
HAL Id: hal-03649722
https://hal.science/hal-03649722v1

Submitted on 22 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning under Uncertainty in the AHP Method using
the Belief Function Theory

Amel Ennaceur, Zied Elouedi, Eric Lefevre

To cite this version:
Amel Ennaceur, Zied Elouedi, Eric Lefevre. Reasoning under Uncertainty in the AHP Method us-
ing the Belief Function Theory. International Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems, IPMU’2012, Jul 2012, Catania, Italy. pp.373-382,
�10.1007/978-3-642-31724-8_39�. �hal-03649722�

https://hal.science/hal-03649722v1
https://hal.archives-ouvertes.fr


Reasoning under Uncertainty in the AHP
Method using the Belief Function Theory

Amel Ennaceur1, Zied Elouedi1, and Eric Lefevre2

1 LARODEC, University of Tunis, Institut Supérieur de Gestion, Tunisia
amel naceur@yahoo.fr, zied.elouedi@gmx.fr

2 Univ. Lille Nord of France, UArtois EA 3926 LGI2A, France
eric.lefevre@univ-artois.fr

Abstract. The Analytic Hierarchy Process (AHP) method was intro-
duced to help the decision maker to express judgments on alternatives
over a number of criteria. In this paper, our proposal extends the AHP
method to an uncertain environment, where the uncertainty is repre-
sented through the Transferable Belief Model (TBM), one interpretation
of the belief function theory. In fact, we suggest a novel framework that
tackles the challenge of introducing uncertainty in both the criterion
and the alternative levels, where the objective is to represent imperfec-
tion that may appear in the pair-wise comparisons and to model the
relationship between these alternatives and criteria through conditional
beliefs.

1 Introduction

Within the framework of Multi-Criteria Decision Making (MCDM) problems,
many methods have been proposed and each one has its own characteristics [16].
We have then two major families. On the one hand, the outranking approach
introduced by Roy where some methods like Electre and Promothee are devel-
oped [2], [5]. On the other hand, the value and utility theory approaches mainly
started by Keeney and Raiffa [6], and then implemented in a number of meth-
ods [15]. Amongst the most well known ones is the Analytic Hierarchy Process
(AHP) [8], [9], introduced by Saaty (1980) and based on preference judgments.
In fact, in the AHP method, the problem is structured hierarchically at different
levels. Within the same context, the purpose of constructing this hierarchy is to
evaluate the influence of the criteria on the alternatives to attain objectives. In
other words, the decision maker is required to provide his preferences by compar-
ing all criteria, sub-criteria and alternatives with respect to upper level decision
elements. This is accomplished through pair-wise comparisons.

The capability to deal with uncertainty and imprecision is the common prob-
lem of decision making. In fact, this imperfection can arise due to different sit-
uations: incomplete data for making decisions, imprecise judgments, etc.

However, standard AHP method was criticized because it does not well per-
form their task in such environment. Sometimes, the decision maker cannot
ensure pair-wise comparisons between all the criteria and alternatives because



the information about them may be incomplete due to the time pressure and
the lack of data. In order to overcome this limitation, several extensions were
developed such as referenced AHP [10], fuzzy AHP [7], etc.

In our work, we will focus on belief function framework. It is considered as a
useful theory for representing and managing uncertain knowledge [11]. This the-
ory provides a convenient framework for dealing with incomplete and uncertain
information, notably those given by experts. So, a first work has been tackled
by Beynon et al. have proposed a method called the DS/AHP method [1] com-
paring not only single alternatives but also groups of them. Besides, belief AHP
approach was introduced by [4] which evaluates sets of alternatives according
to sets of criteria. Despite all the advantages of these two approaches, allowing
different comparisons to be made for groups of alternatives and/or criteria, they
do not take into account the conditional relationships between alternatives and
criteria. In fact, alternatives do not always have a unique priority relationship
between them. For instance, in a problem of buying a car, the expert might
consider that “Peugeot” is evaluated to be more important than “Renault” re-
garding comfort criterion, but “Renault” is more important than “Peugeot” with
respect to style criterion. As we can see, the alternative priorities are dependent
on each specific criterion.

To solve the problem presented above, this paper presents a new AHP ap-
proach under uncertainty, a MCDM method adapted to incomplete and uncer-
tain preferences but also it models conditional relationships between alternatives
and criteria, where the uncertainty is represented by belief functions as defined
in the Transferable Belief Model (TBM). The choice of the TBM seems appro-
priate as it allows experts that represent sources of information to express their
believes about the cause-effect relationship degree not only in terms of elemen-
tary events but also in terms of subsets. Besides, belief function theory offers
interesting tools to model the partial and total ignorance and to combine several
pieces of evidence as the conjunctive and the disjunctive rules of combination
and for conditioning. Our aim through this work is then to represent uncertainty
and to more imitate the expert reasoning since he tries to express his preferences
over the sets of alternatives regarding each criterion and not regardless of the
criteria. Consequently, we try to represent the influences of the criteria on the
evaluation of alternatives.

The remainder of this paper is organized as follows. In section 2, we focus
on AHP method. Next, we present some useful definitions needed for belief
function context. Section 4 represents our new AHP method based on conditional
belief functions, and gives an example to show its application. Finally, Section
5 concludes the paper.

2 Analytic Hierarchy Process

The AHP approach is a decision-making technique developed by Saaty [8], [9]
to solve complex problems of choice and prioritization. The basic idea of the
approach is to convert subjective assessments of relative importance to a set of



overall scores or weights. The AHP decision problem is structured hierarchically
at different levels. The purpose of constructing this hierarchy is to evaluate the
influence of the criteria on the alternatives to attain objectives. So, an AHP
hierarchy has at least three levels: The highest level consists of a unique element
that is the overall objective. Then, each level of the hierarchy contains criteria
or sub-criteria that influence the decision. Alternative elements are put at the
lowest level.

Once the hierarchy is built, the decision maker starts the prioritization pro-
cedure to determine the relative importance of the elements on each level of the
hierarchy (criteria and alternatives). Elements of a problem on each level are
paired (with respect to their upper level decision elements) and then compared.
This method elicits preferences through pair-wise comparisons which are con-
structed from decision maker’s answers. Indeed, the decision maker can use both
objective information about the elements as well as subjective opinions about
the elements relative meaning and importance. The responses to the pair-wise
comparison question use a nine-point scale [8], which translates the preferences
of a decision maker into crisp numbers.

Next, the comparison matrix is formed by repeating the process for each level
of the hierarchy. After filling all the pair-wise comparison matrices, the local
priority weights are determined by using the eigenvalue method. The objective
is then to find the weight of each criterion, or the score of each alternative by
calculating the eigenvalue vector. With these values, the AHP method permits
to compute a consistency ration to check if the matrix is consistent or not. When
the matrix is considered inconsistent, the entries that are given by the decision
maker have to be revised until a satisfactory consistency ratio is obtained. The
last step of the AHP aggregates all local priorities from the decision table by
a simple weighted sum. The global priorities thus obtained are used for final
ranking of the alternatives and selection of the best one.

3 Belief Function Theory

In this section, we briefly review the main concepts underlying the Transferable
Belief Model (TBM), one interpretation of the belief function theory [14].

3.1 Basic concepts

The TBM is a model to represent quantified belief functions [14]. Let Θ be the
frame of discernment representing a finite set of elementary hypotheses related
to a problem domain. We denote by 2Θ the set of all the subsets of Θ [11].

The impact of a piece of evidence on the different subsets of the frame of
discernment Θ is represented by the so-called basic belief assignment (bba),
called initially by Shafer basic probability assignment [11].

A bba is a function denoted by m that assigns a value in [0, 1] to every subset
A of Θ such that: ∑

A⊆Θ

m(A) = 1 . (1)



The value m(A), named a basic belief mass (bbm), represents the portion of
belief committed exactly to the event A.

The belief function theory offers many interesting tools. For instance, to
combine beliefs induced by distinct pieces of evidence, we can use the conjunctive
rule of combination [13]. Also, to select the most likely hypothesis, one of the
most used solutions is the pignistic probability [14].

3.2 Operations on the product space

Let U = X,Y, Z, ... be a set of variables, where each variable has its frame of
discernment. Let X and Y be two disjoint subsets of U . Their frames are the
product space of the frames of the variables they include. For simplicity, we
denote ΘX by X and ΘY by Y for short.

Vacuous extension. Given a bba defined on X, its vacuous extension on X×Y
denoted mX↑X×Y is given by [12]:

mX↑X×Y (B) =

{
mX(A) if B = A× Y,A ⊆ X,
0 otherwise

(2)

Marginalization. A bba defined on a product space X×Y may be marginalized
on X by transferring each mass mX×Y (B) for B ⊆ X × Y to its projection on
X [12]:

mX×Y ↓X(A) =
∑

{B⊆X×Y |Proj(B↓X)=A)}

mX×Y (B),∀A ⊆ X (3)

where Proj(B ↓ X) denotes the projection of B onto X.

Ballooning extension. Let mX [yi] represents your beliefs on X conditionnally
on yi a subset of Y , i.e., in a context where yi holds. The ballooning extension
is defined as:

mX [yi]
⇑X×Y (A× yi ∪X × ȳi) = mX [yi](A),∀A ⊆ X (4)

4 AHP Method in an Uncertain Environment

In this section, we introduce the concept of the AHP method within the belief
function framework. We start by explaining how this method works, and then
an example will be traced to further understand and illustrate our approach.



4.1 AHP Method in the Belief Function Context

Since impression and uncertainty are common characteristics in many decision-
making problems, our new AHP method should be able to deal with this un-
certainty. Within this context, a first work has been introduced by Beynon et
al. [1]. They developed a method, called DS/AHP which compares not only one
alternative but also groups of alternatives. With the comparison matrix, the
eigenvector is computed and transformed into a bba. Then a combination rule is
used to aggregate these bba’s, and the belief and plausibility measures are used
to choose the best alternatives. In addition, Ennaceur et al. [4] have proposed a
method named belief AHP, a combination between the AHP method and the be-
lief function theory as understood in the transferable belief model, that evaluates
sets of alternatives according to sets of criteria. To choose the best alternative,
this approach proposes to use the pignistic probabilities. From another perspec-
tive, Dezert et al. [3] have proposed to follow Beynon’s approach, but instead
of using the belief function theory, they investigate the possibility to use the
Dezert-Smarandache theory. The DSmT/AHP method uses the PCR5 rule to
combine the priorities vectors whereas the DS/AHP applies the Dempster’s rule.

In spite of all the advantages of the proposed methods, they do not take
into account the conditional relationships between alternatives and criteria. For
instance, in the alternative level, the expert tries to estimate his opinions-beliefs
about alternatives according to each criterion. That is why; representing uncer-
tainty by bba’s seems to be inconsistent with the expert reasoning because he
tries to express his preferences regarding each criterion and not regardless of the
criteria. As a result, in this work, we want to more imitate the human reasoning.
Therefore, we suggest a new approach based on AHP method. Unlike belief AHP
where the evaluation of each alternative with respect to each criterion is given
by a bba, we try to model the evaluation of each subset of alternatives with
respect to each criterion by conditional beliefs. Additionally, after eliciting the
expert’s preferences at the criterion level, we suppose that criteria weights are
also expressed by means of a bba in order to represent the imperfect evaluation.

4.2 Uncertain AHP Approach

Identification of the Candidate Alternatives and Criteria. One of the
key questions being issued over the implementation of any MCDM problem is the
identification of the candidate alternatives and criteria. As in [4], the main aim
of our proposed approach is the allowance for incompleteness in the judgments
made by expert. Besides, in many complex problems decision makers are able
to compare only subsets of criteria and cannot evaluate separate ones. To solve
this problem, that means to reduce the number of criteria which decreases the
number of comparisons, our method suggests to allow the expert to express his
opinions on groups of criteria instead of single one. So, he chooses these subsets
by assuming that criteria having the same degree of preference are grouped
together. For instance, if an expert identifies a group of criteria, then we could
suppose that all of them have the same importance.



Let Ω = {c1, ..., cm} be a set of criteria, we denote the set of all subsets of
Ω by 2Ω , and let Ck be the short notation of a subset of Ω. By generalization,
these groups of criteria can be defined as:

Ck � Cj ,∀ k, j|Ck, Cj ∈ 2Ω , Ck ∩ Cj = ∅ (5)

On the other hand and similarly to the criterion level, our method proposes
not to consider all the alternatives but just to choose groups of them. So, we
assume that Θ = {a1, ..., an} is a set of alternatives, and we denote the set of all
subsets of Θ by 2Θ. In other terms and as explained in [4], the decision maker
compares not only a single one but also sets of alternatives between each other.

By comparing subsets between each other, we provide a major benefit to
the decision maker. In fact, our proposed approach has reduced the number of
comparisons, because instead of using single elements, we have used subsets.

Pair-wise Comparisons and Preference Elicitation. Once the sets of cri-
teria and alternatives are defined, the expert tries to specify his preferences in
order to obtain the criterion weights and the alternative scores in terms of each
criterion. In this study, we have adopted the Saaty’s scale to evaluate the im-
portance of pairs of grouped elements in terms of their contribution. Thus, the
priority vectors are then generated using the eigenvector method and we have
chosen the standard consistency index in order to ensure that AHP’s pair-wise
comparison matrix is consistent.

Updating the Alternatives Priorities. Having made all the pair-wise com-
parisons, we will be interested in this step by showing how to combine the ob-
tained alternatives priorities with the importance of their corresponding criteria.
In the first step of the approach, the uncertainty is introduced on the decision
maker preferences. Besides, we propose to represent the imperfection over the
sets of criteria. Within our framework, we have Ci ⊆ 2Ω and we have the pri-
ority values of each Ci representing the opinions-beliefs of the expert about his
preferences. We also notice that this priority vector sums to one which can be
regarded as a bba. As a result, this bba can be denoted by mΩ .

Furthermore, we propose to represent the uncertainty at the alternative level.
Unlike the criterion level, the expert tries to express his preferences over the
sets of alternatives regarding each criterion and not regardless of the criteria.
Accordingly, and to more imitate the expert reasoning, we indicate that to define
the influences of the criteria on the evaluation of alternatives, we might use a
conditional belief. Given a pair-wise comparison matrix which compares the
sets of alternatives according to a specific criterion, a conditional bba can be
represented by:

mΘ[cj ](Ak) = wk, ∀Ak ⊆ 2Θ and cj ∈ Ω . (6)

where Ak represents a subset of 2Θ, wk is the eigen value of the kth sets of
alternatives regarding the criterion cj . m

Θ[cj ](Ak) means that we know the
belief about Ak regarding cj .



As indicated above, our objective through this step is to combine the obtained
conditional belief with the importance of their respective criteria to measure
their contribution. In this context, our major problem here is that we have
priorities concerning criteria and groups of criteria that are defined on the frame
of discernment Ω, whereas the sets of decision alternatives are generally defined
on another frame Θ. In order to solve this problem, we propose to standardize
our frame of discernment. First, at the criterion level, our objective is then to
redefine the bba that represents criteria weights. Indeed, we propose to extend
this bba from Ω to Θ ×Ω:

mΩ↑Θ×Ω(B) = mΩ(Ci) B = Θ × Ci, Ci ⊆ Ω (7)

Second, at the alternative level, the idea was to use the deconditionalization
process in order to transform the conditional belief into a new belief function.
In this case, the ballooning extension technique is applied:

mΘ[cj ]
⇑Θ×Ω(Ak × cj ∪Θ × c̄j) = mΘ[cj ](Ak),∀Ak ⊆ Θ (8)

Once the frame of discernment Θ × Ω is formalized, our approach proposes
to combine the alternative priorities. In fact, we assume that each pair-wise
comparison matrix is considered as a distinct source of evidence, which provides
opinions towards the preferences of particular decision alternatives. Then, based
on the belief function framework, we can apply the conjunctive rule of combina-
tion. The obtained bba represents the belief in groups of alternatives based on
the combined evidence from the decisions matrices.

Finally, we might combine the obtained bba with the importance of their
respective criteria to measure their contribution. That is, we will apply the con-
junctive rule of combination and we get:

mΘ×Ω =
[
∩©j=1,...,mm

Θ[cj ]
⇑Θ×Ω

]
∩©mΩ↑Θ×Ω (9)

So, we obtain mΘ×Ω reflecting the importance of alternatives to the given
criteria.

Decision Making. To this end and after combining the resulting ballooning ex-
tension, a decision under uncertainty must be defined. In the sequel, the pignistic
probabilities is used. However, our obtained beliefs are defined on the product
space Θ × Ω. To solve this problem, we propose to marginalize this bba on Θ
(frame of alternatives) by transferring each mass mΘ×Ω to its projection on Θ:

mΘ×Ω↓Θ(Aj) =
∑

{B⊆Θ×Ω|Proj(B↓Θ)=Aj)}

mΘ×Ω(B),∀Aj ⊆ Θ (10)

Finally, we can compute the pignistic probabilities to choose the best alter-
natives:

BetP (aj) =
∑
Ai⊆Θ

|aj ∩Ai|
|Ai|

mΘ×Ω↓Θ(Ai)

(1−mΘ×Ω↓Θ(∅))
,∀aj ∈ Θ . (11)



4.3 Example

To describe this approach, we consider the problem of purchasing a car. Suppose
that this problem involves four criteria: Ω = {Comfort (c1), Style (c2), Fuel (c3),
Quietness (c4)}, and three selected alternatives: Θ = {Peugeot(p),Renault(r),
Ford(f)}.

The first stage is the identification of the groups of criteria and alterna-
tives. Then, the expert can express his preferences over these subsets. At the
criterion level, the following pair-wise matrix can be obtained (see Table 1). As
indicated above, the criterion weights are expressed by a basic belief assessment
(bba). In fact, after eliciting the expert’s preferences, we get: mΩ({c1}) = 0.58,
mΩ({c4}) = 0.32 and mΩ({c2, c3}) = 0.1.

Table 1. The weights assigned to the criteria according to the expert’s opinion

Criteria {c1} {c4} {c2, c3} Priority

{c1} 1 2 6 0.58
{c4} 1

2
1 4 0.32

{c2, c3} 1
6

1
4

1 0.1

Next, we propose to model the alternative score by means of conditional
bba. After constructing the pair-wise comparison matrices, the priorities vectors
regarding each criterion are shown in Table 2. For example, the alternative {p}
given c1 can be represented by mΘ[c1]({p}) = 0.806, which means that we know
the belief about {p} regarding the criterion c1.

Table 2. Priorities values

c1 Priority c2 Priority c3 Priority c4 Priority

{p} 0.806 {p} 0.4 {r} 0.889 {f} 0.606
{p, r, f} 0.194 {r, f} 0.405 {p, r, f} 0.111 {p, r, f} 0.394

{p, r, f} 0.191

According to our approach, the next step is to standardize the criterion and
the alternative frames of discernment. For the criterion level, we suggest to apply
the extension procedure. Hence, Equation 7 is used and the resulting bba’s is
summarized in Table 3.

After normalizing the criteria’s bba, the next step is to transform the condi-
tional belief into joint distribution. Indeed, we suggest to compute the ballooning
extension using Equation 8 (see Table 4).

As explained before, once the ballooning extensions are obtained, we can
apply the conjunctive rule. The result of this combination will be a unique bba
representing the belief in groups of alternatives based on the combined evidence



Table 3. Vacuous extension of bba

bbm Vacuous extension Values

mΩ({c1}) {(p, c1), (r, c1), (f, c1)} 0.58

mΩ({c4}) {(p, c4), (R, c4), (f, c4)} 0.32

mΩ({c2, c3}) {(p, c2), (r, c2), (f, c2), (p, c3), (r, c3), (f, c3)} 0.1

Table 4. Ballooning extension of conditional bba

conditional bbm Ballooning extension Values

mΘ[c1]({p}) {(p, c1), (p, c2), (p, c3), (p, c4), (r, c2),
(r, c3), (r, c4), (f, c2), (f, c3), (f, c4)} 0.806

mΘ[c1]({p, r, f}) {(p, c1), (p, c2), (p, c3), (p, c4),
(r, c1), (r, c2), (r, c3), (r, c4), (f, c1), (f, c2), (f, c3), (f, c4)} 0.194

Table 5. The obtained bba: mΘ×Ω

{(p, c1), (f, c1), (r, c1)} 0.362

{(p, c1)} 0.315

{(p, c4), (f, c4), (r, c4)} 0.1302

{(f, c1)} 0.0064

{(p, c2), (f, c2), (r, c2), (p, c3), (f, c3), (r, c3)} 0.008

{(r, c2), (r, c3), (f, c2), (p, c2)} 0.0664

∅ 0.112

from the decisions matrices. Then, we propose to apply Equation 9, to combine
the obtained bba with the criterion weights (bba) as exposed in Table 5.

Next, to choose the best alternatives, we must define our beliefs over the
frame of alternatives. The solution is then to marginalize on Θ using the Equa-
tion 10, and we obtain the following distribution: mΘ×Ω↓Θ({p, r, f}) = 0.5666,
mΘ×Ω↓Θ({p}) = 0.315, mΘ×Ω↓Θ({f}) = 0.0064 and mΘ×Ω↓Θ(∅) = 0.112.

Finally, the pignistic probabilities can be computed, and we get:
BetP (p) = 0.567, BetP (r) = 0.220 and BetP (f) = 0.213.

As a consequence, the alternative “Peugeot” is the recommended car since it
has the highest values.

5 Conclusion

This paper provides a new MCDM method that combines the analytic hierarchy
process with the belief function theory. We have first introduced imperfection
in the criterion and alternative levels, in order to allow the decision maker to
easily express his assessments and also to correctly represent his preferences. In
addition, we have shown that to correctly represent the expert’s opinion, our
approach investigates some ways to define the influences of the criteria on the
evaluation of alternatives. Moreover, we have noticed that when applying our
proposed approach, the number of comparisons is usually inferior to standard
AHP because instead of using single elements we have used subsets.



As future works, we plan to apply our approach on a real application problem
and we propose to do a sensibility analysis.
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