staggered implementation of this formulation, where the stabilized, mixed hyperelastic problem (displacement and pressure) is solved for followed by the damage problem, leads to a reduction in computational cost while still producing results in line with other strain-based additive decomposition models [START_REF] Amor | Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments[END_REF][START_REF] Miehe | A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Jeong | Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation[END_REF].

The outline of this paper is as follows. In Section 2, we present an overview of the phasefield method with the damage dependent considerations of the incompressibility constraint along with the specializations for plane-stress examples (sub-section 2.2) and the strain energy decomposition (sub-section 2.3). The following Section3 introduces the stabilized formulation as an addition to the weak form. In Section 4, we outline the staggered solution scheme implemented in the open-source finite element platform, FEniCS [START_REF] Logg | Automated solution of differential equations by the finite element method: The FEniCS book[END_REF][START_REF] Alnaes | The fenics project version 1.5[END_REF], using the variational inequality solver distributed in the PETSc and TAO libraries [START_REF] Balay | PETSc users manual[END_REF]. Three numerical examples are presented in Section 5: a 2D pure shear test for validation of our results against an asymptotic solution, a 2D trapezoidal-like geometry, and a 3D singlenotch example. The first two examples use the stabilized plane-stress formulation and the last example employs the strain energy decomposition formulation in a 3D setting. Our corresponding implementation in FEniCS is available on Github1 .

Hyperelastic phase-field fracture models

Assume Ω 0 ⊂ R 3 is an open, bounded, connected subset with a sufficiently smooth boundary. The closure Ω 0 of the set Ω 0 represents the region occupied by a continuum body in the undeformed (or reference) configuration. A deformation of the reference configuration Ω 0 is a vector field ϕ : Ω 0 → R 3 , which is smooth enough, injective (except possibly on the boundary ∂Ω 0 of the set Ω 0 ), and orientation preserving [START_REF] Ciarlet | Mathematical Elasticity. Volume I: Three-dimensional Elasticity[END_REF]. Let X denote a generic point in the set Ω 0 , then the displacement field u : Ω 0 → R 3 is defined by the relation ϕ = X + u. The deformation gradient is written as F = ∇ ⊗ ϕ = I + ∇ ⊗ u with I being the second order identity tensor and ∇ ⊗ (•) denoting the tensor product of the vector operator (or Nabla operator) ∇ with a smooth vector or tensor field (•) [START_REF] Holzapfel | Nonlinear Solid Mechanics: A Continuum Approach for Engineering[END_REF]. Since a deformation is orientation-preserving by definition, the determinant of the deformation gradient satisfies the condition J = det F > 0 for all X ∈ Ω 0 .

We consider isotropic, homogeneous, and incompressible soft materials, which are assumed to be hyperelastic and subject to quasi-static load. Consequently, there exists a strain energy function W(F) defined per unit reference volume such that the first Piola-Kirchoff stress tensor, P = ∂W(F)/∂F. Since the right Cauchy-Green tensor is given by C = F T F, we can also write S = 2 ∂W(C)/∂C where the second and first Piola-Kirchhoff stress tensor S and P are related by the equation P = FS.

To enforce the incompressibility constraint, the augmented strain energy function is given,

W (F, p) = W(F) + p (J -1), (1) 
where the scalar p introduced in Eq.(1) serves as an indeterminate Lagrange multiplier, which can be identified as a hydrostatic pressure field. Accordingly, the first and second Piola-Kirchhoff stress tensors take the form

P = ∂ W (F, p) ∂F = ∂W(F) ∂F + p F -T , S = F -1 ∂ W (F, p) ∂F = 2 ∂W(C) ∂C + p J C -1 , (2) 
where the identity ∂J/∂F = JF -T and inverse of the right Cauchy-Green tensor C -1 = F -1 F -T are employed.

Phase-field approximation of brittle fracture

In the phase-field approximation of brittle fracture, cracks are represented by a scalar order parameter otherwise known as the damage variable, α : Ω 0 → [0, 1], which is 0 for fully undamaged material and 1 for fully damaged material, and changes from 0 to 1 smoothly [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF][START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF][START_REF] Marigo | An overview of the modelling of fracture by gradient damage models[END_REF]. The corresponding elliptic regularization strategy traces back to the pioneering work of Ambrosio and Tortorelli [START_REF] Ambrosio | Approximation of functional depending on jumps by elliptic functional via Gamma-convergence[END_REF] for solving similar free-discontinuity problems encountered in image segmentation [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]. The potential energy function, adapted to brittle fracture with isotropic surface energy, takes on the form,

E (u, α) = Ω 0 a(α)W(u) dV + G c c w Ω 0 w(α) + ∇α 2 dV - ∂ N Ω 0 g 0 • u dA, (3) 
where a(α) is a decreasing stiffness modulation function, w(α) is an increasing function representing the specific energy dissipation per unit volume, and c w = 1 0 w(α) dα is the normalization constant. The traction force is defined by g 0 on the boundary ∂ N Ω 0 of the domain Ω 0 .

The first integral of the functional in Eq.( 3) is the elastic energy of a possibly damaged material, with W(u) being the elastic strain energy density function. The second integral approximates the fracture surface energy, where G c is the critical energy release rate. This family of functionals for the potential energy function is parameterized by a regularization parameter > 0 with a unit of length dictating the width of the diffuse crack that is physically interpreted as an internal length of the model [START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF][START_REF] Marigo | An overview of the modelling of fracture by gradient damage models[END_REF]. When the limit of → 0, the regularized model converges to the sharp variational theory of brittle fracture in the sense of Γ-convergence [START_REF] Bourdin | The variational approach to fracture[END_REF]. However, the numerical simulations require a finite value of , which needs to be resolved by the spatial discretization, and is based on local minimization instead of global minimality as in Γ-convergence [START_REF] Tanné | Crack nucleation in variational phase-field models of brittle fracture[END_REF].

However, generalizations for incompressible and nearly-incompressible materials should be considered with caution because the material is no longer incompressible in diffusely damaged regions where crack growth is taking place. Accordingly, the incompressibility constraint should be relaxed in the damaged regions in an appropriate way without compromising the accuracy of the solution. To this end, in the context of nearly incompressible hyperelasticity, a damage dependent relaxation of the incompressibility constraint was proposed [START_REF] Li | A variational phase-field model for brittle fracture in polydisperse elastomer networks[END_REF], where the phase-field couples to the strain energy by the modified energy functional

W(F, α) = a(α)W(F) + b(α) 1 2 κ (J -1) 2 . (4) 
The modulation function a(α) = (1 -α) 2 and specific energy dissipation w(α) = α are defined as in our previous work [START_REF] Li | A variational phase-field model for brittle fracture in polydisperse elastomer networks[END_REF]. The choice of b(α) = o(a(α)) is such that the bulk modulus κ is damaged faster than the shear modulus µ ensuring that the incompressibility constraint does not impose a barrier to the physical opening of cracks, b(α) = a 3 (α). In the intact material, near-incompressibility is enforced by setting the bulk modulus sufficiently large in comparison to the shear modulus κ µ. Consequently, for nearly incompressible materials, the functional Eq.( 3) is expressed as

E (u, α) = Ω 0 W(F, α) dV + G c c w Ω 0 w(α) + ∇α 2 dV - ∂ N Ω 0 g 0 • u dA. (5) 
When applied to the finite element discretization, this displacement-based formulation near the incompressible limit exhibits severe volumetric locking issue [START_REF] Auricchio | Approximation of incompressible large deformation elastic problems: some unresolved issues[END_REF]. To circumvent this numerical difficulty, we resort to the classical mixed formulation and introduce a pressurelike field p : Ω 0 → R as an independent variable defined as

p = -b(α) κ (J -1) , (6) 
which alongside the displacement field, yields a mixed formulation. Therefore, the potential energy functional Eq.( 5) is rewritten as

E (u, p, α) = Ω 0 W(F, p, α) dV + G c c w Ω 0 w(α) + ∇α 2 dV, (7) 
where the modified energy functional can be expressed as follows

W(F, p, α) = a(α)W(F) -b(α)p (J -1) - p 2 2κ , (8) 
Eq.( 8) can be regarded as a perturbed Lagrangian formulation derived by the Legendre transformation [START_REF] Brink | On some mixed finite element methods for incompressible and nearly incompressible finite elasticity[END_REF][START_REF] Li | A variational phase-field model for brittle fracture in polydisperse elastomer networks[END_REF]. Accordingly, Eq.( 2) leads to the following expressions for the first and second Piola-Kirchhoff stress tensors

P = ∂ W(F, p, α) ∂F = a(α) ∂W(F) ∂F -b(α) p J F -T , S = 2 a(α) ∂W(C) ∂C -b(α) p J C -1 . (9) 
In the variational fracture framework, the evolution of the damage in the continuum body is governed by the three principles of irreversibility, stability and energy balance [START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF][START_REF] Marigo | An overview of the modelling of fracture by gradient damage models[END_REF][START_REF] Baldelli | Numerical bifurcation and stability analysis of variational gradientdamage models for phase-field fracture[END_REF].

The first order stability condition implies

dE (u, p, α; v, q, β) ≥ 0, ∀(u -u 0 , p, α) ∈ (U, P, V), ∀(v, q, β) ∈ (U, P, V), (10) 
where dE (u, p, α; v, q, β) denotes the Gateaux derivative of functional ( 7) at (u, p, α) in the direction of the respective variations (v, q, β). The notation, u 0 , indicates a prescribed Dirichlet boundary condition on the complementary boundary part ∂ D Ω 0 . The function spaces U and P, V and V are as defined in references [START_REF] Brink | On some mixed finite element methods for incompressible and nearly incompressible finite elasticity[END_REF][START_REF] Tallec | Numerical methods for nonlinear three-dimensional elasticity[END_REF] and [START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF][START_REF] Marigo | An overview of the modelling of fracture by gradient damage models[END_REF], respectively. Therefore, we arrive at the following weak form

Ω 0 ∂ W(F, p, α) ∂F : ∇ ⊗ v dV - ∂ N Ω 0 g 0 • v dA = 0, Ω 0 -b(α) (J -1) - p κ q dV = 0, Ω 0 ∂ W(F, p, α) ∂α β dV + G c c w Ω 0 ∂w(α) ∂α β + 2 ∇α • ∇β dV ≥ 0. (11) 
Thus, by Eq.( 8), the strong form for the displacement and pressure fields are

∇ • a(α) ∂W (F) ∂F -b(α)pJF -T = 0 in Ω 0 , -b(α)(J -1) - p κ = 0 in Ω 0 , u = u 0 on ∂ D Ω 0 , [FS] n 0 = g 0 on ∂ N Ω 0 , (12) 
where n 0 is outward normal to the boundary. Taking together the irreversibility condition for damage α ≥ 0, Eq.( 11) 3 , and the energy balance, the damage evolution problem is formulated in terms of the Karush-Kuhn-Tucker conditions as [START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF][START_REF] Marigo | An overview of the modelling of fracture by gradient damage models[END_REF][START_REF] Baldelli | Numerical bifurcation and stability analysis of variational gradientdamage models for phase-field fracture[END_REF] 

α ≥ 0 in Ω 0 , ∂ W (F, p, α) ∂α + G c c w ∂w(α) ∂α -2 ∇ 2 α ≥ 0 in Ω 0 , α ∂ W (F, p, α) ∂α + G c c w ∂w(α) ∂α -2 ∇ 2 α = 0 in Ω 0 , (13) 
where the boundary conditions for damage are stated as follows ∂α ∂n 0 ≥ 0 and α ∂α ∂n 0 = 0 on ∂Ω 0 .

Plane stress formulation

Under plane stress, the deformation mapping ϕ is symmetric [START_REF] Knowles | Large deformations near a tip of an interface-crack between two neo-hookean sheets[END_REF] about the middle plane X 3 = 0, so that ϕ 1 and ϕ 2 are even and ϕ 3 is an odd function of X 3 . Consequently, we deduce that F 13 = ∂ϕ 1 /∂X 3 , F 23 = ∂ϕ 2 /∂X 3 , F 31 = ∂ϕ 3 /∂X 1 , F 32 = ∂ϕ 3 /∂X 2 vanish on the middle plane. Suppose the strain energy function is stated in terms of the principal scalar invariants of the right Cauchy Green tensor, C,

W(F) = W(I 1 (C), I 2 (C), I 3 (C)), where I 1 (C) = tr C, I 2 (C) = ((tr C) 2 -tr C 2 ) /2, I 3 (C) = det C. Using the chain rule of differentiation P = 2 a(α) ∂W ∂I 1 + I 1 ∂W ∂I 2 F - ∂W ∂I 2 FC + I 3 ∂W ∂I 3 F -T -b(α) p J F -T , (15) 
together with the above conditions for the deformation gradient, we deduce that P 13 = P 23 = P 31 = P 32 = 0 on the middle plane. The out-of-plane stretch F 33 is computed by solving the nonlinear equation

P 33 = 2 a(α) ∂W ∂I 1 + I 1 ∂W ∂I 2 F 33 - ∂W ∂I 2 F 33 C 33 + I 3 F 33 ∂W ∂I 3 -b(α) p J F 33 = 0. ( 16 
)

Strain Energy Decomposition

Note that Eq.( 7) results in damage under compressive stress states, leading to nonphysical crack growth patterns. To avoid damage driven by compressive stresses, the undamaged strain energy function is decomposed into a tensile or active part W act (F) and a compressive or passive component W pas (F) [START_REF] Tang | Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition[END_REF]. Therefore, the modified strain energy functional adopts the form

W(F, p, α) = W act (F, p, α) + W pas (F, p), (17) 
From this point, we confine our discussion to the neo-Hookean model for compressible materials within the modified energy functional (Eq.( 8))

W(F) = µ 2 (I 1 (C) -3 -2 ln J). (18) 
The term ln J is a key requisite to guarantee that the strain energy decomposition is nonnegative, a modification that is elaborated upon in the reference [START_REF] Ye | Large strained fracture of nearly incompressible hyperelastic materials: enhanced assumed strain methods and energy decomposition[END_REF]. Following the references [START_REF] Tang | Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition[END_REF][START_REF] Ye | Large strained fracture of nearly incompressible hyperelastic materials: enhanced assumed strain methods and energy decomposition[END_REF], we rewrite the active and passive components of Eq.( 8) as follows

W act (F, p, α) = a(α) µ 2 3 i=1 Π(λ i -1) λ 2 i -1 -ln λ 2 i -Π(J -1) b(α)p(J -1) + p 2 2κ , W pas (F, p) = µ 2 3 i=1 Π(1 -λ i ) λ 2 i -1 -ln λ 2 i -Π(1 -J) p(J -1) + p 2 2κ , (19) 
where the Heaviside step function is defined as Π(x) = 1, for x ≥ 0, Π(x) = 0, for x < 0. The principal stretches, λ 2 i , i = 1, 2, 3 are the eigenvalues of C, and correspond to the analytical solution of the characteristic polynomial. Explicitly expressed as [START_REF] Smith | Eigenvalues of a symmetric 3× 3 matrix[END_REF][START_REF] Başar | Finite element formulation of the ogden material model with application to rubberlike shells[END_REF] 

λ 2 i = 1 3 I 1 (C) + 2 I 2 1 (C) -3I 2 (C) cos 1 3 ϑ + 2πi , i = 1, 2, 3, (20) 
with

ϑ = arccos 2I 3 1 (C) -9I 1 (C)I 2 (C) + 27I 3 (C) 2 3 I 2 1 (C) -3I 2 (C) . ( 21 
)

Stabilized finite element formulation

In this section, we present the stabilized mixed displacement-pressure formulation for the elasticity sub-problem defined in the reference configuration. Following the derivation in reference [START_REF] Klaas | A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation[END_REF], the Euler-Lagrange equation from Eq.( 11) is pushed forward into the current configuration as

∇ x • a(α)J -1 ∂W (F) ∂F F T -b(α)pI = 0 in Ω, -b(α)(J -1) - p κ = 0 in Ω, ∂ W (F, p, α) ∂α + G c c w ∂w(α) ∂α -2 ∇ 2 x α = 0 in Ω, (22) 
where the corresponding boundary condition terms are neglected and we suppose that the damage criterion Eq.( 13) 3 is an equality. Writing Eq. ( 22) in abstract form, we have

  A B C D E F G H K   •   u p α   =   0 0 0   . ( 23 
)
The differential operators B and E can be identified as -b(α) ∇ x and 1/ b(α) κ, respectively. Other differential operators depend on the hyperelastic model employed and functions a(α), b(α), and w(α), but writing these terms explicitly does not provide further insight.

The mesh-dependent terms [START_REF] Klaas | A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation[END_REF] are written as

n el e=1 (L(v, q, β), δ(L(u, p, α))) Ω e , L =   0 B 0 0 0 0 0 0 0   , L =   A B C 0 0 0 0 0 0   , (24) 
where the differential operator matrix L and L are selected in analogy with references [START_REF] Klaas | A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation[END_REF][START_REF] Maniatty | Higher order stabilized finite element method for hyperelastic finite deformation[END_REF]. From Eq.( 22), we can identify Au + Bp + Cα = ∇ x • σ. Consequently, the mesh-dependent terms based on Eq.( 24) are given

n el e=1 (L (v, q, β) , δ (L (u, p, α))) Ω e = n el e=1 δ Ω e (∇ x • σ) • -b(α)∇ x q dv. (25) 
It is evident that the additional term is a residual based method and will improve the stability of the Galerkin method without compromising the consistency [START_REF] Klaas | A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation[END_REF]. The parameter δ is chosen as δ = ( h 2 )/(2µ), where h is a characteristic mesh length and the non-dimensional, non-negative stability parameter depends only on the element type [START_REF] Klaas | A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation[END_REF][START_REF] Maniatty | Higher order stabilized finite element method for hyperelastic finite deformation[END_REF]. The stabilized mixed weak form of Eq.( 22) in the current configuration can be obtained by applying standard steps and adding the mesh-dependent terms Eq.( 25), which is simply omitted because it is not preferable to the phase-field fracture model. As noted in references [START_REF] Klaas | A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation[END_REF][START_REF] Maniatty | Higher order stabilized finite element method for hyperelastic finite deformation[END_REF], the stabilized weak form can also be derived by multiplying Eq.( 22) 1 by a modified weighting function v +( h 2 )/(2µ)(-b(α) ∇ x q) in the standard Galerkin method. As for the stabilized weak mixed formulation in the reference configuration the corresponding modified weighting function [START_REF] Klaas | A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation[END_REF][START_REF] Maniatty | Higher order stabilized finite element method for hyperelastic finite deformation[END_REF] necessitates the pull back of (-b(α)∇ x q) = (-b(α) F -T ∇q). Analogously, we multiply Eq.( 12) 1 by the perturbed weighting function v + ( h 2 )/(2µ)(-b(α)F -T ∇q), the perturbation is applied element wise, and integrating over the reference domain, we find

Ω 0 ∇ • [FS] • v dV + h 2 2µ n el e=1 Ω e 0 ∇ • [FS] • -b(α)F -T ∇q dV = 0. ( 26 
)
Now, focusing on the derivation of the stabilization term in Eq.( 26) without the knowledge of the particular material law, noting that Eq.( 9) 1 and applying the Piola identity Div JF -T = 0 [START_REF] Ciarlet | Mathematical Elasticity. Volume I: Three-dimensional Elasticity[END_REF][START_REF] Holzapfel | Nonlinear Solid Mechanics: A Continuum Approach for Engineering[END_REF], we have

∇ • a(α) ∂W (F) ∂F • -b(α)F -T ∇q -JF -T • ∇ b(α)p • -b(α)F -T ∇q =∇ • a(α) ∂W (F) ∂F • -b(α)F -T ∇q + ∇ b(α)p b(α)JF -1 F -T ∇q =∇ • a(α) ∂W (F) ∂F • -b(α)F -T ∇q + b(α)JC -1 : ∇ b(α)p ⊗ ∇q . (27) 
Consequently, we obtain the stabilized mixed formulation corresponding to Eq.( 11)

Ω 0 ∂ W(F, p, α) ∂F : ∇ ⊗ v dV - ∂ N Ω 0 g 0 • v dA = 0, Ω 0 -b(α) (J -1) - p κ q dV - h 2 2µ n el e=1 Ω e 0 b(α)JC -1 : ∇ b(α)p ⊗ ∇q dV + h 2 2µ n el e=1 Ω e 0 Div a(α) ∂W (F) ∂F • b(α)F -T ∇q dV = 0, Ω 0 ∂ W(F, p, α) ∂α β dV + G c c w Ω 0 ∂w(α) ∂α β + 2 ∇α • ∇β dV ≥ 0. ( 28 
)
Restricting our attention to equal order interpolation and more specifically linear shape functions for displacements and pressure, the divergence of the higher order derivative of the free energy in the stabilization term vanishes considering the assumption in Eq.( 18). Accordingly, the weak form Eq.( 28) reduces to

Ω 0 ∂ W(F, p, α) ∂F : ∇ ⊗ v dV - ∂ N Ω 0 g 0 • v dA = 0, Ω 0 -b(α) (J -1) - p κ q dV - h 2 2µ n el e=1 Ω e 0 b(α)JC -1 : ∇ b(α)p ⊗ ∇q dV + h 2 2µ n el e=1 Ω e 0 ∂W (F) ∂F ∇a(α) • b(α)F -T ∇q dV = 0, Ω 0 ∂ W(F, p, α) ∂α β dV + G c c w Ω 0 ∂w(α) ∂α β + 2 ∇α • ∇β dV ≥ 0. ( 29 
)

Numerical implementation

In the time-discrete evolution, given the finite element approximation of displacement and pressure fields (u i-1 h , p i-1 h ) and the damage field α i-1 h at the time-step t i-1 , the solution at the time-step t i , is sought by solving the Eq.( 29) under the unilateral constraint α i h ≥ α i-1 h [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF][START_REF] Pham | Gradient damage models and their use to approximate brittle fracture[END_REF][START_REF] Marigo | An overview of the modelling of fracture by gradient damage models[END_REF]. The coupled weak form Eq.( 29) is solved by the classical staggered scheme [START_REF] Bourdin | Numerical implementation of the variational formulation for quasi-static brittle fracture[END_REF]. In this algorithm, the saddle point problem Eqs.(29) 1 , (29) 2 are solved first while the damage field α h is held fixed, then the minimization problem Eq.( 29) 3 is solved using the variational inequality solver distributed in the PETSc/Tao library [START_REF] Balay | PETSc users manual[END_REF], keeping (u h , p h ) fixed [START_REF] Li | A variational phase-field model for brittle fracture in polydisperse elastomer networks[END_REF][START_REF] Li | A variational model of fracture for tearing brittle thin sheets[END_REF][START_REF] Baldelli | Numerical bifurcation and stability analysis of variational gradientdamage models for phase-field fracture[END_REF]. This procedure iterates until convergence is reached. Note that the strain energy decomposition formulation Eqs.( 19), ( 20), ( 21) is highly nonlinear. Consequently, the computation of the first and second variational derivative is a complicated task. In addition, the special cases of triple and double coalescence of eigenvalues Eq.( 20) have to be treated meticulously [START_REF] Başar | Finite element formulation of the ogden material model with application to rubberlike shells[END_REF]. To this end, our numerical implementation resorts to the hybrid formulation proposed in the reference [START_REF] Ambati | A review on phase-field models of brittle fracture and a new fast hybrid formulation[END_REF], such that the energy function W(F, p, α) in Eq.( 29) 1 remains as Eq.( 8) while in Eq.( 29) 3 , only the active part W act (F, p, α) of the strain energy decomposition Eq.( 19) is used,

Ω 0 ∂ W(F, p, α) ∂F : ∇ ⊗ v dV - ∂ N Ω 0 g 0 • v dA = 0, Ω 0 -b(α) (J -1) - p κ q dV - h 2 2µ n el e=1 Ω e 0 b(α)JC -1 : ∇ b(α)p ⊗ ∇q dV + h 2 2µ n el e=1 Ω e 0 ∂W (F) ∂F ∇a(α) • b(α)F -T ∇q dV = 0, Ω 0 ∂ W act (F, p, α) ∂α β dV + G c c w Ω 0 ∂w(α) ∂α β + 2 ∇α • ∇β dV ≥ 0. ( 30 
)
To preclude crack faces interpenetration, we complement Eq.(30) 3 by the following constraint

∀X, W act (F, p, α = 0) < W pas (F, p) ⇒ α = 0. (31) 
Various phase-field simulations have substantiated the hybrid formulation by showing that it is capable of producing physically adequate results, which are qualitatively and quantitatively similar to those of the anisotropic model [START_REF] Ambati | A review on phase-field models of brittle fracture and a new fast hybrid formulation[END_REF][START_REF] Jeong | Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation[END_REF] or experimental data [START_REF] Zhang | A modification of the phase-field model for mixed mode crack propagation in rock-like materials[END_REF].

Our numerical implementation of the stabilized phase-field fracture formulation is based on the FEniCS finite element platform [START_REF] Logg | Automated solution of differential equations by the finite element method: The FEniCS book[END_REF][START_REF] Alnaes | The fenics project version 1.5[END_REF] with the automatic functional differentiation tool offered by the Unified Form Language (UFL) [START_REF] Alnaes | Unified form language: A domainspecific language for weak formulations of partial differential equations[END_REF]. The developed python scripts are distributed as supplementary materials of the present paper 2 . 

Numerical examples

For the finite element simulations, all normalized parameters are denoted by (•). Normalized stress, pressure, and energy are listed as follows

P = P µ , p = p µ , W = W µL 3 0 , (32) 
where L 0 refers to the reference length. We consider three numerical examples, including a two-dimensional (2D) plane stress pure shear test, a 2D plane stress crack propagation geometry, and a three-dimensional (3D) notched geometry. The purpose of the pure shear test is to compare and validate our results to the crack-tip asymptotic displacement fields and analytical predictions of the critical stretch for crack initiation [START_REF] Krishnan | Finite strain crack tip fields in soft incompressible elastic solids[END_REF][START_REF] Long | Crack tip fields in soft elastic solids subjected to large quasi-static deformation-a review[END_REF]. The plane stress geometry used to trigger crack propagation is motivated by the trapezium geometry in reference [START_REF] Lorentz | Gradient damage models: Toward full-scale computations[END_REF]. The 2D examples use the stabilized plane stress formulation in subsection 2.2, and the last example tests the stabilized hybrid strain energy decomposition formulation in subsection 2.3 for a 3D sample.

For efficient simulations, the element sizes are distributed within the mesh from a larger element size with unstructured linear triangular elements on the top and bottom boundaries to a region around the crack defined with structured quadrilaterals. The 3D notched example contains unstructured linear tetrahedral elements throughout but employs a similar type of mesh refinement strategy to the 2D examples before, where refinement is isolated within a region of height, 2H 0 . The characteristic element length h is defined using the CellDiameter function within FEniCS, which computes the length of each element. For the examples featuring a range of element lengths, we report the element size h close to the crack which defines the phase-field width. The internal length scale is = 5h for a total phase-field width of twenty elements and the non-dimensional, non-negative stability parameter = 1. The ratio between the bulk modulus and shear modulus was maintained at κ/µ = 1 × 10 3 corresponding to ν = 0.4995 to maintain near-incompressibility, unless labeled otherwise when examining the effect of varying κ/µ. The fracture energy for the 2D and 3D simulations is G c /µ = 1.

Pure shear test

The schematic for the 2D plane stress pure shear test is given where the reference coordinates are denoted by X α , α = 1, 2, and the crack tip is at the origin, (X 1 , X 2 ) = (0, 0). The sample's height and length are 2H and 2L respectively, see Fig. 1a). The prescribed displacement, ∆, is applied uniformly over the top and bottom of the sample leading to a stretch ratio of λ a = 1 +∆/H. A two-term exponential was used to control the displacement increments, allowing for a more accurate crack displacement result from the simulation. In order to satisfy the infinite long rectangular strip assumption, the length of the sample must be much larger than the height, L H. Therefore, we employed a finite difference method to determine the appropriate sample height and length for the J-integral formula Eq. [START_REF] Brighenti | Phase field approach for simulating failure of viscoelastic elastomers[END_REF] to hold. Here we choose the height and length, 2H = 1, 2L = 6, with an element size of h = 0.005 in the mesh refined regions and h = 0.15 on the boundaries , but 2H = 1, 2L ≥ 5 is sufficient.

The pure shear test is a common fracture test where almost all aspects of the asymptotic crack tip opening displacements (CTOD) and the crack initiation displacement can be determined from the geometry and loading conditions [START_REF] Long | Crack tip fields in soft elastic solids subjected to large quasi-static deformation-a review[END_REF]. For a neo-Hookean material model, the spatial coordinates of a material point located at x α , α = 1, 2 is given by the following expressions

y 1 = C 1 r cos(θ), y 2 = C 2 √ r sin θ 2 , ( 33 
)
where C 1 and C 2 are positive independent amplitudes per the definitions in reference [START_REF] Long | Crack tip fields in soft elastic solids subjected to large quasi-static deformation-a review[END_REF] and r and θ are related to the polar coordinate system describing the point positions in the reference configuration x α , α = 1, 2. The J-integral, which is a measure of the strain energy release rate, can be specialized to plane stress or plane-strain. When evaluated for a neo-Hookean material model the plane strain and plane stress Mode I J-integral has the form J int = µπC 2 2 /4, with a subscript to prevent confusion with J = det F. The interpretation [START_REF] Rivlin | Rupture of rubber. I. characteristic energy for tearing[END_REF] of the J-integral under the assumption of infinite long rectangular strip where Mode I loading is applied as in the schematic in Fig. 1 a) is given as

J int = µH λ a - 1 λ a 2 . ( 34 
)
By equating the J-integral equations, we can determine the amplitude of C 2 ,

C 2 = 2 H π λ a - 1 λ a . (35) 
In contrast to C 2 , which depends on geometry and loading alone, the amplitude of C 1 can not be calculated using the J-integral. Therefore, we demonstrate the full range of 15, 1.55] as determined from the work in [START_REF] Krishnan | Finite strain crack tip fields in soft incompressible elastic solids[END_REF] which shows the dependence of C 1 on the stretch λ a . Two stabilized plane-stress phase-field tests were conducted where in one sample the crack was defined in a diffuse manner, where the phase-field was distributed over 20 elements, and the second sample was defined with discrete crack geometry, where the bulk to shear modulus ratio, κ/µ = 1 × 10 3 (see Fig. 2a). The latter test is termed the discrete simulation, but the phase-field formulation allows for initiation of a diffuse damage zone as loading progresses. Furthermore, to examine the effect of enforcing incompressibility, the bulk to shear modulus ratio, κ/µ, can be varied as seen in Fig. 2b) in a diffuse crack initialization setting. These results are compared at a ∆ = 0.36 leading to a stretch of λ a = 1.60 with the range of the asymptotic solution plotted from C 1 = 1.15 to C 1 = 1.55 (blue area in Fig. 2) [START_REF] Krishnan | Finite strain crack tip fields in soft incompressible elastic solids[END_REF].

C 1 = [1.
The phase-field results can predict the overall relationship between y 1 and y 2 , meaning that the slopes of the phase-field results match the asymptotic solution. The results for the discrete crack definition stay within the limits of the asymptotic solution, but the diffuse crack definition underestimates the crack-tip opening displacement. Within a region consisting of a quarter of the width of the phase field, 5 elements, the diffuse model underestimates the CTOD more substantially than anywhere else. This underestimation of the CTOD close to the crack tip is a characteristic of phase-field models, which exhibit some similarities to the Dugdale-Barenblatt solution [START_REF] Pham | Experimental validation of a phase-field model for fracture[END_REF]. Furthermore, we note that obtaining the precise CTOD from the diffuse phase-field model has a region of uncertainty because the crack is distributed over a finite thickness and not discretely defined.

To further analyze this underestimation of the CTOD between the discrete and diffuse samples, we show images of the normalized pressure, damage, volumetric ratio, and principal plane stress components of the normalized nominal stress of the shear test for the diffuse and discrete phase-field tests (see Fig. 3). A profile of the pressure, damage, and J = det F are plotted at a vertical line, X 1 = 0.02 and X 2 = [-0.05, 0.05] at a point where damage is initiating at ∆ = 0.52. We note that the crack tip is specified at (X 1 , X 2 ) = (0, 0), indicating that the vertical line is plotted four elements to the right of the origin.

The pressure maps for the diffuse and discrete crack geometry show relatively low pressures, but examining the profiles gives a better understanding of the differences between these cases. At the same stretch λ a , the discrete case has a lower pressure and damage profiles, but higher principal nominal stresses. This lower pressure around the crack tip potentially explains why the CTOD results for the discrete crack geometry example demonstrates good accordance with the analytical solution while the diffuse phase-field model underestimates the CTOD. While the pressure is lower, the principal stresses exhibit a larger range for the discrete crack geometry.

The pressure profiles for varying bulk modulus corresponding to the crack tip opening displacement profiles shown in Fig. 2b). Varying the bulk modulus does not effect the CTOD, but leads to differences in the pressure and J = det F profiles demonstrating the performance of the last term of the modified energy functional, Eq.( 8). The last term, p 2 /(2κ), plays a modulating role on the pressure profile; therefore, as the bulk modulus increases the last term approaches zero leading to more pressurization around the crack seen both before and after crack propagation. Nevertheless, this extra pressurization is localized around 2 elements on either side of the center-line despite the crack profile encompassing 10 elements on either side of the center-line. The J = det F profiles also exhibit a sharp increase and decrease around 3 elements, which lessens minimally with increasing bulk modulus. In conclusion, the fluctuations in the pressure and J = det F profiles seen in Fig. 4 do not inhibit the crack from opening as evidenced from the identical CTOD profiles in Fig. 2b).

Lastly, the energies for the diffuse and discrete crack tests are compared to the predicted crack initiation displacement ∆ p , shown in Fig. 5. Elastic energy refers to the modified elastic energy function in Eq.( 8), dissipated energy refers to the second term of Eq.( 3), and the total energy refers to the summation of the elastic and dissipated energies. The elastic energy between the two trials compares closely, but when the pre-existing crack is defined in a diffuse way over a region some energy is dissipated immediately versus when the crack propagates from a discrete crack setup. The displacement where the dissipated energy rises sharply, or the elastic energy drops, indicates the displacement at which the crack has propagated significantly through the sample.

This displacement obtained from the simulation results can be compared to a predicted crack propagation displacement ∆ p , which can be obtained by equating the J-integral (Eq.( 34)) to the critical fracture toughness G c . The percentage error between the predicted ∆ p and the diffuse and discrete phase-field simulation was 12.2% and 11.3% overestima- tion respectively. Taking into account numerical error which leads to an amplified effective fracture toughness, G e c = G c (1 + h/(c w )), the error is below 5% at 4.19% and 4.89% for the diffuse and discrete damage initiation respectively [START_REF] Hossain | Effective toughness of heterogeneous media[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]. Therefore while the CTOD for the diffuse cases show some variability from the asymptotic solution, from an energy perspective the stabilized phase-field method can predict the crack initiation point dictated by Griffith's criterion with good accuracy.

2D crack propagation under plane stress condition

We used the geometry in Fig. 1b) to trigger rectilinear crack propagation where 2L = 8, 2H = 9.5 and the center of the circles used to define the top and bottom is at origin (0, ±7.75) with R = 5. The sample has a discrete crack where c = 2, and the element size of the region within 2H 0 = 0.8 was h = 0.01. The displacement, ∆, is applied uniformly over the top and bottom of the sample and increased in the X 2 -direction using the two-term exponential scheme as the pure shear test.

In this sample, a discrete crack of length c is specified. As loading progresses, damage initiates as seen within the closeups in Figure 6 a), instance III and IV and full fracture occurs in one step between instance IV and V at ∆ = 1.293. Fig. 6b) captures components of the nominal stress prior to full fracture of the entire domain which corresponds to instance IV of the damage evolution in Fig. 6a). The points in which the crack is propagating correspond to the highest principal stresses, P 11 and P 22 , as expected.

Examining the damage evolution, the crack propagates steadily as seen in Fig. 6b) instance II and III where crack blunting is observed. In instance III, the accumulated damage is enough to trigger full fracture of the domain, but no significant residual deformation in the sample is observed. Our result suggests that the residual pressures and stresses in the sample are low enough to not contribute to the final deformation state. Typically, predictions of the final fractured state show significant residual deformations (and corresponding residual fields) in the form of a narrowed width around the fracture region [START_REF] Tian | An adaptive edge-based smoothed finite element method (es-fem) for phase-field modeling of fractures at large deformations[END_REF][START_REF] Ye | Large strained fracture of nearly incompressible hyperelastic materials: enhanced assumed strain methods and energy decomposition[END_REF][START_REF] Russ | Rupture of 3d-printed hyperelastic composites: Experiments and phase field fracture modeling[END_REF]. Our result matches our expectations for the specified material parameters, demonstrating a minimal effect from the corresponding pressure bubble in the damage zone.

While these figures discuss the results for κ/µ = 1 × 10 3 corresponding to ν = 0.4995, like the 2D pure shear test in the prior section, this simulation also performs efficiently at κ/µ = 1×10 4 corresponding to ν = 0.49995. Furthermore, this simulation features full crack propagation in one step, unlike the pure shear test and the 3D sample (to be discussed in subsection 5.3), where the crack propagates a short distance before full crack propagation.

3D single edge cracked sample

The 3D notched sample tests the stabilized strain energy decomposition formulation (Subsection 2.3), which considers a more physical picture of fracture through an additive decomposition of the strain energy into tensile and compressive parts. For this sample, the bulk and shear modulus ratio was κ/µ = 1 × 10 3 . The mesh geometry was defined according to Fig. 1c) where 2H = 1.5, 2L = 1.0, and thickness in the X 3 direction is 2T = 0.032. The mesh has a refinement scheme like the prior simulations, but the elements are unstructured triangular elements with a element size of h = 0.008 within a region of 2H 0 = 0.12 and an element size of h = 0.04 at the boundaries. The bottom and top surfaces were allowed to displace in the X 1 -direction and were displaced in the X 2 -direction in a monotonic fashion. Fig. 7 captures the damage evolution of the notched sample where instance III corresponds to the step directly prior to instance IV where the crack propagates significantly before full crack propagation between instance V and VI. Components of the normalized nominal stress corresponding to Fig. 7a) instance III and V, which are the instances corresponding to the first point of crack propagation and the final step before full crack propagation, are displayed in Fig. 8. Unlike the prior simulations presented in this work where a sharp crack is considered in the initial geometry (either in a discrete or diffuse fashion), this simulation displays a notched crack.

Crack blunting, a feature typical in fracture of soft materials, is exhibited in snapshots II through V of Fig. 7. The thickness narrows in the out-of-plane z-direction, but this effect is small compared to the full thickness, 2T = 0.032. The sample undergoes large deformations, but displays negligible residual deformations in the final state, contrary to results from reference [START_REF] Tang | Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition[END_REF], which features a tension-compression asymmetric strain energy density for a square block under remote tension. After fracture, the model [START_REF] Tang | Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition[END_REF] shows significant residual deformations that are not found in the tensile experiments. The phase-field model in reference [START_REF] Swamynathan | An energetically consistent tension-compression split for phasefield models of fracture at large deformations[END_REF], which uses a tension-compression split, also demonstrates significant residual deformations after fracture. Both of these papers do not incorporate incompressibility considerations (with Poisson ratio ν = 0.385). In contrast, if we compare our results to the results from the reference [START_REF] Ye | Large strained fracture of nearly incompressible hyperelastic materials: enhanced assumed strain methods and energy decomposition[END_REF] for a 3D double-notched sample at the limit of incompressibility, we note similarly negligible residual deformations in the final state.

From Fig. 7b), we conclude that the formulation performs well close to the limit of incompressibility for a 3D sample. The augmented strain energy function considers a damage- dependent relaxation of the incompressibility constraint in Eq.( 8). This relationship between damage and incompressibility can be examined more closely by plotting the damage variable α and J = det F in Fig. 7 b) and c) respectively, at some horizontal line, X 1 = [0, 0.25] and X 2 = 0.02 in the reference configuration for each instance in Fig. 7a). As shown in Fig. 7b) and c), at instance I, where there is no damage, the incompressibility constraint is strictly enforced and maintained throughout the domain. In the next instance II, there is no damage but some deviation from J = det F = 1 close to X 1 = 0.0. From instances III to V, the incompressibility constraint is not enforced where damage is initiating, but the constraint is enforced where there is no damage. At instance VI where the sample has fractured fully, the incompressibility constraint is not enforced at all, and the overall damage is approximately α = 0.6.

In the transition from simpler 2D plane stress samples to more complex 3D samples, convergence challenges can arise close to the limit of incompressibility. We presented samples where κ/µ = 1 × 10 3 , but the 2D samples also converge at κ/µ = 1 × 10 4 . The limit of incompressibility for the 3D sample, with the exact geometry presented, is approximately κ/µ = 2.5×10 3 corresponding to ν = 0.4998. The convergence challenges are not necessarily due to the formulation, but can be attributed to mesh distortion in the damaged regions of the thin 3D sample (2T = 0.032).

Conclusion

We have presented a stabilized finite element formulation for phase-field fracture, alongside a simple and computationally efficient numerical implementation in FEniCS, employed for soft hyperelastic materials at the limit of incompressibility. The pure shear test serves as a bench-marking example for comparing the simulation results to an analytical solution for the crack tip opening displacement. The simulation with a discrete crack matches closely to the analytical CTOD compared to the sample with a diffuse crack. While the CTOD from the phase-field simulation deviates from the analytical solution, from an energy perspective the variational phase-field fracture model matches closely with theoretical critical initiation load (ie. Griffith's criterion).

For all the samples, the 2D plane stress problems and the single-edge notched crack in 3D, the residual pressures and stresses in the sample are low enough to not contribute to the final deformation state and crack propagation in a substantial manner. Additionally, the 3D example incorporates a strain energy decomposition alongside the stabilization methodology, accounting for the asymmetry between tension and compression. The fact that the fully fractured state does not exhibit high residual pressures and stresses is a significant finding that has not been captured in prior results [START_REF] Tang | Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition[END_REF][START_REF] Tian | An adaptive edge-based smoothed finite element method (es-fem) for phase-field modeling of fractures at large deformations[END_REF][START_REF] Swamynathan | An energetically consistent tension-compression split for phasefield models of fracture at large deformations[END_REF]. Lastly, this low-order formulation greatly increases computational efficiency for complex 3D simulations, and has the potential to be extended towards dynamic fracture problems in soft materials [START_REF] Tian | A dynamic phase field model with no attenuation of wave speed for rapid fracture instability in hyperelastic materials[END_REF] at the limit of incompressibility -a longstanding challenge in the computational study of fracture of soft materials. A potential application in the biomedical field is applying these methods to understanding the formation of traumatic cartilage lesions in dynamic experiments [START_REF] Buckley | Localization of viscous behavior and shear energy dissipation in articular cartilage under dynamic shear loading[END_REF], as well as understanding tissue injury through impact loading.
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 1 Figure 1: Schematics of all simulations. a) Plane stress pure shear test geometry with height 2H and length 2L where crack length is half the length of the domain. b) Trapezoidal-like geometry with length 2L and height 2H. A region of 2H 0 allows for mesh refinement. A circle with radius R is used to define the top and bottom surfaces. c) 3D notched sample where height is 2H, length is 2L on the X 1 X 2 -plane. A close-up demonstrates the out-of-plane thickness, 2T , in the X 3 -direction.

Figure 2 :

 2 Figure 2: Comparison of the Mode I deformation field y 1 and y 2 simulation results with the range of the analytical solution from C 1 = [1.15, 1.55] displayed in blue. Simulation parameters are G c /µ = 1, varying κ/µ, with element size, h = 0.005, and data taken at ∆ = 0.36. a) Phase-field results where κ/µ = 1 × 10 3 with discrete crack geometry versus diffuse crack initialization where the phase-field is diffused over twenty elements. b) Comparison of asymptotic solution to samples with diffuse crack initiation with varying bulk to shear modulus, κ/µ = 1 × 10 2 , 1 × 10 3 , 1 × 10 4 .
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 3 Figure 3: Diffuse versus discrete results taken at ∆ = 0.50 before crack propagation at ∆ = 0.52. The crack tip is at (X 1 , X 2 ) = (0, 0), and the profiles are taken at a vertical line X 1 = 0.02 and X 2 = [-0.05, 0.05] where damage is initiating. a) Normalized pressure profiles, b) damage profiles, c) volume ratio profiles J = det F, and d) principal normalized nominal stress components.

Figure 4 :

 4 Figure 4: Pressure, damage, and volume ratio J = det F profiles obtained by analyzing data along a vertical line in the reference configuration for varying bulk modulus κ where µ = 1 a) before crack propagation at ∆ = 0.36 and location X 1 = -1 and X 2 = [-0.05, 0.05] and b) after crack propagation at ∆ = 0.56 and location X 1 = 1 and X 2 = [-0.05, 0.05].

Figure 5 :

 5 Figure 5: Phase-field energy evolution comparison where the crack propagation displacement predicted from the asymptotic solution is displayed with a vertical line, ∆ p = 0.47. The simulation parameters are G c /µ = 1 and κ/µ = 1 × 10 3 with element size, h = 0.005. a) Results where the phase-field is diffused over 20 elements and b) results where a discrete crack geometry is defined.

Figure 6 :

 6 Figure 6: Deformed configuration of 2D crack propagation sample under plane-stress conditions for discrete crack geometry where length and height are specified as, 2L = 8, 2H = 9.5. The center of the circle is (0, ±7.75) with R = 5. The fracture energy, G c /µ = 1 and κ/µ = 1 × 10 3 are specified and the sample is loaded until crack propagation. a) Evolution of the damage field with increasing displacement at ∆ = 0.484, 0.990, 1.2791.291, 1.293. Damage greater than α = 0.99 are removed for visualization. b) Components of nominal stress for ∆ = 1.291 prior to full fracture of domain at ∆ = 1.293.

Figure 7 :

 7 Figure 7: Damage evolution for 3D notched sample where the fracture energy, G c /µ = 1, and modulus ratio κ/µ = 1 × 10 3 are specified. a) Six instances of the damage profile are displayed at displacements of ∆ = 0.000, 0.293, 0.615, 0.618, 0.624, and ∆ = 0.627 where the crack has propagated through the sample fully. Damage greater than α = 0.99 are removed for visualization. b) Profiles of damage and c) the volume ratio, J = det F, at a horizontal line, X 2 = 0.02, obtained at the reference configuration for each of the six instances.

Figure 8 :

 8 Figure 8: Components of the nominal stress of 3D notched sample a) in the step prior to the first step of crack propagation, ∆ = 0.615, (Instance III in Figure7) b) and the step prior to full crack propagation, ∆ = 0.624, (Instance V in Figure7) where the principal stress components feature close-ups of the notch.
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